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Abstract

Response-adaptive randomization (RAR) offers clinical investigators benefit by modifying the 

treatment allocation probabilities to optimize the ethical, operational, or statistical performance of 

the trial. Delayed primary outcomes and their effect on RAR have been studied in the literature; 

however, the incorporation of surrogate outcomes has not been fully addressed. We explore the 

benefits and limitations of surrogate outcome utilization in RAR in the context of acute stroke 

clinical trials. We propose a novel surrogate-primary (S-P) replacement algorithm where a 

patient’s surrogate outcome is used in the RAR algorithm only until their primary outcome 

becomes available to replace it. Computer simulations investigate the effect of both the delay in 

obtaining the primary outcome and the underlying surrogate and primary outcome distributional 

discrepancies on complete randomization, standard RAR and the S-P replacement algorithm 

methods. Results show that when the primary outcome is delayed, the S-P replacement algorithm 

reduces the variability of the treatment allocation probabilities and achieves stabilization sooner. 

Additionally, the S-P replacement algorithm benefit proved to be robust in that it preserved power 

and reduced the expected number of failures across a variety of scenarios.
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1 Introduction

In randomized clinical trials, adaptive designs can be used to alter trial characteristics in 

response to accumulating information within the trial itself. In particular, response-adaptive 

randomization (RAR) procedures shift the treatment allocation probabilities in favor of the 

treatment that appears more successful based on the outcome of participants already treated 
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in the trial, in order to achieve a certain objective, such as maximizing the chance of 

identifying the best treatment arm among several arms, maximizing the power, minimizing 

the total number of failures, or minimizing the total treatment cost. The use of RAR may 

lead to reduced exposure of trial subjects to ineffective experimental arms, more efficient 

and accurate dose finding, and more rapid identification of drugs and devices lacking 

clinically important benefit.1 RAR is especially advantageous in early phase trials where 

little is currently known about the estimates of treatment efficacy. With RAR, it is generally 

assumed that participants enter the trial sequentially, the outcome variable is stable over 

time, and that the primary outcome variable can be determined quickly relative to the length 

of the enrollment period.2

Some clinical trials have a short participant enrollment period relative to the time required to 

obtain the primary outcome. Delayed primary outcomes and their effect on standard RAR 

have been studied in the literature under the assumption of a random-time delay.3–5 The 

standard RAR approach is to wait and update the treatment allocation probabilities whenever 

a primary outcome becomes available. These studies indicate that when the delay is 

moderate (when 60% or more of already randomized participants’ outcomes become 

available), the power of the trial is negligibly affected while the allocation skewness is 

reduced with reduced variability.6 This body of work currently assumes that only a primary 

outcome is available for updating the allocation probabilities and that the time delay is 

random. Yet many biomedical applications, acute stroke treatment trials for example, have 

surrogate outcomes that can be measured sooner than the primary clinical outcome. 

However, the incorporation of surrogate outcomes into RAR has not been fully explored.

Surrogate and primary outcomes were utilized in an adaptive, phase II trial to efficiently 

identify the dose of L-carnitine in the treatment of septic shock.7 This study incorporated 

both the change in Sequential Organ Failure Assessment (SOFA) score at 48-hour post-

treatment (surrogate) and the 28-day mortality (primary) endpoints. However, the allocation 

of subjects to doses and hence the RAR aspect of the study was determined only by the 

observed change in SOFA score (surrogate); while the stopping rules and interpretation of 

the trial results were based on the mortality (primary) benefit seen with the most-promising 

L-carnitine dose. Thus the surrogate and primary endpoints were both used, but for different 

adaptive aspects of the trial. The use of short-term and long-term responses in RAR was 

explored in the setting of survival clinical trials.8 Here complete remission and survival were 

both utilized to ‘‘speed up’’ the adaptation of the randomization procedure through a 

Bayesian model. We present a detailed investigation into the benefits and limitations of an 

alternative surrogate outcome utilization RAR design.

2 Background

Our illustrative example is the NINDS rt-PA Stroke Study,9 which evaluated the 

effectiveness of intravenous recombinant tissue plasminogen activator (rt-PA) for acute 

ischemic stroke when treatment can be initiated within 3 h of stroke onset. A primary 

outcome of interest was the 90-day modified Rankin scale (mRS).10 The mRS is a 

commonly used measure of functional disability or dependence at 3 months post-

randomization in stroke clinical trials (ordinal score ranging from 0 = no symptoms to 5 = 
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severe disability and 6 = dead). The mRS is typically dichotomized, but the cutoff scores 

distinguishing favorable and unfavorable outcome are highly variable between various acute 

stroke trials.11,12 We chose a dichotomization for the mRS that was utilized in the NINDS rt-

PA Stroke Study: 0–1 versus 2–6 representing success and failure, respectively. The NINDS 

rt-PA Stroke Study also collected a neurological function measure known as the National 

Institute of Health Stroke Scale (NIHSS). NIHSS is a systematic assessment tool that 

provides a quantitative measure (integer scale ranging from 0 = no deficit to 42 = extreme 

deficit) of neurologic deficit, and is often assessed at baseline, 24-hours and 90-days post-

randomization.12 We propose the use of the clinically utilized 24-hour NIHSS score as a 

surrogate outcome for the 90-day mRS. This is done based on the strong predictive 

capabilities of the baseline NIHSS13 on outcome. To be clinically useful, the NIHSS is also 

typically dichotomized. Utilizing the Interventional Management of Stroke (IMS14 and IMS 

II15) Studies data, an ROC curve analysis was performed to identify a cut-point in the 

NIHSS that simultaneously maximized both sensitivity and specificity with respect to the 

dichotomized 90-day mRS. This identified the NIHSS cut-point of 10 (83% sensitivity and 

81% specificity) where less than 10 and greater than or equal to 10 represents a success and 

failure, respectively.

A delay time is the time from the intervention to obtaining the outcome measure. The 

current literature focuses on random primary outcome delay times4,16 where it is unknown 

when the outcome will occur. However, in the NINDS rt-PA Stroke Study this delay time 

was fixed at 90 days in that the study protocol required mRS assessment 90 days post 

treatment. Hence, our interest in the length of the delay can equivalently be represented by 

the length of the enrollment period. For a fixed delay time, a long enrollment period (relative 

to the delay) translates into a large percentage of the primary outcomes becoming available 

during that enrollment period; whereas, a short enrollment period (relative to the delay) 

translates into a small percentage of primary outcomes becoming available during that 

enrollment period reducing the RAR scheme’s ability to skew the treatment allocation 

probabilities.

RAR schemes can be classified as either a design-driven urn model or an optimal 

allocation.17 The urn model approach employs intuitive rules to adapt the allocation 

probabilities as each participant enters the trial. Examples are Zelen’s play-the-winner2 

(which is response-adaptive but not randomized), Wei and Durham’s18 randomized play-the-

winner, and Ivanova’s19 drop-the-loser methods. The asymptotic properties of these designs 

are provided in detail in Rosenberger and Lachin.20 Urn models asymptotically target the 

urn allocation proportion

(1)

almost surely,20 where ρ denote the proportion of participants assigned to Treatment A, ni is 

the number of participants assigned to Treatment i (n = nA + nB) and qi = 1 − pi is the 

probability of failure on Treatment i for i = A, B.
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Alternatively, some RAR schemes were developed that focus on optimization criteria.17 

Optimization may be based on several operating characteristics, including power, total 

expected sample size, expected number of treatment failures, expected number of 

participants assigned to the inferior treatment, total expected cost, etc.21 If the main 

objective is to identify for fixed sample size, the allocation that maximizes power, the 

solution is to target the Neyman allocation proportion

(2)

The major drawback of Neyman allocation is that it solely focuses on statistical aspects by 

assigning the majority of participants to the treatment having higher variability without 

regard for the treatment’s effectiveness.20 Alternatively, if the main objective is to identify 

for fixed variance of the test, the allocation that minimizes the expected number of failures, 

then the solution is to target the allocation proportion

(3)

which we refer to as optimal allocation.22 Analogous optimal allocation proportions exist for 

continuous outcomes based on μA, μB, σA, and σB.17 Zhang and Biswas23 propose a broad 

family of allocation rules for RAR that contain Neyman and optimal allocation as special 

cases. Other target allocations exist which are not optimal in the formal sense, but are of 

specific clinical interest. One attribute that all target allocations have in common is that they 

are all functions of unknown population parameters.

Since the optimal allocations, ρ, involves unknown parameters of the population model, one 

cannot implement them in practice. This issue can be resolved in one of two ways: operate 

under the null hypothesis, which will result in equal allocation or operate under a best guess 

of the parameter values, i.e. a sequential estimation procedure (SEP). The latter approach 

was employed by Melfi and Page24 in their sequential maximum likelihood estimation 

(SMLE) procedure. As the trial progresses, unknown parameters are replaced by current 

values of parameter estimates. SMLE was further improved upon by Eisele25 and Eisele and 

Woodroofe26 and called the doubly-adaptive biased coin design (DBCD). Later, Hu and 

Zhang27 updated the conditions of DBCD and proposed a bivariate function g (rcurrent, 

rtarget) (for γ ≥ 0) which represents the probability of assigning the current participant to 

Treatment A

(4)
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where rcurrent is the current proportion of participants assigned to Treatment A and rtarget is 

the current estimate of the target allocation. If the current proportion of participants assigned 

to Treatment A, rcurrent, is less/more than the current target proportion of participants 

assigned to Treatment A, rtarget, then the probability that the next participant will be assigned 

to Treatment A is greater/less than a half. Sequential estimation procedures, as the name 

infers, are iterative in that whenever new information becomes available (a treatment 

allocation or an outcome), the parameter estimates must be recalculated. That is, when a 

subject is randomized to a treatment arm, the rcurrent parameter is updated. When an 

outcome is observed, the success proportions (pA and pB) are updated and thus the target 

allocation rtarget is updated. Therefore, the Treatment A allocation probability, Prob(Trt A), 

is sequentially estimated and utilizes all previously observed information. DBCD is the most 

favorable procedure due to its flexibility in terms of targeting any desired allocation; it is 

only slightly less powerful than the drop-the-loser rule; and one can fine tune the parameter 

γ in g (rcurrent, rtarget) to reflect the degree of randomization desired.28 At the most extreme, 

when γ = 0, DBCD simplifies to the sequential maximum likelihood procedure, which has 

the highest variability of the allocation proportions arising from the randomized procedure. 

As γ tends to ∞, DBCD assigns the patient to treatment with probability one and thus is 

deterministic (but with the smallest variability). Thus, as γ becomes smaller there is more 

randomization but also more variability. It has been shown that the DBCD with γ = 2 tends 

to have very good convergence for moderate sample sizes29 and thus we utilized the DBCD 

(γ = 2) throughout this study.

3 Methods

3.1 RAR using primary outcome only

Consider a simple clinical trial with two Treatments A and B, a binary primary outcome and 

a binary surrogate outcome. Define Ti as the treatment assignment for participant i where Ti 

= A if participant i is assigned Treatment A and Ti = B if participant i is assigned Treatment 

B. Let Pi ~ h(Θ, Ti), where i = 1, 2, …, n, be the primary outcome of interest with a 

distribution based on unknown population parameters Θ and the assigned treatment. Since 

the primary outcome is binary, Θ = {pAP, pBP} where pAP and pBP are the population 

proportion of successful primary outcomes on Treatments A and B, respectively. Let Si ~ 

h(Ω, Ti), where i = 1, 2, …,n, be the binary surrogate outcome with a distribution based on 

unknown population parameters Ω = {pAS, pBS} and the assigned treatment where pAS and 

pBS are the population proportion of successful surrogates on Treatments A and B, 

respectively. Ideally for RAR, the probability that participant k + 1 is assigned to Treatment 

A is a function of the treatment assignments and primary outcomes of the previous 

participants 1 through k.

(5)

Here, RAR is based solely on the primary outcomes (no surrogates) and is referred to as 

standard RAR. The true allocation proportion (based on Θ) is specified and the sequentially 

estimated allocation proportion approaches the true allocation proportion as n increases.

Nowacki et al. Page 5

Stat Methods Med Res. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This approach performs best when the primary outcome of interest is available quickly 

relative to the enrollment period. In practice, however, most clinical trials involve long-term 

follow up to obtain the primary outcome. In our example of acute stroke trials, the final 

assessment of treatment benefit traditionally occurs 90 days after the start of treatment, and 

the surrogate measure (the NIHSS score) at 24 h. It is important to note that for fixed-time 

delays (i.e. 90 days), depending on the enrollment period, only a fraction of the primary 

outcomes will become available for the adaptation of the allocation probabilities during the 

enrollment period. The shorter the enrollment period, the fewer primary outcomes available 

and the further the observed mean allocation will be from the target allocation (Figure 1). 

The skewness of the allocation proportion increases as more primary outcomes become 

available (assuming a treatment effect). However, the variance of the allocation proportion is 

also larger because the allocation probability changes whenever a new participant enrolls. 

The distance from the target allocation line to the 50% proportion of participants assigned to 

Treatment A line can be viewed as the benefit of RAR. Since we have illustrated binary 

outcomes with optimal allocation (which minimizes failures), this can be interpreted as 

potential lives saved (additional successes). As the percent of primary outcome availability 

decreases, the benefit of RAR decreases.

If all primary outcomes are ‘instantaneously’ available (a participant’s primary outcome is 

obtained before the next participant enrolls), then the observed mean allocation achieves the 

target allocation. Here, the maximum RAR benefit is realized. When none of the primary 

outcomes becomes available during the enrollment period, no information exists to skew the 

allocation, thereby simplifying the RAR to simple randomization (equal allocation). Here, 

none of the RAR benefit is realized. Figure 1 illustrates the drawback of the standard RAR 

approach that waits until the primary outcomes become available and then updates the 

allocation probabilities, losing the benefit of RAR.

3.2 Proposed method

We propose a surrogate-primary replacement algorithm (S-P replacement algorithm) which 

utilizes both the surrogate and the primary outcomes. The parameter estimates are based on 

the surrogate outcome only until the primary outcome for the corresponding subject 

becomes available. Thus, the surrogate outcome is replaced with the primary outcome in the 

target allocation estimation. This approach is consistent with the goal of RAR, which is to 

utilize all available information.

The probability that participant k + 1 is assigned to Treatment A is a function of the 

treatment assignments and primary outcomes of the previous participants 1 through t and the 

surrogate outcomes of the previous participants t + 1 through k for whom the primary 

outcome is not yet available

(6)

The S-P replacement algorithm is detailed in Figure 2. Like standard RAR, this method 

requires tracking the following for each treatment group: (1) the number of subjects assigned 

to each treatment group; (2) the number of subjects with a primary outcome available; (3) 
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the number of primary outcome successes; and (4) the Treatment A allocation proportion. 

The S-P replacement algorithm additionally requires tracking the number of subjects with 

only a surrogate response available and the number of surrogate outcome successes for each 

treatment group. To begin implementation, we incorporate the option of an initial block (not 

required) of pre-specified size (typically 5–10% of total sample size) where participants are 

randomly allocated in equal numbers to Treatments A and B to force a balance. Initial 

blocks are a useful way to obtain initial parameter estimates required in a sequential 

estimation procedure such as the DBCD. Whether it is after the initial block or after a 

surrogate outcome becomes available in each treatment arm, one begins by calculating the 

weighted current total number of subjects assigned to each treatment and the current total 

number of response successes for each treatment. For this, we introduce the surrogate 

outcome weight (ws) which represents the weight assigned to a surrogate outcome compared 

to a primary outcome. Generally, one would weight the surrogate outcome less than the 

primary, hence 0 ≤ ws ≤ 1. When ws = 1, the surrogate and the primary outcomes are of 

equal value. When ws = 0, the surrogate outcome is not utilized and the algorithm simplifies 

to the standard RAR approach of waiting and updating whenever the primary outcomes 

become available. Our simulations utilize a surrogate outcome weight of ws = ½; however, 

the selection of ws is dependent on confidence in your surrogate outcome (close to 1 = very 

confident, close to 0 = little confidence) and is context specific. Next, the current response 

success and failure rates are calculated for each treatment group. These rates are then 

plugged into the desired target allocation (e.g. Neyman, optimal) to obtain the current 

Treatment A target allocation. Using both the current Treatment A allocation proportion and 

the current Treatment A target allocation proportion, the Treatment A allocation probability 

for the next subject is calculated using a sequential estimation procedure (e.g. DBCD). The 

next subject is randomized and all counts are updated. The process is repeated until reaching 

the desired sample size. Ultimately, the idea of the S-P replacement algorithm is that RAR is 

performed based on all available data, whether that is a surrogate or primary outcome. So for 

participant i, once his/her primary outcome becomes available, the participants enrolled after 

this event will use RAR with the ith participant’s primary outcome, while the participants 

enrolled before this event will use RAR with the ith participant’s surrogate outcome.

3.3 Simulation study

Computer simulation investigates RAR with delayed primary outcomes both when a 

surrogate outcome is (the proposed S-P replacement algorithm) and is not (the standard 

RAR method) utilized. To compare these two approaches, we apply them to bootstrapped 

samples (phases I and II combined, n = 624) of the NINDS rt-PA Stroke Study9 database. 

Direct comparisons are valid as this sample size yields simulated power of approximately 

99% under both complete randomization and DBCD targeting optimal allocation 

randomization. Assume a random enrollment rate, where the time between participants 

enrollments is distributed uniformly (0, δ). The parameter δ represents the estimated 

maximum time between subject enrollments and can be selected according to the specific 

application under investigation. The lower bound of 0 allows more than one participant to 

enroll on any given day. Here, we investigate the effects of each method on the treatment 

allocation probabilities (the probability of each participant being assigned to the treatment 

rt-PA) and the treatment allocation (the actual proportion of participants assigned to the 
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treatment rt-PA). In addition, we present another simulation study comparing complete 

randomization, standard RAR and S-P replacement algorithm with respect to power and 

expected number of failures under various treatment success scenarios and primary outcome 

delays (0%, 25%, 50%, and 75%). First, this is performed under the ideal situation where the 

surrogate and primary outcome have the same underlying distribution. Then, the 

investigation is repeated with various discrepancies (Δ = 10%, 20%, and 30%) among the 

two distributions. Without loss of generality, we assume a constant enrollment rate (a 

moving window). Therefore, for example, suppose that during the time it takes to obtain a 

primary outcome from the first participant in the study, 20 additional participants enroll. 

Then, when the 21st participant enrolls, the primary outcome becomes available for the 1st 

participant; when the 22nd participant enrolls, the primary outcome becomes available for 

the 2nd participant, etc. We implement Biswas and Hwang’s30 formulation of a bivariate 

binomial distribution in the sense that marginally each of the two random variables 

(surrogate and primary outcome) has a binomial distribution and they have some nonzero 

correlation in the joint distribution.

4 Results

One realization of the standard RAR method and the S-P replacement algorithm are 

illustrated in Figure 3(a) and (b), respectively, for a 1-year enrollment period. The S-P 

replacement algorithm outperforms the standard RAR method by reducing the variability of 

the treatment allocation probabilities and stabilizing the treatment allocation sooner. Also, 

the S-P replacement algorithm achieves the correct target allocation of 56%, whereas the 

standard RAR method overshoots due to the limited data available to skew the allocation. 

When the enrollment period decreases, fewer primary outcomes become available and the 

advantages of the S-P replacement algorithm are magnified. As the enrollment period 

increases, more primary outcomes become available and eventually the two methods 

perform equivalently. These single realizations are presented to highlight the advantages of 

the S-P replacement algorithm; however, the variability of these designs is also of interest.

Figure 4 compares the performance of the standard RAR method (a, b) and the S-P 

replacement algorithm (c, d) with regard to the treatment allocation probabilities and 

treatment allocation, respectively. The mean and standard deviation are presented. The S-P 

replacement algorithm reduces the variability and stabilizes much quicker than the standard 

RAR method with regard to both aspects. Hence, there is benefit in utilizing surrogate 

information when available.

To investigate the performance of the S-P replacement algorithm, it was compared in a 

simulation study to both complete randomization and standard RAR with respect to power 

and expected number of failures when targeting optimal allocation (Table 1). When there is 

no delay in obtaining the primary outcome, both the S-P replacement algorithm and standard 

RAR yield approximately the same power as complete randomization, with a smaller 

expected number of treatment failures. This is consistent with findings of Rosenberger and 

Hu29 that the sample size required by DBCD is often comparable or slightly smaller than 

that required for complete randomization. Complete randomization is not affected by the 

delay in obtaining the primary outcome as it does not utilize the responses and thus its 
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performance remains unchanged as the delay increases. The benefit of the standard RAR in 

terms of reducing treatment failures decreases as the delay in the primary outcomes 

increases; however, the power remains comparable. The S-P replacement algorithm 

maintains the benefit of reducing treatment failures as the delay in the primary outcome 

increases (while maintaining power) as it additionally utilizes the surrogate outcome 

information. While the magnitude of the reduced number of failures may not appear 

dramatic, one must consider that if the true optimal allocation was achieved, this would only 

shift 3, 5, 6, 29, and 46 subjects to Treatment A in each of these five scenarios, respectively. 

This, however, is optimal performance for S-P replacement algorithm as the surrogate 

distribution equals the primary distribution.

In practice, the surrogate distribution is close to the primary outcome distribution, but 

typically does not equal it. Hence, in Table 2 we explore the impact of discrepancies among 

the two distributions. When this occurs, the target allocation based on the surrogate 

responses differs from that based on the primary responses and the resulting target allocation 

is a weighted combination of the two. The weight is determined by the selected surrogate 

weight, ws, as well as the delay in obtaining the primary outcome. When both treatment 

arms over/under estimate the primary outcome success rates equally, the expected number of 

failures is preserved. When the discrepancy overestimates the superior Treatment A and 

underestimates the inferior Treatment B, the expected number of failures decreases. When 

the discrepancy underestimates the superior Treatment A and overestimates the inferior 

Treatment B, the expected number of failures increases. However, even in these suboptimal 

scenarios, the expected number of failures remains lower than that from complete or 

standard RAR. It is only when the distributional discrepancy is so large that the surrogate 

incorrectly identifies the better performing treatment arm (unlikely in practice) that the 

number of failures increases to the level of complete randomization. Power remains 

relatively constant in all scenarios with the one exception being when the surrogate 

distribution assigns subjects almost deterministically to one treatment arm. Here, the power 

dips to around 85% due to the extreme inequalities. Thus, the S-P replacement algorithm is 

rather robust with respect to both distributional discrepancies and delays in obtaining 

primary outcomes in terms of preserving both power and reducing the expected number of 

treatment failures.

5 Discussion

5.1 Outcome measures

For stroke trials specifically, there has been a recent push to analyze the full scale of the 

mRS. In the context of RAR designs, the outcomes of interest can be of the same or different 

types of measures. Thus, depending on the nature of the surrogate outcome and the primary 

outcome, four cases arise: (1) binary–binary; (2) continuous–continuous; (3) continuous–

binary; (4) binary–continuous. We have addressed the simpler cases where the measures are 

the same, but the other cases are more complex and require further investigation.

Nowacki et al. Page 9

Stat Methods Med Res. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5.2 Multiple surrogates

The proposed method of updating the surrogate outcomes as the primary outcome becomes 

available can be extended to include multiple surrogate outcomes. This assumes that a 

number of surrogate outcomes are obtained over the course of the study and that surrogate 

outcomes become better predictors as their measurements are taken closer in time to the 

primary outcome assessment time. Thus, the outcome is updated with the most recently 

available surrogate until the primary outcome becomes available.

We return to our example, the NINDS rt-PA Stroke Study9 where the NIHSS was assessed at 

2 h, 24 h, and 7–10 days post treatment as well as at 90 days. The first three measures could 

serve as surrogate outcomes for the 90-day score. Naturally, these surrogates increase in 

their strength of correlation with the primary outcome (0.60, 0.70, and 0.83 respectively) and 

become an ideal candidate for the multiple surrogate version of the proposed method. 

Alternatively, some stroke trials have begun to collect the mRS at day 7 and/or discharge in 

addition to the 90-day primary outcome time point. Thus the NIHSS or mRS early 

measurements (either separate or in combination) would be examples of ideal candidates for 

the multiple surrogate version of the proposed method.

The S-P replacement algorithm is not without limitations. First, this approach assumes that a 

surrogate outcome is available, which is not always the case. The best performing surrogates 

are the ones with distributions closely resembling that of the primary outcome, not 

necessarily the surrogates most predictive of the primary. Second, as mentioned, this 

approach currently is only suitable when the surrogate and primary outcomes are of the 

same type of measure (binary–binary or continuous–continuous). Third, not specific to the 

S-P replacement algorithm, but to all RAR designs, is the issue of power. The simulations 

presented here utilized sample sizes large enough that RAR and equal allocation designs 

were adequately powered; however, this is not always the case and depends heavily on the 

target allocation selected. Particularly when RAR is selected solely for an ‘ethical benefit’, 

when the power is fixed, the total number of failures may actually increase under RAR 

mainly due to the extra samples needed to cover the power loss owing to the allocation ratio 

shifting. When RAR is selected for other purposes, to add/drop treatment arms or dose-

finding, this becomes less of an issue. Lastly, any adaptive design adds complexity in 

implementation and requires greater planning and simulation along with more advanced 

administrative infrastructure.

Despite these limitations, RAR designs in general have a niche and are developing a 

presence. In the Adaptive Designs Accelerating Promising Trials Into Treatments (ADAPT-

IT) project, a group of researchers are applying adaptive clinical trial principles and studying 

the process of collaboration necessary to design and implement adaptive clinical trials.1 This 

group identified RAR as one of five possible types of adaptations having significant promise 

for confirmatory trials. With recent computation advances, complex models can be 

integrated into both Bayesian and frequentist designs. Meurer et. al. highlight that the choice 

of method should be based on operating characteristics of the design and the experience of 

the team.
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6 Conclusions

In RAR, the probabilities for assigning eligible participants to different treatments are 

influenced by the observed outcomes among participants previously enrolled. When RAR is 

based solely on primary outcomes (standard RAR), any delay in obtaining the primary 

outcome will result in an observed mean allocation differing from the target allocation. With 

a long delay, very few primary outcomes become available to skew the allocation 

probabilities and all potential benefit of the RAR design is lost. Our proposed S-P 

replacement algorithm utilizes surrogate outcomes only until the primary outcome becomes 

available. Thus, it shifts the estimation of parameters from the surrogate to the primary 

outcome distribution. Even with modest delays in obtaining the primary outcomes and 

distributional discrepancies among the surrogate and primary outcome, the S-P replacement 

algorithm has shown an advantage over both standard RAR and complete randomization. 

Therefore, for fixed-time surrogate and primary outcomes, the S-P replacement algorithm 

outperforms the standard RAR approach by reducing probability variability and increasing 

convergence of the treatment allocation toward its target.
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Figure 1. 
The effect of outcome delay on treatment allocation when utilizing standard RAR. N = 250. 

DBCD (γ = 2). Optimal allocation. Simulations = 1000. pA = 0.5, pB = 0.3. Treatment 

allocation moves from the target toward the 50% line when the percentage of available 

primary outcomes decreases from 100% to 0% for RAR based solely on primary outcomes.
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Figure 2. 
Surrogate-primary replacement algorithm.
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Figure 3. 
Comparison of the standard RAR method for handling delayed primary outcomes and the S-

P replacement algorithm on the NINDS rt-PA Stroke Study data (N = 160, one realization). 

Primary outcome is the 90-day mRS, the surrogate outcome is the 24-hour NIHSS with a 1-

year enrollment period.
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Figure 4. 
Comparison of the variation of the standard RAR method for handling delayed primary 

outcomes and the S-P replacement algorithm on the NINDS rt-PA Stroke Study data (N = 

160, simulations = 100). Primary outcome is the 90-day mRS, the surrogate outcome is the 

24-hour NIHSS with a 1-year enrollment period.
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