Table 1.
Complete | Treatment A Optimal allocation |
Standard RAR | S-P Replacement algorithm | |||||||
---|---|---|---|---|---|---|---|---|---|---|
pA | pB | N | Power | Failures | Power | Failures | Power | Failures | ||
Delay = 0% | 0.9 | 0.3 | 24 | 91 | 10 (2.4) | 63% | 90 | 7 (2.7) | 90 | 7 (2.7) |
0.9 | 0.7 | 162 | 91 | 32 (5.0) | 53% | 91 | 31 (4.7) | 91 | 31 (4.7) | |
0.7 | 0.3 | 62 | 90 | 31 (3.9) | 60% | 91 | 28 (3.6) | 91 | 28 (3.6) | |
0.5 | 0.4 | 1036 | 90 | 570 (16.0) | 53% | 90 | 567 (15.8) | 90 | 567 (15.8) | |
0.2 | 0.1 | 532 | 90 | 452 (8.2) | 59% | 90 | 447 (8.4) | 90 | 447 (8.4) | |
Delay = 25% | 0.9 | 0.3 | 24 | 91 | 10 (2.4) | 63% | 92 | 9 (2.1) | 90 | 8 (2.0) |
0.9 | 0.7 | 162 | 91 | 32 (5.0) | 53% | 91 | 31 (4.7) | 91 | 31 (4.8) | |
0.7 | 0.3 | 62 | 90 | 31 (3.9) | 60% | 90 | 30 (3.8) | 91 | 28 (3.5) | |
0.5 | 0.4 | 1036 | 90 | 570 (16.0) | 53% | 90 | 567 (16.0) | 90 | 567 (15.9) | |
0.2 | 0.1 | 532 | 90 | 452 (8.2) | 59% | 91 | 450 (8.2) | 90 | 447 (8.5) | |
Delay = 50% | 0.9 | 0.3 | 24 | 91 | 10 (2.4) | 63% | 92 | 9 (2.1) | 90 | 8 (2.3) |
0.9 | 0.7 | 162 | 91 | 32 (5.0) | 53% | 91 | 31 (4.7) | 91 | 31 (4.9) | |
0.7 | 0.3 | 62 | 90 | 31 (3.9) | 60% | 90 | 30 (3.7) | 90 | 28 (3.6) | |
0.5 | 0.4 | 1036 | 90 | 570 (16.0) | 53% | 90 | 568 (16.0) | 90 | 567 (15.8) | |
0.2 | 0.1 | 532 | 90 | 452 (8.2) | 59% | 90 | 450 (8.3) | 90 | 447 (8.4) | |
Delay = 75% | 0.9 | 0.3 | 24 | 91 | 10 (2.4) | 63% | 92 | 10 (1.9) | 90 | 7 (2.3) |
0.9 | 0.7 | 162 | 91 | 32 (5.0) | 53% | 91 | 31 (4.8) | 91 | 31 (4.9) | |
0.7 | 0.3 | 62 | 90 | 31 (3.9) | 60% | 91 | 31 (3.7) | 90 | 28 (3.6) | |
0.5 | 0.4 | 1036 | 90 | 570 (16.0) | 53% | 90 | 569 (16.0) | 90 | 567 (15.9) | |
0.2 | 0.1 | 532 | 90 | 452 (8.2) | 59% | 90 | 451 (8.3) | 90 | 448 (8.5) |
RAR: response-adaptive randomization; DBCD: doubly-adaptive biased coin design.
The sample size was selected that yielded simulated power of approximately 90% under complete randomization. Both RAR methods implemented DBCD (γ = 2) and targeted optimal allocation. Simulations = 10,000 replications (α = 0.05, two-sided). Surrogate distribution equals primary distribution. Surrogate weight ws = 0.5.