Skip to main content
. Author manuscript; available in PMC: 2018 Jun 1.
Published in final edited form as: Stat Methods Med Res. 2015 Jan 12;26(3):1078–1092. doi: 10.1177/0962280214567142

Table 1.

The effect of primary outcome delay on power and expected treatment failures (standard deviation) for complete randomization, standard RAR, and the S-P replacement algorithm.

Complete Treatment A
Optimal allocation
Standard RAR S-P Replacement algorithm



pA pB N Power Failures Power Failures Power Failures
Delay = 0% 0.9 0.3 24 91 10 (2.4) 63% 90 7 (2.7) 90 7 (2.7)
0.9 0.7 162 91 32 (5.0) 53% 91 31 (4.7) 91 31 (4.7)
0.7 0.3 62 90 31 (3.9) 60% 91 28 (3.6) 91 28 (3.6)
0.5 0.4 1036 90 570 (16.0) 53% 90 567 (15.8) 90 567 (15.8)
0.2 0.1 532 90 452 (8.2) 59% 90 447 (8.4) 90 447 (8.4)
Delay = 25% 0.9 0.3 24 91 10 (2.4) 63% 92 9 (2.1) 90 8 (2.0)
0.9 0.7 162 91 32 (5.0) 53% 91 31 (4.7) 91 31 (4.8)
0.7 0.3 62 90 31 (3.9) 60% 90 30 (3.8) 91 28 (3.5)
0.5 0.4 1036 90 570 (16.0) 53% 90 567 (16.0) 90 567 (15.9)
0.2 0.1 532 90 452 (8.2) 59% 91 450 (8.2) 90 447 (8.5)
Delay = 50% 0.9 0.3 24 91 10 (2.4) 63% 92 9 (2.1) 90 8 (2.3)
0.9 0.7 162 91 32 (5.0) 53% 91 31 (4.7) 91 31 (4.9)
0.7 0.3 62 90 31 (3.9) 60% 90 30 (3.7) 90 28 (3.6)
0.5 0.4 1036 90 570 (16.0) 53% 90 568 (16.0) 90 567 (15.8)
0.2 0.1 532 90 452 (8.2) 59% 90 450 (8.3) 90 447 (8.4)
Delay = 75% 0.9 0.3 24 91 10 (2.4) 63% 92 10 (1.9) 90 7 (2.3)
0.9 0.7 162 91 32 (5.0) 53% 91 31 (4.8) 91 31 (4.9)
0.7 0.3 62 90 31 (3.9) 60% 91 31 (3.7) 90 28 (3.6)
0.5 0.4 1036 90 570 (16.0) 53% 90 569 (16.0) 90 567 (15.9)
0.2 0.1 532 90 452 (8.2) 59% 90 451 (8.3) 90 448 (8.5)

RAR: response-adaptive randomization; DBCD: doubly-adaptive biased coin design.

The sample size was selected that yielded simulated power of approximately 90% under complete randomization. Both RAR methods implemented DBCD (γ = 2) and targeted optimal allocation. Simulations = 10,000 replications (α = 0.05, two-sided). Surrogate distribution equals primary distribution. Surrogate weight ws = 0.5.