Skip to main content
. Author manuscript; available in PMC: 2018 Jun 1.
Published in final edited form as: Stat Methods Med Res. 2015 Jan 12;26(3):1078–1092. doi: 10.1177/0962280214567142

Table 2.

The effect of surrogate distributional discrepancy and delay in obtaining primary outcomes on power and expected treatment failures (standard deviation) for the S-P replacement algorithm.

S-P Replacement algorithm

pPA = pSA
pPB = pSB
pSA ↑ Δ
pSB ↑ Δ
pSA ↓ Δ
pSB ↓ Δ
pSA ↑ Δ
pSB ↓ Δ
pSA ↓ Δ
pSB ↑ Δ
Δ = 10% Trt A surrogate success probability (pSA) = 0.70 0.80 0.60 0.80 0.60
Trt B surrogate success probability (pSB) = 0.30 0.40 0.20 0.20 0.40
Optimal allocation Trt A target = 0.60 0.59 0.63 0.67 0.55
Delay = 25% Power 91 90 90 90 90
Failures (std dev) 28.4 (3.6) 28.3 (3.6) 28.5 (3.7) 28.2 (3.7) 28.8 (3.6)
Delay = 50% Power 91 90 89 89 91
Failures (std dev) 28.4 (3.6) 28.5 (3.6) 28.2 (3.6) 27.7 (3.6) 29.2 (3.6)
Delay = 75% Power 90 91 90 90 90
Failures (std dev) 28.3 (3.6) 28.6 (3.5) 27.8 (3.7) 27.2 (3.6) 29.5 (3.7)
Δ = 20% Trt A surrogate success probability (pSA) = 0.70 0.90 0.50 0.90 0.50
Trt B surrogate success probability (pSB) = 0.30 0.50 0.10 0.10 0.50
Optimal allocation Trt A target = 0.60 0.57 0.69 0.75 0.50
Delay = 25% Power 91 90 90 90 91
Failures (std dev) 28.4 (3.6) 28.3 (3.6) 28.7 (3.6) 28.1 (3.7) 29.1 (3.6)
Delay = 50% Power 91 90 90 88 90
Failures (std dev) 28.4 (3.6) 28.5 (3.8) 28.5 (3.9) 27.6 (3.9) 29.8 (3.8)
Delay = 75% Power 90 90 89 88 90
Failures (std dev) 28.3 (3.6) 28.8 (3.7) 27.8 (3.9) 26.7 (3.9) 30.4 (3.7)
Δ = 30% Trt A surrogate success probability (pSA) = 0.70 0.99 0.40 0.99 0.40
Trt B surrogate success probability (pSB) = 0.30 0.60 0.01 0.01 0.60
Optimal allocation Trt A target = 0.60 0.56 0.86 0.91 0.45
Delay = 25% Power 91 90 90 89 91
Failures (std dev) 28.4 (3.6) 28.1 (3.6) 29.5 (3.7) 28.2 (3.8) 29.4 (3.6)
Delay = 50% Power 91 89 89 88 90
Failures (std dev) 28.4 (3.6) 27.6 (4.2) 30.7 (4.6) 28.2 (4.3) 30.6 (3.8)
Delay = 75% Power 90 87 86 84 90
Failures (std dev) 28.3 (3.6) 27.4 (4.6) 30.7 (6.0) 28.5 (5.6) 31.2 (3.8)

The sample size (N = 62) was selected that yielded simulated power of approximately 90% under complete randomization. S-P replacement algorithm method implemented doubly-adaptive biased coin design (γ = 2). Simulations = 5000 replications (α = 0.05, two-sided). Surrogate weight ws = 0.5.