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Abstract

Objective—Pathology in both cortex and deep gray matter contribute to disability in multiple
sclerosis (MS). We used the increased signal-to-noise ratio of 7-tesla (7T) MRI to visualize small
lesions within the thalamus and to relate this to clinical information and cortical lesions.

Methods—7T MRI scans were obtained on 34 MS cases and 15 healthy volunteers. Thalamic
lesion number and volume were related to demographic data, clinical disability measures, and
lesions in cortical gray matter.

Results—Thalamic lesions were found in 24/34 of MS cases. Two lesion subtypes were noted:
discrete, ovoid lesions, and more diffuse lesional areas lining the periventricular surface. The
number of thalamic lesions was greater in progressive MS compared to relapsing remitting (mean
+SD, 10.7 £ 0.7 vs. 3.0 £ 0.7, respectively, p < 0.001). Thalamic lesion burden (count and
volume) correlated with EDSS score and measures of cortical lesion burden, but not with white
matter lesion burden or white matter volume.

Conclusions—7T MRI allows identification of thalamic lesions in MS, which are associated
with disability, progressive disease, and cortical lesions. Thalamic lesion analysis may be a
simpler, more rapid estimate of overall gray matter lesion burden in MS.
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Introduction

Methods

Demyelination and neurodegeneration in gray matter (GM) are critical aspects of multiple
sclerosis (MS) pathology.! Autopsy studies have demonstrated demyelination and axonal
loss in the cerebral cortex,2: 3 spinal cord,* hippocampus,® and deep GM structures.®
Pathologic alterations of GM structures have been found in early and late disease, with
greater changes noted in those with a progressive clinical phenotype.” GM pathology is
clearly clinically relevant, as it is associated with cognitive and physical disability.8:

Similar to what is seen in white matter (WM), GM pathology can manifest as subtle changes
to normal appearing GM in addition to distinct lesions. In recent years, it has become
possible to quantify GM pathology with advances in magnetic resonance imaging (MRI)
protocols. Techniques such as double inversion recovery, phase sensitive inversion recovery,
and ultrahigh-field MRI have been used to characterize the extent of cortical GM lesions in
MS.10-12 However, neuroimaging studies of deep GM structures, such as the thalamus, have
concentrated on non-lesion measures of pathology, such as alterations in the concentrations
of metabolites, atrophy, and iron deposition.13-16 To date, in vivo characterization of the
extent and clinical impact of deep GM lesions, particularly those in the thalamus, has been
limited.

The objective of this study was to take advantage of the improved signal-to-noise ratio
(SNR) and resultant spatial resolution of 7-tesla (7T) MRI to identify and characterize
thalamic MS lesions. The extent to which thalamic lesions are a marker for cortical lesions
and their relationship with disability was also explored.

Standard protocol approvals and patient consents

Participants

Protocols were approved by the Institutional Review Boards at the Johns Hopkins
University School of Medicine and the Kennedy Krieger Institute. Written, informed
consent was obtained from all participants.

MS participants were recruited from the Johns Hopkins MS Center. Individuals with
diagnoses of relapsing remitting (RRMS), secondary progressive (SPMS), and primary
progressive (PPMS) MS were enrolled. Participants were excluded if they had experienced
an MS relapse in the prior 30 days or if they were experiencing symptoms of a major
depressive episode. A cohort of age-matched healthy volunteers was also recruited.

MRI protocol and image analysis

MRI was performed with a 7T Philips Achieva scanner with a volume transmit/32-channel
receive head coil (Novamedical). Dielectric padding was used to improve image
homogeneity. Whole brain, 3D, T1-weighted MPRAGE (magnetization prepared rapid
acquisition of gradient echoes) images were acquired with 0.5mm isotropic resolution
(repetition time 5.2ms, delay time 4500ms, echo time 2.3ms, flip angle 7 degrees, parallel
imaging factor 2.5 (AP) x 2 (RL), 13 minutes, 12 seconds). Whole brain, 3D, T2-weighted
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MPFLAIR (magnetization prepared fluid attenuated inversion recovery) images were
acquired with 1.0mm isotropic resolution (repetition time 8107ms, inversion time 2175ms,
echo time 293ms, flip angle 90 degrees, TSE factor 115, parallel imaging factor 2 (AP) x 3
(RL), 8 minutes, 14 seconds).

Images were transferred to an offline workstation and processed with the MIPAV software
package (version 5.3, http://mipav.cit.nih.gov). Using MIPAV’s built-in algorithms, the
MPRAGE images were smoothed with an anisotropic diffusion filter and the MPFLAIR was
rigidly registered to the MPRAGE. Linked MPRAGE and MPFLAIR image slices were
viewed at four times magnification and lesions were manually demarcated by a neurologist
(DH) who was blinded to subject identity and diagnostic category. Thalamic lesions were
identified as hyperintense on MPFLAIR and hypointense on MPRAGE. Cortical lesions
were required to be hypointense on MPRAGE; the MPFLAIR was used for visual guidance,
but hyperintensity was not required as 7T MPFLAIR images typically have artifacts along
the cortical ribbon. Cortical lesions were required to be a minimum of 15% hypointense
relative to adjacent normal appearing cortex, at least Imm wide in at least one image plane,
and distinctly different from cortical blood vessels.

Thalamic lesion subtypes were defined in accord with prior pathological analysis.6 Two
lesion subtypes were noted (Figure 1): periventricular lesions, which were diffuse, confluent
areas of signal change lining the periventricular surface of the thalamus; and ovoid lesions,
which were smaller, discrete, ovoid areas of signal change. The cortical lesion subtypes
were also defined in accord with pathology.2 Three lesion subtypes were noted (Figure 2):
Type 1 (leukocortical) — lesion borders traversing both white and GM, Type 2 (intracortical)
— lesions located exclusively in GM, and Type 3 (subpial) — widespread areas of
demyelination extending inward from the pial surface, usually located in deep sulci.

In order to obtain brain structure volumes and WM lesion volumes, the Lesion-TOADS
segmentation algorithm1” was modified for use with 7T images. Co-registered MPRAGE
and MPFLAIR images underwent N4 inhomogeneity correction, skull and dura stripping,
and Lesion-TOADS segmentation. The segmented images were then reviewed for
segmentation errors, with manual correction of the WM lesion masks. WM lesion masks
were then used for in painting of MPRAGE and MPFLAIR images and the TOADS
algorithm was repeated. The subsequent thalamus masks were then manually corrected for
segmentation errors and all corrected masks were used to create a final segmentation mask.
The intracranial volume (ICV) was calculated from the skull-stripped brain mask. Raw
volumes were normalized to ICV and brain parenchymal fraction (BPF) was calculated as a
sum of brain structure volumes divided by ICV.

Disability Measures

Neurologic examinations were performed to determine the Expanded Disability Status Scale
(EDSS) score. The MS severity score (MSSS) was also calculated based on disease duration
and the EDSS score. The timed 25-foot walk, 9-hole peg test, and Paced Auditory Serial
Addition Test were administered to determine the MS Functional Composite (MSFC) score.
Z-scores for individual test results and the MSFC total score were calculated according to
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the recommendations of the National MS Society Clinical Outcomes Assessment Task
Force, using the Task Force dataset for normalization.18: 19

Statistical analysis

Results

Statistical analysis was performed in Stata 10.1 IC (StataCorp, College Station, Texas).
Group differences were tested with Student’s t-test for continuous variables and Wilcoxon
Rank-Sum test for discrete variables. Group differences found in univariate analysis were re-
tested in multivariate analysis in a logistic regression model for prediction of group
assignment by the variable of interest, adjusted for potential confounds, such as age, disease
duration, and sex. Univariate correlation testing was performed with Spearman’s rank
correlation testing. Significant correlations were evaluated in multivariate analysis by
Pearson correlation adjusted for potential confounds. All tests were two-tailed, and statistical
significance was set at p < 0.05 and was not adjusted for multiple comparisons given the
small sample size and exploratory nature of this study.

Thirty-four MS cases were imaged and analyzed, along with 15 healthy volunteers. There
were no differences in age or sex between the MS cases and healthy volunteers (Table 1).
Twenty-eight (83%) of the MS cases had RRMS and 6 (17%) had SPMS (3) or PPMS (3).
The relapsing and progressive cohorts did not differ in mean age or sex ratio, but there was a
higher proportion of RRMS on disease modifying treatment (79% vs. 33%) and SPMS/
PPMS cases had significant worse disability as measured by EDSS and MSFC.

Most MS cases had thalamic lesions (24, 71%). Thalamic lesions were either small, discrete,
ovoid lesions distributed throughout the body of the thalamus, or wider areas of signal
abnormality lining the third ventricle (Figure 1). Although 5 healthy volunteers were found
to have very small areas of signal abnormality in the thalamus, normalized volume was very
low (mean 3.79 x 1078 vs. 7.65 x 107° in MS cases, p < 0.01), and none was periventricular.
Progressive MS cases had a greater thalamic lesion burden than RRMS cases as measured
by lesion count and burden (Figure 3). Ovoid thalamic lesion count was significantly greater
in SPMS/PPMS (9.0 (SD 1.9)) than in RRMS (1.9 (SD 0.5)), as was ovoid thalamic lesion
volume (1.29 x 1074 (SD 9.71 x 107> vs. 2.04 x 107> (SD 4.82 x 107°)). There were no
differences between subgroups in periventricular thalamic lesion burden. Total thalamic
lesion volume (but not lesion count) correlated with disease duration (p = 0.41, p = 0.02),
but not age. Multivariate logistic regression for differences in thalamic lesion burden
adjusted for disease duration, sex, and white matter lesion volume did not alter the RRMS
vs. SPMS/PPMS comparisons noted above.

Thalamic lesion burden correlated with disability in univariate analysis (Figure 4 and Table
2), with correlations found between the total and ovoid thalamic lesion burden and the EDSS
score and 9-hole peg test time. However, adjustment for age, disease duration and sex in
multivariate analysis removed these correlations, and there was no association between
MSSS and thalamic lesion burden. The correlations between total and thalamic lesion
burden and EDSS were of similar magnitude as seen for WM lesion volume and EDSS, but
weaker than for BPF. In contrast, correlations between thalamic volume and disability did
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not yield significant results. Periventricular thalamic lesions did not correlate with any
disability measure.

Total cortical lesion count was increased in subjects with SPMS/PPMS (40.7, SD 30.4)
compared to RRMS (20.1, SD 16.3) (Table 3). Total and ovoid thalamic lesion count
correlated with total cortical lesion count and all three cortical lesion subtypes (Table 4).
Total and ovoid thalamic lesion volumes correlated well with cortical lesion counts and
total, type 1, and type 2 cortical lesion volumes, with the strongest correlations being found
with type 2 cortical lesion burden. Total and ovoid thalamic lesion burden did not correlate
with WM lesion volume, measures of brain atrophy, or thalamic volume. However,
correlations were found between thalamic volume and periventricular lesion count (p =
-0.35, p = 0.04) and volume (p = -0.41, p = 0.02).

Discussion

In this investigation of the thalamus in MS at 7T, we found thalamic lesions in the majority
of MS cases (>70%). Two distinct types of thalamic lesions were noted: ovoid (discrete,
ovoid shaped lesions) and periventricular (diffuse areas of confluent signal abnormality
lining the ventricular surface of the thalamus). Thalamic lesion burden was greatest in those
with a progressive clinical phenotype- independent of age, disease duration, sex, or white
matter lesion volume. The thalamic lesion burden was also greater in those with more
physical disability in univariate analysis, although this relationship was not present when
adjusted for confounding demographic variables. The overall thalamic lesion burden was
also related to the extent of cortical lesion burden, mostly driven by associations between
ovoid thalamic lesions and cortical lesions.

The differing properties of the two thalamic lesion subtypes may provide interesting insights
into their causation. Our findings are consistent with those found on autopsy by Vercellino
et al.,% a comprehensive pathologic study of MS lesions in deep gray matter structures. In
that study, ovoid and periventricular lesions were found mostly in the caudate and thalamus.
Ovoid thalamic lesions were noted to develop around a central blood vessel, with
inflammation, demyelination, and neuronal loss radiating outward. The inflammatory
response around these lesions is described as being less robust, however, than WM lesions,
and perhaps more consistent with that occurring in type 2 cortical lesions. In our study,
ovoid thalamic lesions showed the strongest correlations with type 2 cortical lesions,
possibly cluing towards manifestations of a common pathology.

Periventricular thalamic lesions likely evolve from differing pathologic processes than ovoid
thalamic lesions. Vercillino et al. described this lesion type as extensive areas of
demyelination lining the thalamic surface of the third ventricle, with no clear relationship to
a central vessel. We found no correlations between periventricular thalamic lesion burden
and cortical lesion burden, WM lesion burden, or overall brain atrophy, perhaps indicating
an independent pathologic source. Their visual similarity to subpial cortical lesions, which
are thought to arise from the cytotoxic effects of chemokines from local meningeal
follicles,29-22 may possibly indicate a similar pathologic origin. Despite their similarities,
we did not find a specific correlation between periventricular thalamic lesion burden and
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subpial cortical lesion burden in this study. Additionally, the thalamic-ventricular surface
lacks a pial meningeal layer, so the source of cytotoxic chemokines would have to be
unrelated, but could be freely diffusing in cerebrospinal fluid (CSF). Of note, thalamic
periventricular lesion burden did correlate with thalamic atrophy, cluing towards a joint
pathologic process leading to both hyperintense signal around the third ventricle and
neurodegeneration of thalamic nuclei.

Of the two lesion subtypes, ovoid thalamic lesions were most clinically relevant, as they
significantly correlated with disability in the univariate analysis and were more prominent in
progressive patients. This may indicate that periventricular inflammation in deep GM results
in less neuronal damage than perivascular inflammation. Alternately, the differences in
correlation with disability between the thalamic lesion subtypes may signify that standard
measures of disability (such as EDSS) are not sensitive to the particular consequences of
dysfunction in the medial thalamic nuclei.

Pathologic analysis of deep GM lesions demonstrates that most deep GM lesions involve
both GM and WM.® Deep GM lesion burden in the Vercellino et al. study did not correlate
with overall WM lesion burden, however, but did correlate with the extent of cortical
demyelination (p = 0.77). We similarly observed a correlation between thalamic and cortical
lesion burden in absence of a correlation between thalamic lesion burden and WM lesions or
measures of brain atrophy. Similar to deep gray matter lesions, cortical lesion burden also
has previously been shown to lack strong pathologic correlation to WM lesion burden.23
These observations may be indicative of a mechanistic link between the formation of deep
and cortical GM lesions that is distinct from WM lesions. The unique characteristics of the
blood-brain barrier seen in cortical MS lesions,2* other aspects of the microvasculature, or
specific tissue antigens may share enough similarity between deep and cortical GM as to
allow for the same pathological processes to affect both. Additionally, neuronal-
immunologic cell interactions can inhibit microglia/macrophage activation and induce
regulatory T-cell responses,22:26 explaining why signs of inflammation are less common in
cortical GM lesions.2” Given the presence of neuronal cell bodies in thalamic nuclei, the
immunologic milieu of the thalamus may thus be more similar to cortical GM than WM.

Although our study does not have pathologic and neuroimaging correlation in the same
subjects, we believe that the consistency between our results and those seen in the
Vercellino et al. study indicate that our imaging approach is sensitive to the same pathologic
processes in vivo. This confirms he ability of 7T MRI to facilitate in vivo detection of small-
scale pathology.28: 29 Further, the correlation between lesions in the cortex and thalamus
without a similar link to WM lesions suggests that measurement of lesions in deep GM
structures may be a suitable estimate of overall GM lesion burden. Given that there are no
automated methods for identification and quantification of cortical lesions, having such a
marker would be valuable. If thalamic lesion burden is an adequate marker of overall GM
lesion burden, we propose that quantification of thalamic and/or overall deep GM lesion
burden may be a quicker, more practical measure of GM lesion burden for future
observational studies and clinical trials.
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Despite limitations of a small sample size, our study supports a link between the
development of gray matter disease and a progressive MS phenotype. Importantly, the
increase in thalamic lesion burden seen in progressive MS subjects in this study was found
to be independent of the confounds of age, disease duration, sex, and white matter lesion
volume. The independent relationship of thalamic lesion burden and clinical phenotype we
observed, along with the increased cortical lesion burden in SPMS/PPMS vs. RRMS seen in
this and other studies,” 30 and data linking relative cortical sparing with a benign clinical
course3! may all indicate that a transition to the development of gray matter lesions may be
a contributor to a more progressive phenotype of MS. If this is the case, having a rapid
measure of gray matter pathology (such as thalamic lesion burden), without the need for
intensive cortical lesion quantification, would have utility in clinical care and future studies
of progressive MS.

The demonstration of a relationship between thalamic pathology and clinical disability in
this study is not a unique finding. Previous studies at lower field strengths have related
thalamic damage to disability in MS.14 15, 32-34 However, all previous studies chose to
evaluate more global measures of thalamic damage, such as structural atrophy, iron
deposition, or spectroscopic changes, without characterizing lesions. Descriptions of focal
demyelinating lesions in deep GM structures, and in the thalamus specifically, are rare in the
MS imaging literature- making this study unique. The paucity of attention to the imaging of
thalamic lesions in MS may be due to the inherent signal characteristics of deep GM lesions
on standard clinical imaging. Despite the presence of demyelination and neuroglial cell loss,
deep GM lesions tend to have less overall tissue destruction than WM lesions,8 which could
affect their intensity on MRI. Deep GM lesions contain less inflammation and minimal
gliosis compared to WM lesions,® also resulting in a less hyperintense T2 signal. Finally,
deep GM lesions tend to be small, making them less apparent at standard resolution. The
increased SNR and concomitant improved resolution possible with 7T MRI3® may help
overcome these limitations.

Our study does have some shortcomings. Given the subtle nature of some lesions, manual
lesion identification of the type performed in this study could be limited by poor
reproducibility. Also, the sample size is small and thus our conclusions, especially for the
differences noted between relapsing and progressive MS cases, should be taken as
preliminary. Future work should confirm these findings in a larger sample, compare these
results directly to scans at lower field strengths, and measure longitudinal changes. Despite
limitations, the data presented here suggest 7T MRI may represent an important tool for
quantification of deep GM tissue damage in MS. In doing so, we have demonstrated that
thalamic lesions in MS have clinical relevance, and that their measurement may provide a
useful estimate of overall gray matter lesion burden and may be indicative of processes
linked with the clinical phenotype of progressive MS.
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Figure 1.
Thalamic Lesion Subtypes

Examples of thalamic lesions from axial MPRAGE and MPFLAIR are seen above. The
yellow box shown in MPFLAIR image to the far right shows the approximate localization of
panels A-D. Two subtypes of lesions were noted on inspection of 7T MRI images. Panels A
(MPFLAIR) and B (MPRAGE) show examples of ovoid lesions, which were discrete ovoid-
shaped lesions (orange arrows). Panels C (MPFLAIR) and D (MPRAGE) show examples of
periventricular lesions, which were widespread areas of abnormality lining the
periventricular surface of the thalamus (yellow double arrow). Note: ovoid lesions are also
present in panels C and D, highlighted in yellow.
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Leukocortical Intracortical Subpial

MPRAGE

MPFLAIR

Figure 2.
Cortical Lesion Subtypes

Examples of cortical lesion subtypes are seen above (yellow arrows). Saggital MPRAGE
images are seen in the top row, and saggital MPFLAIR images are seen in the bottom row.
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Figure 3.

Thalamic Lesion Count and Volume
Mean thalamic lesion count and volumes (normalized to intracranial volume) for all MS
subjects and per subtype. SPMS and PPMS combined due to low number in both groups.
The total thalamic lesion burden and ovoid lesion burden were increased in SPMS/PPMS
subjects compared to RRMS. There was no difference between subgroups for the extent of
periventricular lesion burden. * = p < 0.05 for comparison to healthy volunteers. ** = p <
0.05 for comparison to RRMS. Error bars represent the 95% confidence interval for estimate

of the mean.
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Figure 4.

Correlation of thalamic lesions with disability.

Scatter plots of total and subtype lesion count and volume (normalized to intracranial
volume) against EDSS score. Line of best fit is shown, along with results of Spearman rank
correlation analysis. Total thalamic lesion count and ovoid lesion count and normalized

volume significantly correlated with EDSS.
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