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Abstract

Low-grade diffuse gliomas are a heterogeneous group of primary glial brain tumors with highly 

variable survival. Currently, patients with low grade diffuse gliomas are stratified into risk 

subgroups by subjective histopathologic criteria with significant interobserver variability. Several 

key molecular signatures have emerged as diagnostic, prognostic, and predictor biomarkers for 

tumor classification and patient risk stratification. In this review, we will discuss the impact of the 

most critical molecular alterations described in diffuse (IDH1/2, 1p/19q co-deletion, ATRX, TERT, 

CIC, FUBP1) and circumscribed (BRAF-KIAA1549, BRAFV600E, C11orf95–RELA fusion) 

gliomas. These molecular features reflect tumor heterogeneity and have specific associations with 

patient outcome that determine appropriate patient management. This has led to an important, 

fundamental shift towards developing a molecular classification of WHO grade II-III diffuse 

glioma.

Introduction

In the United States 28% of all primary brain and central nervous system (CNS) tumors are 

diagnosed as gliomas 1. Based on their infiltrative behavior, gliomas are subdivided into two 

main subgroups: circumscribed and diffuse. The circumscribed gliomas are generally 

amenable to total surgical resection and patients with these tumors have improved outcomes 

compared to patients with diffuse gliomas. The aggressive phenotype of diffuse gliomas is 

attributed to the tendency of the malignant glioma cells to infiltrate the neuropil along axons 

and travel far away from the primary tumor site (Figure 1). A malignant glioma cell may 

travel to the opposite cerebral hemisphere. For this reason diffuse gliomas cannot be 

completely surgically resected (Figure 1c). Diffuse gliomas encompass two main 

histological subtypes (astrocytoma and oligodendroglioma) of which a third subtype is 

derived (mixed oligoastroytoma). Histological criteria established by the World Health 
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Organization (WHO), further stratify gliomas into four grades of aggressiveness (WHO I-

IV) 2. WHO grade I is reserved for circumscribed glial and glio-neuronal entities usually 

with favorable prognosis, while diffuse gliomas comprise the more aggressive WHO grades 

II-IV (Table 1) 2. Patients with astrocytomas generally have worse outcomes than patients 

with oligodendrogliomas (Table 2) 1.

While histologic criteria for diagnosing the most aggressive diffuse glioma (i.e. 

glioblastoma) are clear, there is extreme variability in interpretation of current 

morphological criteria and in diagnostic reproducibility for grade II and III diffuse glioma 

among pathologists 3–6. Several molecular signatures have now been identified in gliomas, 

with important diagnostic, prognostic, and/or predictive roles. These genetic alterations have 

led to further stratification of gliomas into several distinct subgroups. The addition of 

genetic markers offer better prognostic patient stratification compared to WHO grading 

alone. Guidelines for a combined molecular-morphologic approach to glioma diagnosis are 

under development 7.

The treatment of WHO grade II-III diffuse gliomas continues to evolve. Retrospective 

molecular analysis of tumors from patients enrolled in randomized clinical trials have called 

into question the use of standard histologic grading and have emphasized the relevance of 

key molecular alterations as important predictive biomarkers with implications for 

determining appropriate tumor management.

Histopathological classification of WHO grade II-III diffuse glioma

Since Bailey and Cushing’s initial attempt at brain tumor classification in 1926 8, 9, 

histological examination has been the mainstay method for risk class assignment, patient 

outcome stratification, therapy guidelines, and stratification for clinical trials 2, 3, 10. Several 

potential issues arising during histological examination are responsible for the significant 

inter-observer variability in achieving diagnostic reproducibility. For example, the current 

WHO criterion for grade III designation of astrocytomas (i.e. “brisk mitotic activity” 2) does 

not clearly specify any mitotic figure cutoffs and is, therefore, ambiguous and subjective and 

often based on the pathologist’s individual experience and bias. Similarly, the criteria for the 

“mixed oligoastrocytoma” category (i.e. “recognition of neoplastic glial cells with 

convincing astrocytic or oligodendroglial phenotypes” 2) are subjective. The pathologist’s 

expertise and experience in neuropathology also significantly impacts accuracy of diagnosis. 

In a large oncologic center study investigating the rate of diagnosis disagreement after 

expert neuropathology review, approximately 40% of case reviews had some type of 

disagreement with the original diagnosis, of which about 9% were serious with immediate 

impact on treatment 11. Another potential problem in interpretation can be caused by 

mistakenly omitting foci of high-grade histology (i.e. missing slides from the resection 

specimen or alternatively, limited surgical sampling in subtotal resections or biopsies and/or 

suboptimal specimen sampling of the resected specimen) 3–6, 11. Due to one or several of 

these issues, the histopathologic consensus among neuropathologists after a single review is 

reached in only approximately 50% of cases 5. Although this number could be improved 

after several case reviews, 5 it is imperative to implement more objective criteria and/or 

incorporate ancillary modalities alongside histological parameters in order to significantly 
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improve the high rate of inter-observer variability in histopathologic diagnosis and 

classification of diffuse gliomas.

Molecular features of WHO II-III diffuse gliomas

The current WHO classification does not comprehensively reflect diffuse glioma biology 

and patient outcome. There is extensive evidence that tumors from different patients that 

have indistinguishable morphology under the microscope do not necessarily share the same 

biology and do not necessarily reflect similar patient outcomes 12–16. Molecular subgroups 

of diffuse glioma, heterogeneous in WHO grade, with different survival outcomes have been 

described. The use of molecular stratification was superior in predicting outcome compared 

to the WHO grade alone 15.

Isocitrate dehydrogenase (IDH) mutations in diffuse gliomas

Key molecular markers in WHO grade II-III diffuse glioma include IDH 1 and 2 (IDH1/2) 

mutations. These genes encode the Krebs/citric acid cycle family of metabolic enzymes 17. 

IDH mutations in diffuse glioma were initially described in 2008 18 but occur at lower 

frequencies in other malignancies 19–24. In diffuse glioma IDH1 mutations occur more 

commonly (>90%) than IDH2 mutations and are mutually exclusive. IDH mutations are 

common in grade II-III diffuse glioma (~65–80%) and secondary glioblastoma (~80%) (i.e. 

glioblastoma that arise following progression from a grade II or III diffuse glioma) while 

primary glioblastomas usually lack or show a very low frequency of IDH mutations 

(~5%) 25–32. IDH gene family mutations, the most common of which are IDH1R132H and 

IDH2R172K, confer both loss and gain of function that impacts epigenetic regulation through 

accumulation of 2-hydroxyglutarate and inhibition of α-ketoglutarate-dependent 

deoxygenases 17, 33–35. The impact of mutant IDH induces a hypermethylator phenotype 36, 

the glioma-CpG island methylator phenotype (G-CIMP) 37. G-CIMP is characteristic of 

grade II-III diffuse glioma, is associated with improved prognosis, and with a proneural 

molecular gene expression signature 38, 39.

IDH family mutations are early 25, 40 and consistent 40, 41 molecular events in the 

development of a glioma and are complemented by subsequent mutually exclusive glioma 

lineage specific genetic alterations, such as TP53 and alpha thalassemia/mental retardation 

syndrome X-linked (ATRX) mutations. These latter mutations are associated with the 

astrocytic phenotype 42–47. On the other hand, 1p/19q co-deletion 39, 43, 46 is associated with 

mutations in the homolog of Drosophila capicua gene (CIC) 42, 48 and/or far-upstream 

binding protein 1 gene (FUBP1) and with the oligodendroglial phenotype 42, 49. These 

molecular markers strongly support the predominant monoclonal origin of mixed 

oligoastrocytomas demonstrated by microdissection studies. 41, 50, 51 These molecular 

markers may help to further classify this controversial mixed glioma category into specific 

subclasses of either astrocytoma or oligodendroglioma 52.

In addition to its important diagnostic role, IDH mutations also have a significant prognostic 

role in high-grade diffuse glioma (WHO grade III and IV) independent of WHO grade in 

some instances 29, 30, 32, 42, 53–56. On the other hand, the prognostic role of IDH mutations in 

WHO grade II diffuse glioma has not been completely elucidated 40, 57–63. These mutations 
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do not appear to have prognostic significance in non-CNS malignancies 21, 23. Similarly, the 

predictive role of IDH mutations has not been clarified. Very few studies suggest a potential 

advantage of the use of IDH mutations for determining treatment response in anaplastic 

diffuse gliomas. Two randomized phase III clinical trials [Radiation Therapy Oncology 

Group (RTOG) 9402 and European Organisation for the Research and Treatment of Cancer 

(EORTC) 26951] have now reported a similar improved overall survival benefit to a 

combined regimen using radiotherapy and PCV specifically in patients with anaplastic 

gliomas that are IDH mutant and 1p/19q non-co-deleted 64, 65. The predictive role of IDH 

mutations remains to be further investigated along with the possible prognostic implication 

of the IDH driven G-CIMP in grade II-III gliomas 37, 38, 66, 67. Of note, a promising 

IDH1R132H specific inhibitor drug (AGI-5198) has shown significant activity in pre-clinical 

models 68 and is currently in phase 1 clinical trials for solid tumors 69, 7069, 7069, 7069, 70(69, 

70)(69, 70)69, 7029, 84. Multiple other agents targeting mutant IDH are also under 

investigation.

IDHR132H mutation can be easily detected clinically by immunohistochemistry (Figure 1C). 

The expression of mutated IDH1R132H protein confirms mutation. Cases that are IDH1R132H 

immunonegative can be further interrogated by DNA sequencing for other IDH1 or IDH2 

mutations. Since mutations are mainly present in codons 132 and 172 respectively, 

sequencing can be limited to these codons 17. At our institution all grade II-III diffuse 

gliomas and glioblastomas in young patients (less than age 50) are interrogated in this 

manner 71.

Chromosomes 1p/19q loss of heterozygosity in diffuse gliomas

Another important molecular marker in diffuse glioma is the presence of 1p/19q co-deletion, 

the molecular signature of oligodendroglioma, initially described in 1994 4, 39, 48, 72–74. The 

proposed mechanism of formation of this chromosomal abnormality is a translocation 

between 1p and 19q leading to the derivative chromosome, der(1;19)(q10;p10). This 

derivative chromosome was demonstrated in a small number of tumors leading to the 

hypothesis that subsequent der(1;19)(p10;q10) formation leads to 1p/19q loss of 

heterozygosity 75, 76. Importantly, 1p/19q co-deletion is only present if IDH mutations are 

present 77; therefore, this implies an association with the G-CIMP and proneural expression 

phenotypes 38, 39, an association that was demonstrated in grade II-III 

oligodendrogliomas 39, 66. Several studies showed that 1p/19q co-deletion can aid in risk 

stratification of IDH mutant gliomas with IDH mutant, 1p/19q co-deleted gliomas having 

the best prognosis, followed by IDH mutant, 1p/19q non-co-deleted gliomas and lastly by 

IDH wild-type, 1p/19q non-co-deleted tumors with the worst outcome 39, 57, 63, 64, 78.

Besides prognostic significance, 1p/19q co-deletion is a marker of chemotherapeutic 

response 79–83. Patients with 1p/19q co-deleted diffuse gliomas responded better to adjuvant 

chemotherapy [either procarbazine (Matulane®, Sigma Tau Pharmaceuticals, Gaithersburg, 

MD)/lomustine (CCNU) (CeeNU®, Bristal-Myers Squib Company, Princeton, NJ)/

vincristine (Oncovin®, Eli Lilly and Company, Indianapolis, IN) (PCV) regimen; or 

temozolomide (TMZ)] 79, 81–90. The mechanism for the associated chemosensitivity remains 
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unknown and whether 1p/19q co-deletion leads to loss of a chemoresistant gene(s) or is 

merely a marker of more chemosensitive clones remains to be determined.

One of the most popular methods for detection of 1p/19q co-deletion is fluorescent in situ 

hybridization (FISH). FISH permits pathologists to correlate chromosomal arm copy number 

findings with tissue morphology and does not require the use of normal control samples 

(Figure 2). Polymerase chain reaction-based loss of heterozygosity assays or array 

comparative genomic hydridization (CGH) are also utilized in different laboratory 

settings 91, 92.

ATRX and telomerase reverse transcriptase (TERT) promoter mutations in 

gliomas

Two distinct telomere maintenance mechanisms have been recently described mainly in IDH 

mutant grade II-III diffuse glioma and primary glioblastoma. Telomeres are repetitive 

guanine-rich nucleotide sequences situated at each chromatid end. They are required for 

chromosome stability and shorten with each cell division. 93 In cancer, the length of 

telomere sequences is maintained either by telomerase enzyme activity or by a mechanism 

independent of telomerase activity called alternative lengthening of telomeres (ALT). 94, 95 

Two mutually exclusive telomere maintenance mechanisms appear associated with IDH 

mutant WHO grade II-III diffuse gliomas. An ALT mechanism may be triggered by loss of 

the normal ATRX protein function of maintaining chromatin integrity for DNA replication. 

ATRX or death-associated protein 6 (DAXX) mutations cause dysfunctional ATRX-DAXX 

protein complexes that are unable to carry their normal histone chaperone function, leading 

to chromatin breakage, and abnormal DNA replication. 96–98 Telomeric DNA double-strand 

breakage may trigger ALT.43, 99–102 This mechanism is encountered in IDH mutant, 1p/19q 

non co-deleted grade II-III diffuse glioma 43, 44, 46, 103.

The other telomere maintenance mechanism involves point mutations in the TERT promoter. 

TERT encodes the catalytic subunit of telomerase. Telomerase is a RNA-dependent 

polymerase composed of two subunits: TERT (the catalytic subunit) and TERC (the 

telomerase RNA component which serves as a template for telomere extension) 104, 105. 

Two consistent and mutually exclusive TERT promoter point mutations (C228T and C250T) 

have been described in gliomas 77, 106. These mutations have been also frequently found in 

other non-CNS tumors, with C228T being by far more common (~80%) than C250T (~20%) 

overall 103, 107, 108. Point mutations in the TERT promoter region create binding sites for the 

E-twenty-six (Ets) family of transcription factors, 107–110 which upon binding cause two to 

four fold increase in transcriptional activity 107 with subsequent increased TERT mRNA 

expression 77. This increased mRNA expression seems to be positively correlated with the 

tumor’s CIC mutational status 77, likely because CIC regulates the Ets family of 

transcription factors 111. Chen et al. demonstrated in vitro that the increase in TERT 

transcriptional activity is maintained under hypoxic conditions and under treatment with 

TMZ 112. This second telomere maintenance mechanism is also characteristic of IDH 

mutant, 1p/19q co-deleted grade II-III diffuse glioma (and therefore of molecular 

oligodendroglioma) 103, 106, 113. In the diffuse glioma category, it is not yet clear if TERT 

promoter mutations confer additional prognostic benefit to the presence of IDH mutations 
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and 1p/19q co-deletion. Most studies demonstrate improved survival in patients with IDH 

mutant, TERT promoter mutated grade II-III diffuse gliomas 77, 113, 114 ; however after 

stratification for 1p/19q co-deletion status, TERT promoter mutations demonstrate a 

prognostic advantage only to the 1p/19q non-co-deleted subset 114. Interestingly, TERT 

promoter mutations are negative prognostic biomarkers in the IDH wild-type grade II-III 

diffuse gliomas subset 77, 113, 114 and in primary glioblastoma 77, 103, 112, 113. In addition to 

obtaining IDH mutation and 1p/19q co-deletion status, identifying ATRX and TERT 

promoter mutations status should further enhance the stratification of diffuse gliomas.

IDH mutation– driven subgroups of WHO grade II-III diffuse glioma

There is evidence that the presence or absence of IDH mutation is an important branch point 

towards grade II-III diffuse glioma subclassification. Gorovets et al. subclassified 101 grade 

II and III diffuse gliomas of astrocytic morphology by IDH mutation status. IDH mutant 

tumors were enriched in TP53 mutations, PTEN promoter methylation, and gains of 8q. 

Based on expression signatures, IDH mutant grade II-III astrocytomas were also subdivided 

into two subgroups: neuroblastic and early progenitor-like, the former enriched in mature 

neuronal and the latter enriched in developmental gene signatures. The early progenitor-like 

subgroup components were associated with TP53 mutations and several chromosomal copy 

number abnormalities (gains of 7p and 15q, and losses of 4q34.3, 9p23, 11p, 12q21.33, 13q, 

and 19q).

On the other hand IDH wild-type grade II-III astrocytomas shared EGFR amplifications, 

PTEN losses, PI3K/AKT molecular pathway activation, and gains of 7p and losses of 9p and 

10q 15. Partial or total loss of 10q and 9p loss have been previously associated with dismal 

prognosis in WHO II-III diffuse glioma 115–117. This is important because the latter 

signatures are characteristic molecular markers of primary glioblastoma 18, 118–120. This 

suggests that a subgroup of grade II-III astrocytomas confined to the IDH wild-type genetic 

subclass is biologically identical to glioblastoma. This same group also demonstrated that 

these specific tumors clustered within a separate, heterogeneous subgroup defined based on 

expression profiling that, not surprisingly, was called pre-glioblastoma 15. Similarly Yan et 

al., defined an IDH wild-type subgroup based on expression profiling that was also 

predominantly composed of primary glioblastomas and also clustered several grade II-III 

diffuse gliomas 16.

A proposed classification scheme based on a summary of the molecular analysis to date for 

WHO II-III diffuse gliomas is shown in Figure 3. This schema may more accurately reflect 

underlying biology and be more representative of patient outcome than the WHO grade 

alone. The Cancer Genome Atlas (TCGA) 121 group is currently working on analyzing a 

large cohort of WHO grade II-III diffuse gliomas of all morphologies. Extensive data 

derived from multiple molecular platforms were analyzed and their results are expected 

shortly. We can speculate that similar molecular findings will be reported as have been 

reported previously and that emphasize a significant difference between groups of tumors 

that are primarily separated by the IDH mutation status.
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Susceptibility loci for the development of diffuse glioma

Several large genome-wide association studies (GWAS) have been performed to identify 

genetic variants associated with the risk of development of a glioma. These GWAS studies 

have identified several risk single nucleotide polymorphism (SNP) loci. The reported loci 

with the strongest glioma risk association were rs78378222 (TP53, 17p13), rs4295627 and 

rs55705857 (CCDC26, 8q24.21), rs2736100 (TERT, 5p15.33), rs1920116 (TERC, 3q26.2), 

rs4977756 (CDKN2B, 9p21.3), rs6010620 and rs2297440 (RTEL1, 20q13.33), and rs498872 

(PHLDB1, 11q23.3) 122–131. Of these, rs4295627, rs55705857 (CCDC26, 8q24.21) and 

rs498872 (PHLDB1, 11q23.3) are strongly associated with low-grade disease, IDH 

mutations 132 and 1p/19q co-deletions 127. For the former two SNPs, the risk for developing 

oligodendroglioma was also shown by Jenkins et al 128, 129. High-grade disease, IDH wild-

type, EGFR amplification, CDKN2A p16INK4a homozygous deletion, 9p and 10q loss were 

linked to rs2736100 (TERT, 5p15.33) and rs6010620 (RTEL1, 20q13.33) 127. An additional 

SNP locus associated with high-grade glioma was rs2297440 (RTEL1, 20q13.33) 128.

Molecular features of well-circumscribed gliomas

BRAF genetic alterations are shared by pilocytic astrocytoma, ganglioglioma, and 

pleomorphic xanthoastrocytoma. BRAF-KIAA1549 fusion-duplication, a possibly prognostic 

marker 133, is frequent in younger patients 134 with cerebellar pilocytic astrocytomas (~60–

80%), intermediate in frequency for brainstem, hypothalamic, and optic pathway tumors 

(~60%) 135, and low (~20%) in supratentorial cortical tumors 136. BRAFV600E mutations are 

common in pleomorphic xanthoastrocytoma (~60–80%) involving the temporal lobes, 

ganglioglioma (~30–50%) 137–139, and less commonly found in pilocytic astrocytoma (~2 to 

30% depending on location). Most common locations include diencephalon, followed by 

cerebral cortex and brainstem, and least common in cerebellar tumors) 137.

Location-specific subgroups of ependymomas with characteristic genetic signatures have 

been described. Supratentorial ependymomas (~70–75%) are enriched in C11orf95–RELA 

fusion, driver of NF-kB cell signaling 140, 141. Posterior fossa ependymomas are comprised 

of two genetically and clinically distinct subgroups, group A (PFA) and B (PFB). The more 

aggressive PFA group is enriched in cancer-related signal transduction pathway gene 

signatures, exhibits the CIMP phenotype (distinct from G-CIMP), while the PFB group is 

CIMP negative and enriched in chromosomal number aberrations 142–144.

Conclusions

Grade II-III diffuse gliomas are heterogeneous tumors. Based on current published data, 

IDH mutations and 1p/19q co-deletion are major drivers of gliomagenesis and in 

determining outcome for grade II-III diffuse gliomas. Diffuse glioma subgroups defined 

based on these two molecular alterations will require further characterization in order to 

identify additional important biomarkers as well as for therapeutic target discovery. 

Continued endeavors to further characterize grade II-III glioma characterization should not 

only offer important information regarding many accepted clinical observations but also 

provide mechanisms regarding these observations. For example, why are 1p/19q co-deleted 
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tumors more chemosensitive? Why is the improved overall survival in those patients 

receiving chemoradiation observed late after the median overall survival has already been 

reached? How should 1p/19q non-co-deleted tumors be treated? It is anticipated in the near 

future that preclinical/laboratory efforts paired with clinical results obtained from large 

collaborative studies and clinical trials will likely provide answers to these important 

questions regarding appropriate patient management. In the near future, the use of combined 

molecular-histopathological criteria will improve glioma risk stratification, aid in trial 

design, and ultimately be used to guide therapy for patients with diffuse gliomas.
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Figure 1. 
Diffuse gliomas are aggressive neoplasms that tend to infiltrate along dendrites and axons 

and travel long distances from the primary site of origin. Malignant glioma cells are shown 

infiltrating the cortex and forming aggregates along a blood vessel (yellow arrows) 

extending all the way to the leptomeningeal surface (black arrows) (A – H&E, Obj: 100X). 

A higher power of the cortex highlights neoplastic glioma cells (green arrow) surrounding 

the neurons (yellow arrow) (B – H&E, Obj: 200X). A special immunohistochemical stain 

for the mutated IDH-R132H protein highlights (in brown) malignant glioma cells infiltrating 

the normal (pale) subcortical and cortical tissue – note how the subcortex has an incresed 

density of glioma cells (left upper corner) compared to the superficial cortex (right lower 

corner) (C – IDH1-R132H, Obj: 40X, scale not available).
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Figure 2. 
Diffuse glioma with 1p/19q co-deletion. The locus-specific identifier (LSI) probe, 1p36 

(SpectrumOrange) and corresponding LSI 1q25 (SpectrumGreen) show two normal green 

signals and single abnormal orange signal in a subpopulation of interphase cells suggestive 

of 1p loss (left). LSI probe, 19q13 (SpectrumOrange) and corresponding LSI 19p13 

(SpectrumGreen) show two normal green signals and single abnormal orange signal in a 

subpopulation of oligodendroglioma interphase cells suggestive of 19q loss (right) 

(Photographs courtesy of Prof. Dr. Adekunle Adesina, Texas Children’s Hospital, Houston, 

TX, USA).
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Figure 3. 
Proposed molecular classification of WHO grade II-III diffuse glioma.
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Table 1

Classification and assigned grading of gliomas after the current WHO system 2.

WHO grade

Circumscribed Astrocytic

Subependymal giant cell astrocytoma I

Pilocytic astrocytoma I

Pilomyxoid astrocytoma II

Pleomorphic xanthoastrocytoma II

Ependymal

Subependymoma I

Myxopapillary ependymoma I

Ependymoma II

Anaplastic ependymoma III

Diffuse Diffuse astrocytoma II

Oligodendroglioma II

Mixed oligoastrocytoma II

Anaplastic astrocytoma III

Anaplastic oligodendroglioma III

Anaplastic mixed oligoatrocytoma III

Glioblastoma IV

Other Angiocentric glioma I

Desmoplastic infantile astrocytoma I

Chordoid glioma of the third ventricle II

Mixed glio-neuronal tumors Ganglioglioma I

Anaplastic ganglioglioma III

Desmoplastic infantile ganglioglioma I

Papillary glioneuronal tumour I

Rosette-forming glioneuronal tumour of the fourth ventricle I

Dysembryoplastic neuroepithelial tumour I
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Table 2

Five-year relative survival rates for patients with diffuse glioma 1.

Diffuse glioma (WHO grade) 5-Year relative survival rate (%)(95% Confidence Interval)

Oligodendroglioma (II) 79.5 (77.9–81)

Mixed oligoastrocytoma (II-III) 61.1 (58.6–63.6)

Anaplastic oligodendroglioma (III) 52.2 (49.1–55.1)

Astocytoma (II) 47.4 (46–48.8)

Anaplastic astrocytoma (III) 27.3 (25.6–28.9)

Glioblastoma (IV) 5 (4.8–5.4)
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