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Histone phosphorylation plays key roles in stress-induced tran-
scriptional reprogramming in metazoans but its function(s) in land
plants has remained relatively unexplored. Here we report that an
Arabidopsismutant defective in At3g03940 and At5g18190, encoding
closely related Ser/Thr protein kinases, shows pleiotropic phenotypes
including dwarfism and hypersensitivity to osmotic/salt stress. The
double mutant has reduced global levels of phosphorylated histone
H3 threonine 3 (H3T3ph), which are not enhanced, unlike the re-
sponse in the wild type, by drought-like treatments. Genome-wide
analyses revealed increased H3T3ph, slight enhancement in trimethy-
lated histone H3 lysine 4 (H3K4me3), and a modest decrease in his-
tone H3 occupancy in pericentromeric/knob regions of wild-type
plants under osmotic stress. However, despite these changes in het-
erochromatin, transposons and repeats remained transcriptionally re-
pressed. In contrast, this reorganization of heterochromatin was
mostly absent in the double mutant, which exhibited lower H3T3ph
levels in pericentromeric regions even under normal environmental
conditions. Interestingly, within actively transcribed protein-coding
genes, H3T3ph density was minimal in 5′ genic regions, coincidental
with a peak of H3K4me3 accumulation. This pattern was not affected
in the double mutant, implying the existence of additional H3T3 pro-
tein kinases in Arabidopsis. Our results suggest that At3g03940 and
At5g18190 are involved in the phosphorylation of H3T3 in pericentro-
meric/knob regions and that this repressive epigenetic mark may be
important for maintaining proper heterochromatic organization and,
possibly, chromosome function(s).
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Plants, due to their sessile nature, adopt special strategies to
cope with adverse environmental conditions, resulting in

complex interactions among signaling pathways and developmental
programs that impinge on chromatin organization and transcrip-
tional activity (1–3). A growing body of evidence indicates that
changes in DNA methylation and certain posttranslational histone
modifications are involved in plant responses to environmental
stresses, possibly by modulating the expression of stress responsive
genes and/or chromosomal structures (1–6). Environmental cues,
especially high temperature, can also transiently influence gene
expression or heterochromatin organization via changes in histone
variants and/or nucleosome occupancy, without obvious alterations
in well-characterized epigenetic marks (2, 3, 7–10).
Histone phosphorylation can occur on serine, threonine, and/or

tyrosine residues and is generally induced in response to extracel-
lular signals, DNA damage, or entry into mitosis/meiosis (11–16).
Phosphorylation of histone H3 is evolutionarily conserved at several
sites including Ser 10 and 28 (H3S10ph and H3S28ph) and Thr 3
and 11 (H3T3ph and H3T11ph) (11–13, 15). In metazoans, a variety
of environmental stimuli can trigger histone H3 phosphorylation,
both globally and at specific genes in interphase cells (11, 14, 17–
19). In plants, dynamic changes in histone H3 phosphorylation were
also observed in cultured cells exposed to abiotic stress, such as high

salt or low temperature, as well as to abscisic acid treatments (20,
21). Thus, phosphorylation of histone H3 and alterations in chro-
matin structure are emerging as critical factors in organismal re-
sponses to environmental cues, although in many cases the specific
molecular mechanisms are not clearly understood.
Histone H3 phosphorylation has also been linked to chromo-

some structure and segregation based on the cell-cycle–dependent
phosphorylation patterns of certain residues, concurrent with mi-
totic and/or meiotic chromosomal condensation (11–13, 21). The
phosphorylation of histone H3 at Thr 3, mainly in mitotic cells, has
been recently characterized in a number of organisms (12, 13, 15,
16, 21–23). In mammals, H3T3ph is more prevalent in the cen-
tromeric region of metaphase chromosomes and has been impli-
cated in chromosome alignment and centromeric cohesion (12, 13,
16). Indeed, H3T3ph generated by the mitosis-activated Haspin
kinase provides a binding site at inner centromeres for Survivin and
the recruitment of Aurora B kinase, which is involved in accurate
chromosome segregation (12, 13, 16, 24). In plants, however, ho-
mologs of Survivin and several subunits of the chromosomal pas-
senger complex have not been found (21, 25) and cytogenetic
analyses indicate that H3T3ph is distributed along the entire length
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of mitotic chromosomes rather than at centromeres (15, 21, 23).
Moreover, characterization of AtHaspin, encoding the Arabidopsis
Haspin homolog, suggested that the kinase is essential for embryo
development and that H3T3ph might be involved in chromatin
condensation (25, 26).
Interestingly, multiple kinase families have been implicated in

H3T3 phosphorylation in eukaryotes and several appear to be
lineage specific (11–13, 15). We have previously characterized
MUT9, a green algae/land plant-specific Ser/Thr protein kinase
capable of phosphorylating H3T3 in the alga Chlamydomonas
reinhardtii, and found that H3T3ph functions as a repressive
epigenetic mark (15, 27, 28). In land plants, however, there is scant
information on the existence of H3T3 phosphorylation in in-
terphase cells and on its possible involvement in responses to
abiotic stress. We describe here the genome-wide distribution of
H3T3ph in Arabidopsis and changes in this pattern associated with
osmotic stress. The characterization of a mutant lacking protein
kinases largely responsible for this modification in pericentromeric
regions provided novel insights on the potential function(s) of
H3T3ph in maintaining heterochromatin organization.

Results
At5g18190 and At3g03940, Homologs of Chlamydomonas MUT9, Are
Required for Arabidopsis Development. We previously demon-
strated that the MUT9 Ser/Thr protein kinase is necessary for
heritable epigenetic silencing in the alga Chlamydomonas (15, 27,
28). To address the role(s) of related protein kinases in land plants,
we have now extended our studies to Arabidopsis. This model plant
encodes four homologs of MUT9 (SI Appendix, Fig. S1 A and B)
but homozygous transfer DNA (T-DNA) insertion lines in indi-
vidual MUT9-like kinase genes are largely indistinguishable in their
phenotype from the wild type (Fig. 1 A and B). In contrast, a double
mutant, generated by crossing T-DNA insertion lines of the closest
paralogs At5g18190 and At3g03940 (SI Appendix, Fig. S1A), ex-
hibited pleiotropic morphological abnormalities and develop-
mental aberrations (Fig. 1A and SI Appendix, Fig. S2). At5g18190
and At3g03940 were namedMUT9-LIKE KINASE1 and 2 (MLK1
and 2), respectively; and the double mutant is hereafter abbreviated

as dm. Mutant plants remained dwarf throughout their life cycle
and displayed various defects in reproductive organs (SI Appendix,
Fig. S2). RT-PCR analyses demonstrated depletion of the corre-
sponding transcripts in each T-DNA insertion mutant and in the dm
(Fig. 1C). To obtain direct evidence that the pleiotropic phenotypes
were caused by loss of function of the protein kinase genes, the
cDNA ofMLK1 driven by the cauliflower mosaic virus (CaMV) 35S
promoter was introduced into the dm. Expression of MLK1 was
clearly detected in the transgenic plants, coincidental with successful
rescue of the phenotypic defects (Fig. 1D). Thus, two highly similar
Ser/Thr protein kinases, encoded by MLK1 and MLK2, might
function redundantly in important cellular and/or developmental
processes in Arabidopsis.

Themlk1 mlk2 Double Mutant Is Hypersensitive to Salt/Osmotic Stresses.
TheChlamydomonas mut9mutant is very sensitive to several abiotic
stresses (27, 28). Thus, we examined the response of the Arabidopsis
dm to drought mimicking conditions. When seedlings were exposed
to 30% (wt/vol) PEG or 0.1 M NaCl, all genotypes were affected
in their growth relative to seedlings on control plates (Fig. 2A).
However, dm plants experienced greater growth reduction and
some did not survive the treatments (Fig. 2A). Compared with the
single mutants and the wild type, which displayed similar growth
defects, the dm showed more severe root growth retardation (Fig.
2 B and C). Likewise, comparison of size-matched plants from the
wild type and dm grown in soil demonstrated that the latter wilted
faster during water deprivation (Fig. 2D). Moreover, after re-
watering, 40% of the wild-type plants survived but only 10% of
the dm did. These observations suggested that the MLK1 and
MLK2 protein kinases might play a role(s) in the response of
Arabidopsis to osmotic and salt stresses.

Osmotic Stress Stimulates Global Phosphorylation of Histone H3 at
Threonine 3, Which Depends on Functional MLK1 and MLK2 Genes.
Recombinant MLK1 protein was demonstrated to phosphorylate
histone H3 Thr 3 in in vitro assays (SI Appendix, Fig. S3A). To
examine whether the Arabidopsis MUT9-like kinases might phos-
phorylate H3T3 in vivo, as their Chlamydomonas homolog (28),
immunoblot analyses were performed with a modification-specific
antibody (SI Appendix, Fig. S3B). Interestingly, global levels of
H3T3ph were substantially reduced in the dm (Fig. 2E), although
not entirely lost, presumably because of the remaining activity of
other kinases in the MUT9 subfamily (SI Appendix, Fig. S1A).
Given the role of certain posttranslational histone modifications

in plant responses to environmental stresses (1–6) and the hyper-
sensitivity of the Arabidopsis dm to PEG or NaCl treatments, we
also examined whether H3T3ph levels change under drought
mimicking conditions. We initially verified that exposure of Arabi-
dopsis seedlings to 30% (wt/vol) PEG can mirror the stimulatory
effect of drought on stress-responsive genes such as RD29a, RD29b,
and COR15a (6, 29) (SI Appendix, Fig. S3C). Immunoblot analyses
revealed that global H3T3ph levels increased in wild-type seedlings
exposed to PEG for 4–5 h (Fig. 2F). In contrast, in the dm, phos-
phorylated H3T3 remained relatively constant and at lower steady-
state levels during PEG treatments (Fig. 2F). In addition, we ex-
amined whether global changes in H3T3ph correlated with changes
in methylation of Lys 4, the adjacent residue in the histone H3 tail.
However, mono- or trimethylated histone H3 Lys 4 (H3K4me1 or
H3K4me3) did not show conspicuous alterations in their status
under PEG treatment, in either wild-type or dm seedlings (SI Ap-
pendix, Fig. S3D). These results indicated that increased H3T3ph
global levels are part of the Arabidopsis response to osmotic stress
and that this effect requires functional MLK1 and MLK2 kinases.

Genome-Wide Distribution of H3T3ph, H3K4me1, and H3K4me3. To
gain insight into the role(s) of H3T3ph in Arabidopsis, its genome-
wide distribution and that of H3K4me1 and H3K4me3 were exam-
ined, under different environmental conditions, by chromatin im-
munoprecipitation and deep sequencing (ChIP-Seq). For each
treatment, two independent biological replicates were analyzed
supporting a high degree of experimental reproducibility with

Fig. 1. Characterization of Arabidopsis mutants defective in MUT9-like kinases.
(A) Three-week old plants of T-DNA insertion lines defective in individual MUT9-
like kinase genes and of the mlk1 mlk2 double mutant (dm). (B) Schematic rep-
resentation of gene structures indicating coding sequences (black boxes) and un-
translated regions (gray boxes). T-DNA insertion sites and the locations of RT-PCR
primers are indicated by arrowheads and arrows, respectively. (C) RT-PCR analysis
of transcript abundance in the T-DNA lines. POLYUBIQUITIN 10 (Ubi) was used as
an internal standard. (D) MLK1 transcript levels and phenotypes of the indicated
strains. A construct harboring theMLK1 cDNA, driven by the 35S CAMV promoter,
was introduced into the dm background to rescue the dwarf phenotype.
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correlation coefficients between replicates ranging from 0.77 to 0.99
(SI Appendix, Table S1). The data for each histone posttranslational
modification were normalized to histone H3 levels, to take into ac-
count changes in nucleosome occupancy as previously described (30).
On a chromosomal scale, the abundance of both H3K4me1 and

H3K4me3 was greater in gene-rich euchromatic regions with rela-
tive depletion in transposon/repeat-rich pericentromeric/knob re-
gions (SI Appendix, Fig. S4 A–D). These H3K4me1 and H3K4me3
distribution profiles were highly consistent with prior results from
ChIP-chip experiments (31). Interestingly, in wild-type seedlings
exposed to PEG for 5 h, we observed a slight increase in the relative
levels of H3K4me3 associated with pericentromeric heterochro-
matin (SI Appendix, Fig. S4D). The overall patterns of H3K4me1
and H3K4me3 distribution in the dm were very similar to those in
the wild type but without clearly discernible changes induced by
PEG treatment (SI Appendix, Fig. S4 E–H).

The abundance of H3T3ph was fairly uniform along entire
chromosomal lengths in control seedlings (Fig. 3A). Upon expo-
sure to PEG, however, H3T3ph showed relative enrichment in
pericentromeric/knob regions (Fig. 3 B and C), consistent with the
global H3T3ph increase detected by immunoblotting (Fig. 2F).
Intriguingly, this change was accompanied by a slight decrease in
histone H3 abundance in pericentromeric/knob heterochromatin,
presumably reflecting partial nucleosome depletion triggered by
osmotic stress (Fig. 3D). These differences were deemed statisti-
cally significant by t test assays (SI Appendix, Table S2). Analysis of
H3T3ph and H3K4me3 distribution within mostly pericentromeric
transposable elements (TEs) and repeats also supported an overall
increase in both epigenetic modifications, along entire element
lengths, upon PEG treatment (SI Appendix, Figs. S4I and S5).
Unlike the wild type, the dm showed depletion of H3T3ph rel-

ative to histone H3 occupancy in pericentromeric/knob regions
under normal conditions (SI Appendix, Fig. S6A), although the data
were noisier, given the overall lower H3T3ph levels in the mutant
background (Fig. 2E). Moreover, PEG treatment did not affect the
H3T3ph profile (SI Appendix, Fig. S6 B and C) or the abundance of
histone H3 (SI Appendix, Fig. S6D) in pericentromeric/knob regions
of the dm. Consistent with these observations, relative H3T3ph
levels within long TEs were somewhat reduced in the mutant
(SI Appendix, Fig. S6E), under normal conditions, compared with
those in the wild type (SI Appendix, Fig. S4I), and exposure to PEG
did not change H3T3ph or H3K4me3 abundance (SI Appendix,
Figs. S5 and S6E). In particular, the dm showed diminished H3T3
phosphorylation in transposons located in pericentromeric regions,
whereas this defect was less pronounced in transposons located near
euchromatic regions (Fig. 3E and SI Appendix, Fig. S7). These
findings strongly suggested that the MLK1 and MLK2 kinases
might be required for H3T3 phosphorylation in pericentromeric/
knob regions and for certain chromatin changes associated with
plant responses to osmotic stress.

The mlk1 mlk2 Double Mutant Exhibits Somewhat Decondensed
Chromocenters and Modest Activation of Certain Transposons/Repeats
in a DNA Methylation-Independent Manner. Because H3T3 phos-
phorylation, dependent on MLK1 and MLK2 activities, seemed to
be mainly linked to pericentromeric/knob regions, we examined the
intracellular localization of MLK1 as well as the heterochromatin
organization in nuclei. Notably, an MLK1-GFP fusion protein was
detected predominantly associated with chromocenters (Fig. 4A
and SI Appendix, Fig. S1C). These structures, consisting of compact
heterochromatin containing inactivated transposable elements and
tandemly repeated DNA, commonly appear as intensely DAPI-
stained foci within nuclei (32). The wild type showed, as expected,
compact and brightly stained chromocenters, whereas the dm
exhibited broader DAPI-stained foci of lower intensity (Fig. 4B),
suggesting partial decondensation of its pericentromeric/knob het-
erochromatin. Quantification of the fluorescence of stained nuclei
(33) revealed that the dm had a lower relative heterochromatic
fraction (RHF), about 70% of the wild type (Fig. 4C). In addition,
when exposed to PEG, the RHF increased to a greater degree in
the wild type relative to the dm (Fig. 4C), possibly as a result of
chromocenter aggregation (Fig. 4B).
In agreement with a more relaxed heterochromatic structure,

minor transcriptional activation of several endogenous loci, in-
cluding the TRANSCRIPTIONALLY SILENT INFORMATION
(TSI) element, centromeric 180-bp repeats, and the ATHILA6A
and Ta3LTR transposons, was detected in the dm under normal
conditions (Fig. 4D). This activation was slightly enhanced in
certain elements by osmotic stress, whereas in the wild type these
loci remained repressed (Fig. 4D). However, the very modest
increase in expression of these repetitive sequences in the dm
occurred without gross alterations in DNA methylation (SI Ap-
pendix, Fig. S8). In addition, the abundance of a centromere-
specific histone H3 variant (CENH3), required for centromere
function and chromosome segregation (34), was reduced in the
mutant background (SI Appendix, Fig. S9F). Interestingly, the
dm dwarfism and pleiotropic morphological and developmental

Fig. 2. Plant responses to osmotic/salt stress and H3T3 phosphorylation
status. (A) Phenotypes of Arabidopsis lines subject to osmotic or salt stress.
(B) Root elongation under the indicated treatments. (C) Relative root elon-
gation. Values, normalized to those of Col-0 control, are means ± SD of three
independent experiments. (D) Drought stress in soil-grown plants. Survival rate
was calculated as percentage of plants regaining growth upon rewatering, fol-
lowing 7-d water withdrawal. Values indicate means ± SD of three independent
experiments. (E and F) Immunoblot analyses of H3T3ph levels in plants grown
under normal conditions (E) or subject to PEG osmotic stress for different periods
(F). H3T3ph signal intensity normalized to that of histone H3 is indicated.
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abnormalities might result partly from a defect in cell division,
rather than in cell expansion, because the size of cells in stems
was similar to that in the wild type (SI Appendix, Fig. S9 A–E).
Thus, MLK1 and MLK2 might be involved in maintaining a
condensed pericentromeric/knob heterochromatin and correct
centromere organization, needed for proper chromosome func-
tion(s) and, to a lower degree, for preventing the expression of
some transposable elements and repeats under osmotic stress.

H3T3 Phosphorylation in Actively Transcribed Protein-Coding Genes
Does Not Depend on the MLK1 and MLK2 Genes. The association of
H3T3ph with protein coding genes was examined within tran-
scribed regions as well as in 400-bp upstream and downstream
regions. The genic distribution of H3T3ph was determined as
previously described for H3K4 methylation (6, 31, 35). Consis-
tent with prior findings (6, 35), H3K4me3 levels peaked sharply
after the transcription start site of active protein-coding genes
and this pattern was particularly obvious in longer genes (Fig. 3F
and SI Appendix, Fig. S10A). In contrast, H3T3ph levels were
fairly uniform along the entire transcribed region of protein-
coding genes but with a clear valley immediately downstream
from the transcription start site (Fig. 3F).

Interestingly, the pattern and relative levels of H3T3ph asso-
ciated with protein-coding genes were not affected in the dm (SI
Appendix, Figs. S6F and S10B). Accordingly, relatively few pro-
tein-coding genes were differentially expressed in transcriptomic
analyses comparing the dm and wild type, although about one-
third of these genes corresponded to those annotated as impli-
cated in responses to stress (SI Appendix, Fig. S11 and Dataset
S1). PEG treatments did not affect H3T3ph profiles within
protein-coding genes in either the wild-type or dm backgrounds
(SI Appendix, Fig. S6 G and H). Thus, MLK1 and MLK2 do not
appear to play a major role(s) in the gene-associated H3T3
phosphorylation, which must rely on additional protein kinases,
possibly including the other MUT9-like paralogs. Indeed, our
results, taken together, suggest that MLK1 and MLK2 catalyze
predominantly H3T3 phosphorylation in pericentromeric/knob
regions and that H3T3ph is a repressive epigenetic mark, pos-
sibly involved in heterochromatin/chromosome organization.

Discussion
The MUT9-like family of Ser/Thr protein kinases, which is specific
to the green algae/land plant lineage, appears to play an important
role(s) in Arabidopsis. The dm abnormal phenotypes were highly
reminiscent of those of Arabidopsis RNAi lines with diminished

Fig. 3. Genome-wide distribution of H3T3ph in wild-type Arabidopsis. (A) Chromosomal distribution of genes (blue) and transposable elements (TEs) (pink).
(Horizontal scale bar, 5 Mb.) (Lower) Chromosomal distribution under normal environmental conditions of H3T3ph normalized to histone H3. The binary
logarithm of the fold change (FC), average of two independent experiments, is shown. (B and C) Chromosomal distribution of normalized H3T3ph in plants
grown under the conditions indicated on the right axis. (D) Chromosomal distribution of histone H3 in PEG-treated plants relative to that in well-watered
controls. (E) Distribution of H3T3ph within TEs of different lengths in wild-type and dm plants under normal environmental conditions. Solid and dashed lines
represent TEs located in gene rich (i.e., chromosomal arms) or pericentromeric regions, respectively. (F) Distribution of H3T3ph and H3K4me3 in active
protein-coding genes in wild-type plants grown under normal environmental conditions. Genes were aligned at the transcription start sites or the tran-
scription end sites within each length group. The ratio of reads was determined at 100-bp intervals.
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levels of CENH3 (34), and also partly overlapped those of AtHaspin
RNAi lines (26) and some CROWDED NUCLEI mutants (36), a
family of proteins involved in nuclear size control and hetero-
chromatin organization. Given that MLK1 and MLK2 are re-
quired for proper H3T3 phosphorylation in pericentromeric
regions and that this epigenetic mark has been implicated in
chromosome segregation and/or condensation (11–13, 16, 21,
25, 26), these members of the MUT9 family might be primarily
involved in heterochromatin organization and chromosome
function(s) throughout the cell cycle.
Reduction of global H3T3ph levels in the dm supports the

proposition that MLK1 and MLK2, like their Chlamydomonas
homolog MUT9 (28), are involved in histone H3T3 phosphory-
lation in vivo. However, MLK1 and MLK2 depletion did not
completely abolish H3T3ph, indicating the existence of other
kinases capable of targeting histone H3 at Thr 3 in Arabidopsis.
In agreement with this interpretation, genome-wide ChIP-Seq
analyses revealed similar levels and distribution of H3T3ph as-
sociated with transcribed protein-coding genes in the wild-type
and dm backgrounds. Additionally, this genic H3T3ph pattern
was largely unaffected by osmotic stress. Interestingly, the dis-
tribution of H3T3ph was fairly uniform along protein-coding
genes but with a distinct valley immediately after the transcrip-
tion start site, coincidental with a well-characterized peak of
H3K4me3 accumulation (6, 31, 35). An antagonistic relationship
between the relative abundance of H3T3ph and H3K4me3 at
several loci was previously observed in Chlamydomonas (28) and
our findings in Arabidopsis also suggest an inverse correlation
between H3T3ph and H3K4me3 in expressed genes. In mam-
mals, a “phospho/methyl switch,” where phosphorylation of a
histone residue may affect the readout of a stable methylation
mark in a neighboring residue, has been proposed to operate at
the H3T3/K4 site (13, 14, 37, 38). However, H3K4 methylation
by the mixed-lineage leukemia 1 protein in vitro is strongly re-
duced by H3T3ph (39). Conversely, the activity of Haspin and
AtHaspin is inhibited by H3K4me3 (40, 41). Our observations in
Arabidopsis are more consistent with antagonistic deposition of
H3K4me3 and H3T3ph in expressed protein-coding genes and,

by inference, that H3T3ph may function as a repressive epige-
netic mark as demonstrated in Chlamydomonas (28).
Changes in DNA methylation, several posttranslational histone

modifications, as well as a linker histone H1 variant have been
implicated in plant responses to osmotic/salt stress (2, 3, 6, 10, 20,
21, 42–45), but in most cases the relationship among chromatin
status, transcriptional responsiveness, and physiological outcomes is
not clearly understood. Interestingly, in both metazoans and plants,
histone phosphorylation appears to be involved in responses to
osmotic/salt stress (3, 17, 19–21). In Arabidopsis the expression of
most histone genes is down-regulated by dehydration conditions
(43) and exposure of tobacco BY-2 cells to sucrose or NaCl
resulted in induction of H3T3 phosphorylation (21). In the peri-
centromeric/knob regions of Arabidopsis wild-type seedlings subject
to PEG treatment, we observed an increase in H3T3ph, slight en-
hancement in H3K4me3, and a modest decrease in histone H3
abundance, presumably reflecting nucleosome depletion. At the
same time, the relative heterochromatic fraction in nuclei in-
creased, possibly involving aggregation of chromocenters in con-
tracted nuclei, whereas pericentromeric transposons and repeats
remained largely repressed. In contrast, the dm showed no alter-
ation in the examined chromatin features of the pericentromeric/
knob regions, whereas several transposable elements and repeats
displayed very modest transcriptional activation. Moreover, even
under normal environmental conditions, the dm exhibited de-
pletion of H3T3ph from pericentromeric/knob heterochromatin.
These results, taken together with the prevalent localization of the
MLK1-GFP fusion protein to chromocenters, strongly suggested
that the MLK1 and MLK2 Ser/Thr protein kinases are mainly in-
volved in the phosphorylation of H3T3 in pericentromeric/knob
regions. H3T3ph and/or other events depending on MLK1 and
MLK2 may be important for maintaining proper heterochromatin
and centromere organization, required for normal chromosome
segregation and cell division.
Our findings indicate, as previously reported (1–3, 7, 8, 42–44),

that chromatin reorganization in plants is not restricted to de-
velopmental needs but is also a response to environmental stress.
Among abiotic stress factors, prolonged exposure to heat causes
nucleosome depletion and transient heterochromatin deconden-
sation associated with transposon activation (1–3, 7, 8). Similarly,
under osmotic stress Arabidopsis pericentromeric/knob hetero-
chromatin appears to undergo partial nucleosome loss and a slight
increase in H3K4me3, suggestive of transcriptional activation of
the underlying DNA sequences. However, the heterochromatin
fraction of the nuclei actually gets larger and transposons are not
activated under these conditions. These changes are accompanied
by increased H3T3ph levels in pericentromeric/knob regions and
we speculate that this modification helps maintaining a condensed
heterochromatic structure and proper chromosome organization.
Moreover, this reorganization of heterochromatin was largely
absent in the dm, indicating the need of functional MLK1 and
MLK2 kinases for these processes. Numerous factors have already
been implicated in epigenetic regulation in plants and the chal-
lenge ahead will be to define the precise function of H3T3ph, its
relationship to other epigenetic mechanisms, and the multiple
kinases responsible for this modification.

Materials and Methods
Plant Materials and Growth Conditions. Three T-DNA insertion SALK lines
[MLK3 (At2g25760): SALK-017102; MLK2 (At3g03940): SALK-035080; and
MLK1 (At5g18190): SALK-002211] were obtained from the Arabidopsis
Biological Resource Center. The remaining T-DNA insertion line [MLK4
(At3g13670): GK-756G08] was obtained from GABI-Kat. Plants were grown
under long-day conditions (16-h light/8-h dark). Specific growing condi-
tions and plant treatments are described in SI Appendix, SI Materials
and Methods.

Transgenic Constructs and Plant Transformation. The ORF of MLK1 was am-
plified from cDNA (reverse transcribed from total RNA) with two sets of
primers (SI Appendix, Table S3) using Phusion DNA Polymerase (NEB). One
ORF was cloned into pSTBlue-1 (Novagen) and, after sequence verification,
ligated into the BamHI and KpnI sites of pROK2 for complementation

Fig. 4. Localization of the MLK1-GFP protein, heterochromatin organiza-
tion, and transposon expression. (A) Subcellular localization of the MLK1-
GFP fusion protein. Pseudocolored images of leaf cells are shown with nuclei
indicated by DAPI staining. (Scale bar, 5 μm.) (B) Chromocenter organization
of nuclei, stained with Hoechst 33342, from leaves of the wild type and dm.
(Scale bar, 5 μm.) (C) The relative heterochromatin fraction (RHF) corre-
sponds to the fluorescence intensity of all chromocenters relative to that of
the entire nucleus (47). Fluorescence intensity of nuclei was determined with
FociCounter (33). Values shown, normalized to those of Col-0 control, are
means ± SD of three independent experiments (n = 50). (D) Transcript
abundance of the indicated endogenous loci examined by real-time RT-
qPCR. Values indicate normalized means ± SD of three independent exper-
iments. POLYUBIQUITIN 10 was used as the internal standard.
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experiments. The other ORF was cloned into pENTR/D-TOPO (Life Technol-
ogies) and then transferred into pK7FWG2.0, to generate a GFP fusion, using
Gateway LR Clonase II Enzyme Mix (Life Technologies). Transgenic Arabi-
dopsis plants were generated by Agrobacterium-mediated transformation
using the floral dip method.

Cytological Analyses. For the localization of the GFP fusion protein, leaves of
transgenic plants were fixed in 4% paraformaldehyde and stained with
Vectashield Mounting Medium containing DAPI (VECTOR Laboratories).
Sequential fluorescence images were obtained on a Nikon 90 microscope
using a Nikon A1 filter with NIS-Elements 4.20. For chromocenter analyses,
samples were prepared as previously described (46). Images were captured
with a confocal laser scanning microscope (Olympus).

Immunoblot Analyses. Nuclear proteins from plant leaves were isolated as
reported (6) and separated by polyacrylamide gel electrophoresis. Histone
posttranslational modifications were examined with specific antibodies
against H3K4me1 (Abcam, ab8895), H3K4me3 (Abcam, ab8580), or H3T3ph
(Upstate, 07–424). Antibody specificity was tested with a panel of peptides
containing the modifications of interest (SI Appendix, Fig. S3B). Histone H3
was examined with a modification insensitive antibody (Abcam, ab1791).

Arabidopsis CENH3 was analyzed with an antibody raised against its N-ter-
minal domain (Agrisera, AS12 2226).

ChIP-Seq. After being transferred to control plates or to 30% (wt/vol) PEG
plates for 5 h, plants were harvested and immediately cross-linked with 1%
formaldehyde (6). Isolated chromatin was sheared by sonication and
immunoprecipitated, as described (6), with the antibodies listed above. ChIP-
Seq librar-ies were prepared according to Illumina’s protocol and sequenced
using a Genome Analyzer IIx (Illumina).

Computational Methods for Sequence Data Analysis. The primary analysis of
the Illumina Genome Analyzer IIx output was performed as described (6).
Analysis of the sequenced reads and their distribution along chromosomes
and within genes and TEs was carried out as previously reported (31, 35). For
detailed information see SI Appendix, SI Materials and Methods.
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