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Microbial metabolism involves complex, system-level processes
implemented via the orchestration of metabolic reactions, gene
regulation, and environmental cues. One canonical example of
such processes is acetone-butanol-ethanol (ABE) fermentation by
Clostridium acetobutylicum, during which cells convert carbon
sources to organic acids that are later reassimilated to produce
solvents as a strategy for cellular survival. The complexity and
systems nature of the process have been largely underappreci-
ated, rendering challenges in understanding and optimizing sol-
vent production. Here, we present a system-level computational
framework for ABE fermentation that combines metabolic react-
ions, gene regulation, and environmental cues. We developed the
framework by decomposing the entire system into three modules,
building each module separately, and then assembling them back
into an integrated system. During the model construction, a bot-
tom-up approach was used to link molecular events at the single-
cell level into the events at the population level. The integrated
model was able to successfully reproduce ABE fermentations of
the WT C. acetobutylicum (ATCC 824), as well as its mutants, using
data obtained from our own experiments and from literature. Fur-
thermore, the model confers successful predictions of the fermen-
tations with various network perturbations across metabolic,
genetic, and environmental aspects. From foundation to appli-
cations, the framework advances our understanding of complex
clostridial metabolism and physiology and also facilitates the de-
velopment of systems engineering strategies for the production of
advanced biofuels.

integrated modeling | ABE fermentation | clostridial physiology |
systems biology | metabolic engineering

Microbial metabolism is a means by which a microbe uses
nutrients and generates energy to live and reproduce. As

one of the most fundamental cellular characteristics, it typically
involves complex biochemical processes implemented through
the orchestration of metabolic reactions and gene regulation, as
well as their interactions with environmental cues (1–3). One rep-
resentative example of such complex processes is solvent pro-
duction by Clostridium acetobutylicum, a Gram-positive, anaerobic
bacterium that is considered to be one of the most prominent
species for industrial biofuel production (4).
Solvent [acetone-butanol-ethanol (ABE)] fermentation of the

species involves two physiological phases (5–8): During the first
phase, the bacterium grows exponentially, and organic acids
(acetic acid and butyric acid) are produced with the release of
energy—the acidogenic phase. This process causes a dramatic
drop in extracellular pH. In response to the substantial decrease
of the pH, cells enter the stationary phase, and the organic acids
formed are reassimilated to produce solvents including acetone,
butanol, and ethanol—the solventogenic phase—thereby helping
the bacterium to relieve the stress as a strategy for survival.

Solventogenesis is subsequently accompanied by the onset of
sporulation.
From a system-level perspective, solvent production by

C. acetobutylicum is indeed an extraordinarily complex process
that consists of genetic regulation, metabolic shift, and cellular
signal integration (7, 9, 10). As illustrated in Fig. 1, there is a core
gene regulatory network, centering on the master regulator Spo0A
(10). Spo0A governs the expression of a set of functional genes
coding for metabolic enzymes that are essential in ABE fermen-
tation (e.g., adc, ctfA/B, and adhE) (11). This genetic regulation
via Spo0A therefore leads to metabolic shift by altering the
availability of the respective enzymes. Meanwhile, the solvents,
acids, and other metabolites are released and thus alter the in-
tracellular and extracellular environments, which in turn provides
triggering signals for reprogramming the expression profiles of the
genetic network (12). The three parts, metabolic reactions, gene
regulation, and environmental cues, therefore constitute an inter-
connected, multipart system that represents a great degree of
biological complexity. Supporting this fact, a recent microarray
study has shown that there are at least 245 genes that are dif-
ferentially expressed during the phase transition (13).
Due to the natural solvent production capability, acid and

solvent tolerance, and versatility in consuming various sugars
by C. acetobutylicum, there has been considerable interest in
studying the metabolism of the bacterium over the past few de-
cades, with a special focus on the end-point behavior of ABE
fermentation. These efforts include optimization of fermentation
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conditions (14) and construction of new strains (15), as well as
computational modeling using stoichiometric and kinetic ap-
proaches (16–18). However, despite many invaluable studies,
advances in optimizing solvent production have been limited,
largely due to the underappreciation of the complexity of the
interconnected processes and the lack of a global understanding
of fermentation. Recently, omics-based attempts have been
made to reveal the global characteristics of ABE fermentation
(19); however, still missing is a system-level, quantitative picture
of the underlying metabolism.
Here, we present a system-level computational framework

for the analysis and exploitation of the solvent metabolism of
C. acetobutylicum. By adopting a modular construction strategy, we
partitioned the entire system into three functional modules that
correspond to metabolic reactions, gene regulation, and envi-
ronmental cues, and then constructed and characterized them
individually. Subsequently, we assembled the modules into an in-
tegrated model and further trained the model using experimental
data from both the literature and our own fermentation experi-
ments. To validate our framework and further illustrate its power,
we systematically performed in silico network perturbations over
the individual modules of the model and compared the results with
a variety of literature reports.

Results and Discussion
The Metabolic Reaction Module. Acknowledging the complexity of
the process, we used a modular construction concept to de-
compose the system into three functional parts: i.e., metabolic
reactions, gene regulation, and environmental cues. The first
part is the metabolic network—the cellular infrastructure for
solvent biosynthesis. As illustrated in SI Appendix, Fig. S1, ace-
tate and butyrate are formed via multiple enzymatic reactions
and reassimilated later to produce acetone, butanol, and ethanol.
The enzymes of the acid synthesis pathway are constitutively
expressed (green) whereas those solventogenic enzymes (red)
are controlled by the phosphorylated Spo0A (Spo0A∼P). In
addition, there are internal product inhibitions (blue lines) that
negatively regulate metabolite levels. Mathematically, we chose
single-cell Spo0A∼P concentration as the input of this module
and concentrations of the acids and solvents as the output.

Because the total fermented metabolites in a culture are the sum
of metabolites produced by individual cells, we described the
kinetics of the overall metabolites in fermentation by considering
(i) the kinetics of metabolites within a single cell, (ii) the avail-
ability and activity of metabolic enzymes, and (iii) the cellular
dynamics of population growth (SI Appendix, section 1.1).
To test the module, we performed two representative simu-

lations: acidogenic fermentation, during which cells remain in
the acidogenic phase, and regular ABE fermentation, in which
cells transit from acidogenic to solventogenic phases. The acido-
genic fermentation (Fig. 2A, Left) was simulated by setting the
Spo0A∼P concentration null throughout the entire course. As a
result, the cells were able to fully consume glucose in the culture,
and cellular growth showed two distinct phases, with one in-
creasing and the other decreasing, attributed to the availability of
the carbon source. This fermentation resulted in the production
of both acetate and butyrate but not the solvents. For regular
ABE fermentation (Fig. 2A, Right), we implemented it by turning
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Fig. 1. A system-level view of the acetone-butanol-ethanol (ABE) fermen-
tation of C. acetobutylicum. ABE fermentation is a complex process that is
implemented through the orchestration of metabolic reactions, gene regu-
lation, and environmental cues. Using a modular construction concept, the
entire system can be decomposed into three functional modules, with one
regulating another to form an integrated global system. Details of individual
modules are described in SI Appendix, Figs. S1–S4.
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Fig. 2. Construction and characterization of individual modules. (A) The
metabolic reaction module. (Left) A simulated ABE fermentation with Spo0A
remaining low through the entire course, corresponding to an acidogenic
fermentation or a fermentation using the spo0A mutant. The fermentation
produces high amounts of acids but no solvents. (Right) A simulated fer-
mentation with Spo0A switched on during fermentation, corresponding to a
typical ABE fermentation using the WT strain. Compared with Left, this
fermentation has reduced accumulations of acids but increased amounts of
solvents. (B–E) The genetic regulation module. (B) Phase diagram of the
network dynamics with respect to the positive regulation of σK (αs) and the
dephosphorylation of Spo0A∼P (βp). Regardless of the initial conditions,
Spo0A∼P concentrations can remain high or low for parameters in the upper
left or lower right region, respectively. The parameters in the beaker region
generate a bistable activity of Spo0A∼P, whose level may be high or low
depending on the initial values of the system. (C) The Spo0A∼P concentra-
tion as a function of the strength of the positive regulation of σK (αs) and
cellular toxicity (Ct). There are two types of the input–output relationships,
with one discontinuous (green) and the other continuous (orange). (D and E)
Two representative Spo0A∼P profiles in C. Despite the presence of differ-
ential behaviors, both profiles show monotonic increase of the Spo0A∼P
(system output) with cellular toxicity (system input). (F–H) The module for
environmental cues. (F and G) Computed extra- and intracellular pH values
for given levels of acetic acid and butyric acid in MS-MES medium. (H) Com-
puted cellular toxicity during the course of two fermentations that use the
WT and adc mutant strains, respectively (27). The colors of the circles indicate
toxicity level, and the numbers refer to different time points.
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on the expression of Spo0A∼P to a saturated level during the
fermentation course (at hour 10). Jointly determined by the
profiles of both Spo0A∼P and remaining glucose, both the glu-
cose uptake and cellular growth showed distinct three-piecewise
profiles. Compared with acidogenic fermentation, regular ABE
fermentation exhibited reduced production of acids but increased
solvent production, primarily due to Spo0A∼P-induced acid reuti-
lizations, qualitatively consistent with experimental reports (11, 20).
Notably, the piecewise linear behaviors of the optical density and
product yields are attributed to the lack of consideration of the
impacts of metabolites and environmental pH on cellular growth
in this module, which will be resolved upon integration with
other parts.

The Gene Regulation Module. With recent advances in molecular
studies of the acidogenesis–soventogenesis switch, the picture of
the underlying genetic network has started to emerge—it centers
on the master regulator Spo0A and its phosphorylated form
Spo0A∼P and possesses a positive feedback loop mediated by
multiple sigma factors (e.g., σF and σK) (SI Appendix, Fig. S3)
(21). Here, the environmental signals, such as external pH and
undissociated acids, can trigger the production and phos-
phorylation of Spo0A (22). Meanwhile, phosphorylated Spo0A
(Spo0A∼P) controls the expression of downstream genes, in-
cluding adc, ctfA/B, and adhE, that are essential for the acido-
genic-to-solventogenic transition. Therefore, in this module,
environmental signals serve as the system inputs, and Spo0A∼P
serves as the output. Based on the above information, we con-
structed a simple feedback-based kinetic model. Here, the con-
centrations of the four key molecules (Spo0A, Spo0A∼P, σF, and
σK) were adopted as the model variables, and their kinetics were
described using differential equations (SI Appendix, section 1.2).
In addition, we introduced a Hill function (SI Appendix, Eq. S31)
to describe the response of the gene regulatory network to en-
vironmental cues and proposed a quantitative metric, cellular
toxicity (see SI Appendix, section 1.3.1 for details), as a measure
of overall deleterious effects from the cues.
To evaluate the appropriateness of our model, we used non-

linear dynamics tools to analyze its dynamic properties. Fig. 2B
shows the phase diagram of the system dynamics with respect to
the strengths of the positive regulation of σK (αs) and the de-
phosphorylation of Spo0A∼P (βp). The results suggest that the
network can be locked in single states or act as a bistable switch
(21), depending on parameter regimes. To further examine whether
the genetic network responds appropriately to environmental cues,
we plotted a three-dimensional profile of Spo0A∼P concentration
that increases monotonically with cellular toxicity (indicator of en-
vironmental cues) for all αs values (Fig. 2C). Interestingly, the
profile of the Spo0A∼P level may be either discontinuous with a
sudden shift (green line) or continuous (orange line), depending
on the strength of positive feedback (αs). The two differential
responses are further illustrated in Fig. 2 D and E. To date, the
detailed profile of Spo0A∼P remains unknown (discontinuous or
continuous), due to the lack of single-cell Spo0A expression data.
However, despite the possible presence of differences in details,
this module showed a positive correlation of Spo0A∼P with the
environmental cues and successfully mimicked the Spo0A pro-
duction response during the acidogenic–solventogenic transition
as in previous experimental studies (11, 23).

The Module for Environmental Cues. Although often overlooked,
the biochemical events of the metabolic and gene regulatory
networks often cause bidirectional interactions with both intra-
and extracellular environments (SI Appendix, Fig. S4): Molecules
synthesized via metabolic reactions are released into the in-
tracellular compartment and further possibly diffuse across the
cell membrane to the extracellular milieu, causing the change of
the metabolite concentrations in the environments; dissociation
of molecules can further alter environmental pH; conversely, the
molecular composites in the environment, including protons and
undissociated forms of organic acids, may be toxic to the cells

and thereby induce a cellular stress response and alteration of
gene expression. Therefore, the environmental cues serve as the
mediator for metabolic reactions and gene regulation, perceiving
the information from the former and transmitting it to the latter,
bridging the two fundamental processes.
To establish a quantitative description of the functions of

environmental cues in ABE fermentation, we first introduced a
unified metric, cellular toxicity, to account for the overall effects
of environmental cues on gene regulation. We chose cellular
toxicity as a measure of environmental effects due to the fol-
lowing reasons: A subset of metabolites (e.g., organic acids and
solvents) were shown to be toxic to the cells, and a high level of
those molecules reduces and even fully inhibits cell growth (24);
meanwhile, from a physiological viewpoint, the solvent pro-
duction of C. acetobutylicum is a survival strategy responding to
environmental stress; additionally, a subset of stress response
genes (e.g., groEL-groES) are indeed activated when cells transit
from acidogenic into solventogenic phases to increase their tol-
erance (25).
Mathematically, we proposed cellular toxicity as a function of

intracellular levels of undissociated acids, solvents, and pH (SI
Appendix, Eq. S36). The underlying reasons are that these vari-
ables constitute the major factors causing growth suppression
and solvent production, as suggested by previous studies (26),
and thus serve as the triggering factors for solvent production. To
further bridge the impact of metabolic reactions on environ-
mental cues and the influence of environmental cues on gene
regulation, we modeled three key steps associated with envi-
ronmental cues—dissociation of organic acids, diffusion of me-
tabolites, and pH change (SI Appendix, sections 1.3.2–1.3.4). As a
result, we were able to obtain both intra- and extracellular pH
values and metabolite concentrations of C. acetobutylicum cul-
tures under given conditions. SI Appendix, Fig. S5 shows tran-
sient dynamics of intra- and extracellular metabolites, as well as
corresponding pH values for a given dose of acids. SI Appendix,
Fig. S6 shows the impact of cell density on the steady-state dis-
tributions of these variables. To examine the effectiveness of our
pH model and further illustrate its power, we computed the pH
values of nine simple buffer compositions (SI Appendix, Fig. S7),
showing a good agreement with experiments. We also used the
model to calculate the external and internal pH values of a more
complex MS-MES medium (27) mixed with given levels of acetic
and butyric acid (Fig. 2 F and G). With the above modeling,
cellular toxicity can be subsequently acquired. Fig. 2H shows the
computed time evolution of the cellular toxicity of two clostridial
cultures, one using the WT ATCC 824 strain and the other using
an adc mutant (27). Beyond the specific datasets, the model can
also be used to compute cellular toxicity of arbitrary cultures of
C. acetobutylicum (SI Appendix, Fig. S8).

Module Integration and Whole Model Training. Upon systematic
modeling, validation, and calibration of the individual modules
above, we assembled them into an integrated framework via their
input–output interconnections as illustrated in Fig. 1. We then
examined the plausibility of using the resulting framework to
understand complete ABE fermentation by C. acetobutylicum.
Specifically, we aimed to reproduce the temporal fermentation
patterns of the WT ATCC 824 strain, as well as its ctfA and adc
mutants (27). For the WT strain, the computational simulation
was straightforward and implemented by numerically integrating
the equations of the three modules simultaneously. To simulate
fermentations with the mutants, we first performed in silico gene
knockout assays by setting null for the enzyme concentrations
(CtfA and Adc, respectively) (SI Appendix, section 2.1) and then
numerically integrated the modified equation sets. Parameters
were chosen to minimize the discrepancy between in silico pH-
uncontrolled fermentations and experimental data (27). Fig. 3A
shows the comparison of the simulated patterns (blue, green, and
red lines) with experimental data (blue circles, green squares,
and red triangles) for the fermentations using the WT, ctfA mu-
tant, and adc mutant, respectively, suggesting that the integrated
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model was indeed able to successfully reproduce complex ABE
fermentation profiles.
To examine whether the consistency between our simulations

and the experiments was specific to the dataset we adopted
for parameter fitting, we applied the same model, without any
modifications or additional parameter fitting, directly to two new
sets of fermentation data from the literature (gray and red tri-
angles in Fig. 3B). In addition, we experimentally performed two
pH-uncontrolled ABE fermentations using the WT C. acetobu-
tylicum ATCC 824 strain (blue circles and green squares in Fig.
3B). Altogether, the comparisons of our model predictions and
the experimental data from the literature, as well as our own
fermentation assays, demonstrated that our framework and the
associated parameter set are versatile and not limited to specific
datasets. Additionally, by leveraging the model’s capability in re-
vealing fermentation dynamics, we traced the temporal patterns of
cellular toxicity, the measure of environmental effects, for the pH-
uncontrolled, WT fermentation in Fig. 3A. As depicted in Fig. 3C,
the model was able to show the time evolution, as well as the
composition of cellular toxicity, over the course of fermentation,
illustrating the combinatorial feature of toxicity from multiple
sources as suggested by experiments (9, 24).

Systematic Network Perturbations Across Different Parts. To further
validate our integrated framework and also to illustrate its power
in predicting complex fermentation and physiological processes,
we performed a set of in silico network perturbations over dif-
ferent parts of the model, including the metabolic network, ge-
netic network, and environmental cues, and used the resulting
variants to conduct computational fermentations for a systematic
comparison with experimental findings. The same set of pa-
rameters identified for the WT model in the above section was
used throughout all of the network perturbation assays to ensure
consistency of the modeling.
For the metabolic module, we conducted computational knock-

out assays for the genes pta, ctfA/B, and adhE that are all critical
in producing acids and solvents. The mutations of these genes
block the carbon fluxes to acetate and all of the solvents (acetone,

butanol, and ethanol) but leave the butyrate formation pathway
intact, which will lead to an expectation of abolished acetate and
solvent production but enhanced butyrate production. We imple-
mented the corresponding network perturbation by setting zero for
the concentrations of Pta, CtfA/B, and AdhE in the model. With
the modified model, we conducted an in silico fermentation assay
with pH controlled above 5.0 (Fig. 4A). Supporting our expecta-
tion and agreeing with the experimental data (Fig. 4A, Left) (30),
the simulated fermentation (Fig. 4A, Right) gave rise to excessive
amounts of butyrate but minimal acetate and the solvents, although
cell growth remained normal. The butyrate-producing phenotype
was also observed for the same strain when pH was controlled
above 6.0 (SI Appendix, Fig. S10). Interestingly, compared with the

Wild-type ctfA mutant adc mutantSimulation:
Wild-type ctfA mutant adc mutantExperiment:

0.1

1

10

O
D 6

00

0

0.5

1

La
ct

at
e 

(m
M

)

0
2
4
6

A
ce

to
ne

 (m
M

)

0

2

4

G
lu

co
se

 (m
M

)

0

0.5

1
A

ce
ta

te
 (m

M
)

0

2

4

E
th

an
ol

 (m
M

)

4
5
6
7

E
xt

er
na

l p
H

0

2

4

B
ut

yr
at

e 
(m

M
)

0

1

2

B
ut

an
ol

 (m
M

)

X
110

X 110 X 110

X
210

X
210

X 210

X
110

0
0.5

1

To
xi

ci
ty

0
2
4

S
po

0A
~P

 (m
M

)

5.5
6

6.5
7

In
te

rn
al

 p
H

 

0 40 80 120
Time t (hr)

0 40 80 120
Time t (hr)

0 40 80 120
Time t (hr)

0 40 80 120
Time t (hr)

X
-310

0 hr

35 hr

20 hr

40 hr

23 hr

45 hr

24 hr

50 hr

26 hr

60 hr

28 hr

80 hr

30 hr

100 hr

32 hr

120 hr

acetate
butyrate
butanol
acetate-butanol
butyrate-butanol
pH

Experiment Simulation Experiment Simulation

0.1
1

10

O
D 60

0

0.01

4
5
6
7

E
xt

er
na

l p
H

0

0.5
1

B
ut

yr
at

e 
(m

M
)

0
2

6

E
th

an
ol

 (m
M

)

4

0

2

4

G
lu

co
se

 (m
M

)

0

0.5

1

A
ce

ta
te

 (m
M

) x
2

10

0

0.5
1

A
ce

to
ne

 (m
M

)

0

1

2

B
ut

an
ol

 (m
M

)

0 40 80 120
Time t (hr)

0 40 80 120
Time t (hr)

0 40 80 120
Time t (hr)

0 40 80 120
Time t (hr)

our own studyliterature

x
2

10

x
2

10

x
210

x
2

10

x
110

A B

C

Fig. 3. Calibrations and primary tests of the integrated model. (A) Comparison of simulated ABE fermentations with the data from previous experimental
reports. Combining the modules for metabolic reactions, gene regulation, and environmental cues, the integrated model was able to reproduce the
pH-uncontrolled fermentations of the WT (blue lines), ctfA-knockout (green lines), and adc-knockout (red lines) strains. The corresponding experimental
results (blue circles, green squares, and red triangles) were adapted from previous studies (27). (B) Additional comparisons of experimental and computational
metabolite profiles for the pH-uncontrolled fermentations that use the WT strain. The experimental data with blue circles and green squares were obtained
from our own fermentations; the data with gray triangles (28) and red inverted triangles (29) were adapted from previous studies. (C) Computed time
evolution of the cellular toxicity during the pH-uncontrolled WT fermentation in A (corresponding to the blue lines).

A

Acetic acid
Butyric acid Lactic acid Acetone

Ethanol Butanol

External pHGlucose OD600

0.1

1

1060
0

0

100

200

A
ci

ds
 (m

M
)

0 20 40
0S

ol
ve

nt
s 

(m
M

)

Time t (hr)

50

100

0 20 40
Time t (hr)

Experiment Simulation

200

400

600

G
lu

co
se

 (m
M

)

E
xt

er
na

l
pH

/O
D

2

4

6

C
on

ce
nt

ra
tio

n 
(m

M
)

B

0

pH 6.0pH 5.0

Total
Butyrate

Undis.
Butyrate

Glucose
Consumption

102x

0.5
1

To
xi

ci
ty

0
TotalButyrate pH

Fig. 4. Perturbations of the metabolic reaction network. (A) Comparison of
the simulated and experimental fermentation patterns for a pta-ctfB-adhE
knockout strain (30), where both have an enhanced butyrate accumulation
but minimal productions of acetate and all of the solvents. pH is controlled
above 5.0. (B) Computed glucose consumptions, total and undissociated
butyrate, and cellular toxicities of the fermentations using the pta-ctfB-adhE
mutant, for the cases when pH is controlled above 5.0 and 6.0.

8508 | www.pnas.org/cgi/doi/10.1073/pnas.1423143112 Liao et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1423143112/-/DCSupplemental/pnas.1423143112.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1423143112


case of pH ≥ 6.0, the glucose uptake in the pH ≥ 5.0 assay was
severely impaired despite the fact that there is a much lower
butyrate production (Fig. 4B, Top). We therefore asked whether
cellular toxicity can interpret this observation. Indeed, our cal-
culation shows a higher toxicity in the case of pH ≥ 5.0 (Fig. 4B,
Bottom), primarily attributed to the toxicity of the undissociated
butyric acid. This result thereby shows a consistency with our
initial assumption that it is undissociated acids (not total acids)
that primarily contribute to the cellular toxicity.
With respect to the perturbation of the genetic regulation

module, we computationally knocked out and overexpressed the
master regulator gene spo0A. We chose spo0A as the perturba-
tion target because of its central role in controlling cellular phase
transition from acidogenesis to solventogenesis. The knockout
was implemented by setting the concentration of Spo0A to zero;
the spo0A overexpression was implemented by assigning a higher
production rate (31). Simultaneously, we increased the specific
maintenance rate (SI Appendix, Eq. S26) to mimic the metabolic
burden placed by plasmid maintenance (32). To examine how
the network perturbations impact ABE fermentation, we com-
pared the levels of metabolites produced by the mutants with
their references—for the knockout mutant, the WT served as its
control whereas, for the overexpression strain, the WT loaded
with an empty plasmid vector was recruited. We found that, in
contrast to the WT fermentation (blue lines, Fig. 5), the spo0A
mutant (green lines, Fig. 5) failed to initiate the solventogenic
transition and to fully use glucose, leading to a phenomenon
similar to acid crash (20). In addition, the spo0A overexpression
strain (red lines, Fig. 5) shows a higher solvent productivity than
its control (gray lines, Fig. 5). Notably, both spo0A overexpression
stain and its control exhibited a delayed but prolonged fermenta-
tion as a consequence of host–plasmid interaction (32). All of the
in silico results are qualitatively consistent with experimental data.
Regarding the environmental cues, we decided to alter the

environmental pH as an approach for network perturbation. This
perturbation was motivated by the importance of environmental
pH control on ABE fermentation (20, 35): Improper pH settings
may cause acid crash, leading to incomplete sugar utilization and
abolished solvent production because of poor transition from
acidogenesis to solventogenesis; in contrast, optimal pH control
may accelerate sugar utilization and result in enhanced solvent

production enabled by good transition from acidogenesis into
solventogenesis. Computationally, environmental pH control can
be achieved by discarding the pH equation (SI Appendix, Eq.
S45) in the original model and, instead, assigning a constant
value, when needed, to the external pH. The right columns of
Fig. 6 show the computational temporal profiles of the target
metabolites for the cases of pH controlled above 5.0 (blue lines),
5.5 (green lines), and 6.0 (red lines): the first has minimal acid
accumulations but high solvent production, representing a good
solvent fermentation; the last has increased acid accumulations
but minimal production of solvents, similar to an acidogenic
fermentation; and the middle has intermediate levels of acids
and solvents. All of these pH-controlled fermentations are
qualitatively consistent with experimental reports (Fig. 6, Left).
Again, we compared our modeling results with additional ex-
periments performed by multiple groups (SI Appendix, Fig. S11),
supporting the generic nature of our model.
The systematic in silico perturbations above, along with the

comparisons with multisource experimental data, demonstrated
that the model is capable of predicting the complex physiological
processes of C. acetobutylicum, affirming the necessity of inte-
grating all of the three aspects for modeling ABE fermentation.

Conclusions
In this paper, we present an integrated computational framework
of clostridial ABE fermentation that combines metabolic reac-
tions, gene regulation, and environmental cues. Although valu-
able attempts have been made previously (18), to our knowledge,
this work is the first study that explicitly integrates the interde-
pendent three aspects into clostridial ABE fermentation and
demonstrates the necessity of this integration for a systematic
understanding of the complex process. It is also, to our knowl-
edge, the first study that successfully integrates a large volume of
seemingly heterogeneous experimental data with different strains
(both the WT and its mutants) under various settings (e.g., pH
control and medium variation) and from multiple laboratories into
a consistent picture.
Notably, although the framework involves a system-level in-

tegration of molecular and cellular events, it was not intended to
include (and it was also practically impossible to include) every
single process associated with clostridial physiology and ABE fer-
mentation. For instance, redox and energy balances were not ex-
plicitly modeled in our framework; instead, we introduced a global
parameter to describe the impact of the overall cellular state on

0

3

6

G
lu

co
se

 (m
M

)

0.5
1

1.5

A
ce

ta
te

 (m
M

)

0

1

2

B
ut

yr
at

e 
(m

M
)

0

0.5

1

A
ce

to
ne

 (m
M

)

0 50 100
0

2

4

Time t (hr)

E
th

an
ol

 (m
M

)

Time t (hr)

0

1

2

Time t (hr)

B
ut

an
ol

 (m
M

)

Time t (hr)

X
210

X
110

X
210

X
210

X
210

X
210

Experiment Simulation Experiment Simulation

Wild-type

0

0 50 100 0 50 100 0 50 100

Wild-type (control)
spo0A mutant
spo0A overexpression

Fig. 5. Comparison of the computational and experimental fermentation
profiles for the strains with genetic network perturbations. The fermenta-
tions of the spo0A-knockout (green lines), spo0A overexpression (red lines),
and their control (blue and gray lines) strains were simulated with the in-
tegrated model and further compared with corresponding experimental
results reported in previous studies [green squares (33), red triangles (34),
blue circles (33), and gray triangles (34)]. Notice that the experimental data
do not include the glucose consumptions of the WT and spo0A-mutant
strains and the ethanol yields for the spo0A overexpression strain and its
control, due to the lack of information in the original literature.

0

2

4

G
lu

co
se

 (m
M

)

0.5

1

1.5

A
ce

ta
te

 (m
M

)

0

1

2

B
ut

yr
at

e 
(m

M
)

0
0.5

1
1.5

A
ce

to
ne

 (m
M

)

0 40 80
0
2
4
6

Time t (hr)

E
th

an
ol

 (m
M

)

0 40 80
Time t (hr)

0 40 80
0

1

2

Time t (hr)

B
ut

an
ol

 (m
M

)

0 40 80
Time t (hr)

X
2

10

X
110

X
2

10

X
2

10

X
210

X
210

Experiment Simulation Experiment Simulation

pH 5.0 pH 5.5 pH 6.0

Fig. 6. ABE fermentation profiles upon the perturbations of the environ-
mental cues (pH control). Fermentations with external pH controlled above
5.0 (blue lines), 5.5 (green lines), and 6.0 (red lines) were simulated using the
integrated model. For comparison, experimental results are also presented
with the blue circles (36), green squares (36) and red triangles (35) corre-
sponding to the fermentations with external pH controlled above 5.0, 5.5,
and 6.0, respectively.

Liao et al. PNAS | July 7, 2015 | vol. 112 | no. 27 | 8509

SY
ST

EM
S
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1423143112/-/DCSupplemental/pnas.1423143112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1423143112/-/DCSupplemental/pnas.1423143112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1423143112/-/DCSupplemental/pnas.1423143112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1423143112/-/DCSupplemental/pnas.1423143112.sapp.pdf


enzyme activity (SI Appendix, section 1.1.2). This approximation is
reasonable for this specific system, given the experimental evi-
dence showing relative minor cofactor [both NAD(P)H/NAD(P)+
and ATP/ADP] variations across the entire course of fermen-
tation (37). However, the impacts of cofactors can be exagger-
ated in some scenarios, particularly when the balances are
significantly perturbed. To investigate this issue, we have extended
our model to incorporate cofactor kinetics and their modulation
to metabolic reactions and further used the extended model to
conduct a case study (SI Appendix, section 3.2). In the future, it will
be valuable to more systematically study the roles of cofactors in
ABE fermentation.
This work advances our fundamental understanding of ABE

fermentation by elucidating the system-level orchestration of
gene regulation, metabolism, and environmental cues, identify-
ing the multiscale link between single-cell molecular events and
macroscopic batch fermentations and providing a mechanistic
scheme for computing the environmental cues. The work also
provides a powerful tool for generating new hypotheses and for
guiding strain design and protocol optimization, facilitating the
development of next-generation biofuels. More broadly, the mod-
ular model development approach used in the study can serve as a
general strategy for modeling microbial physiology that involves
multiple subnetworks; additionally, by using ABE fermentation
as an example, our study demonstrates the necessity and power of

an integrated and quantitative view for understanding physiological
processes, which resonates with the emerging trend of quantitative
biology toward microbial physiology (38). Therefore, our work also
advances the study of quantitative microbial physiology in general.

Methods
The integrated model was developed by decomposing the system into three
functional modules, constructing and characterizing each individually, and
assembling them back. Differential-algebraic equations were used for model
development. Custom-tailored MATLAB (MathWorks) codes were developed
to implement computational simulations. Gene knockouts and overexpression
were implemented by altering the concentrations of the corresponding protein
appropriately. The model was further extended to consider cofactors. For ex-
perimental fermentation, the WT C. acetobutylicum ATCC 824 spore stock was
used to perform anaerobic pH-uncontrolled fermentations in MS-MES medium.
Temperature was controlled at 37 °C and agitation was carried out at 55 rpm.
Cell growth was measured by optical density in the fermentation broth at
A600. The pH profiles were recorded using the NBS BioCommand software.
Metabolites were quantified by high performance liquid chromatography.
Details of the computational modeling and experimental fermentation are
described in SI Appendix.
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