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The analysis of chromatin structure is essential for the under-
standing of transcriptional regulation in eukaryotes. Here we de-
scribe methidiumpropyl-EDTA sequencing (MPE-seq), a method for
the genome-wide characterization of chromatin that involves the
digestion of nuclei withMPE-Fe(II) followed by massively parallel
sequencing. Like micrococcal nuclease (MNase), MPE-Fe(II) preferen-
tially cleaves the linker DNA between nucleosomes. However, there
are differences in the cleavage of nuclear chromatin by MPE-Fe(II)
relative to MNase. Most notably, immediately upstream of the
transcription start site of active promoters, we frequently observed
nucleosome-sized (141–190 bp) and subnucleosome-sized (such as
101–140 bp) peaks of digested chromatin fragments with MPE-seq
but not with MNase-seq. These peaks also correlate with the pres-
ence of core histones and could thus be due, at least in part, to
noncanonical chromatin structures such as labile nucleosome-like
particles that have been observed in other contexts. The subnucleo-
some-sized MPE-seq peaks exhibit a particularly distinct association
with active promoters. In addition, unlike MNase, MPE-Fe(II) cleaves
nuclear DNA with little sequence bias. In this regard, we found that
DNA sequences at RNA splice sites are hypersensitive to digestion
by MNase but not by MPE-Fe(II). This phenomenon may have af-
fected the analysis of nucleosome occupancy over exons. These
findings collectively indicate that MPE-seq provides a unique and
straightforward means for the genome-wide analysis of chromatin
structure with minimal DNA sequence bias. In particular, the com-
bined use of MPE-seq and MNase-seq enables the identification of
noncanonical chromatin structures that are likely to be important
for the regulation of gene expression.
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In eukaryotes, transcription is regulated by the interplay between
transcription factors and chromatin. The nucleosome, the basic

building block of chromatin, can occlude the access of transcrip-
tion factors and hinder transcription by RNA polymerases (1, 2).
The positions of nucleosomes can, in turn, be influenced by the
DNA sequence, transcription factors, ATP-driven chromatin
remodelers, and RNA polymerases (see, for example, refs. 3, 4).
Thus, the positions and properties of nucleosomes are important
for the regulation of transcription in the chromatin landscape.
Micrococcal nuclease (MNase) has been a useful reagent for

mapping nucleosome positions because it preferentially cleaves the
linker DNA between nucleosomes and can yield core particles upon
extensive digestion (5). Analyses of MNase-generated fragments by
hybridization to high-density DNA microarrays or by using mas-
sively parallel sequencing technologies have made it possible to map
genome-wide positions of nucleosomes (6–14). However, MNase
has a bias for AT-rich sequences (15, 16), and whether or not this
sequence bias affects the interpretation of nucleosome positions
and occupancies has been a matter of debate (17–19).
To gain additional insights into chromatin structure, several

alternative methods have been developed to map nucleosomes
without the use of MNase. A method that relies on the chemical
modification of engineered histone H4 has been developed to

map nucleosomes in yeast (20), but this technique requires the
genetic modification of histone H4. Nucleosome occupancy and
methylome sequencing (NOMe-seq) infers nucleosome positions by
analyzing methylation by a GpC methylase (M.CviPI) (21), but it
relies on the presence of GpC residues. DNase I–released frag-
ment-length analysis of hypersensitivity (DNase-FLASH) uses
fragments generated by DNase I to map nucleosomes (22); how-
ever, DNase I cuts DNA within nucleosomes and has its own se-
quence bias (23, 24). DNase I also exhibits a distinct preference for
accessible chromatin, such as at promoters and enhancers (for ex-
ample, see refs. 25, 26). Assay for transposase-accessible chromatin
with high-throughput sequencing (ATAC-seq) uses hyperactive Tn5
transposase to probe nucleosome positions and transcription factor
binding (27). Like DNase I, the transposase mainly targets acces-
sible chromatin regions. This characteristic can be an advantage for
studying gene regulatory regions but also a disadvantage for the
broader analysis of chromatin structure.
Here we report methidiumpropyl-EDTA sequencing (MPE-

seq), a genome-wide method for the analysis of chromatin struc-
ture that uses a small synthetic molecule, MPE, to map nucleo-
some positions with little sequence bias. MPE forms a complex
with ferrous iron to give MPE-Fe(II), which binds to DNA via
intercalation of the methidium moiety and then generates single-
and double-stranded DNA breaks in the presence of oxygen (28).
MPE-Fe(II) cleaves naked DNA with little sequence specificity
(29). It has also been used to map nucleosome positions in vivo
(30–35). MPE-Fe(II) exhibits a preference for cleaving the linker
DNA between nucleosomes, probably because it does not intercalate
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efficiently into DNA that is associated with histones. MPE-seq
combines digestion of chromatin with MPE-Fe(II) and mas-
sively parallel sequencing of the resulting DNA fragments.
Here we establish that MPE-Fe(II) cleaves chromatin with low
sequence specificity and demonstrate that MPE-seq can be
used to map nucleosome positioning genome-wide in vivo.
There are, however, notable differences in the results obtained
with MPE-seq and MNase-seq, particularly at promoters and
splice sites. We also observed that MPE-seq can be used to
detect sequence-specific DNA binding by some transcrip-
tion factors. These findings reveal that MPE-seq, particularly
when used in conjunction with MNase-seq, is a useful method
for obtaining unique and important insights into chromatin
structure.

Results and Discussion
MPE-Fe(II) Cleavage of Chromatin Exhibits Little DNA Sequence Bias.
To map nucleosome positions with MPE-Fe(II), nuclei from J1
mouse embryonic stem cells were treated with MPE-Fe(II). For
comparison, nuclei were also digested in parallel with MNase. We
isolated the resulting DNA fragments and analyzed their size dis-
tributions by agarose gel electrophoresis (Fig. 1A). As previously
reported (30, 31, 33, 34), MPE-Fe(II) generates DNA fragments
with lengths that are multiples of ∼180–200 bp due to the double-
stranded cleavage of the linker DNA between nucleosomes.
The average length of DNA in the mononucleosomal species

generated by MPE-Fe(II) was larger than that obtained with
MNase (∼147 bp). Also, unlike MNase, MPE-Fe(II) did not digest
chromatin into predominantly mononucleosomal species (Fig.
1A). For our genome-wide studies, we did not use higher con-
centrations of MPE-Fe(II) because we observed a more general

cleavage of DNA, including nucleosomal DNA, under such con-
ditions (Fig. S1). Hence, our reaction conditions were chosen to
be selective for the cleavage of the linker DNA.
We prepared libraries from the MPE-Fe(II)-digested samples

and performed paired-end sequencing with Illumina HiSeq se-
quencers. By mapping reads from both ends to the mouse genome,
we were able to obtain size distributions of the fragments that
were sequenced (Fig. 1B). Consistent with the agarose gel elec-
trophoresis data (Fig. 1A), the peak size of MPE-Fe(II)–generated
fragments (165 bp) is larger than the peak sizes obtained for
MNase-generated fragments [147 bp for samples digested with
30 U/mLMNase (designated as “MNase”) and 158 bp for samples
digested with 1 U/mL MNase (designated as “MNase Low”)]. We
note that there are peaks of MPE-Fe(II)–generated fragments
below 147 bp that are separated by regular intervals of ∼10 bp.
This effect is probably due to the periodic cleavage of nucleosomal
DNA that is facing outward from the octamer and is thus more
accessible for digestion. We also observed subnucleosome-sized
peaks in MNase-digested samples. This effect is consistent with
the previously described ability of MNase to cut within nucleo-
somes (36, 37). For the subsequent analysis below, we pooled the
MPE-Fe(II)–derived data from samples obtained by treatment for
10, 20, and 30 min.
To compare the sequence biases of MNase and MPE-Fe(II),

we analyzed the base compositions of nucleotides in the vicinity
of the 5′ ends of the uniquely mapped reads (Fig. 1 C–F). With
chromatin isolated from MNase-digested nuclei, over 90% of the
5′ ends of the DNA fragments were A or T (Fig. 1C), and the
following few bases were depleted in A and T. A closely related
pattern was seen with naked genomic DNA (Fig. 1D); hence, this
effect appears to be due to the intrinsic sequence specificity of
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Fig. 1. Comparison of fragments generated by MPE-Fe(II) and MNase. (A) DNA fragments generated by digestion of J1 mouse embryonic stem cell nuclei
with MPE-Fe(II) or MNase. For MPE-Fe(II) digestion, the nuclei were incubated with 50 μM of MPE-Fe(II) for the indicated times before quenching the reaction.
For MNase digestion, the nuclei were incubated with the indicated concentrations of MNase for 10 min. The DNA was isolated from the digested samples and
then analyzed by agarose gel electrophoresis. (B) The size distributions of sequenced DNA fragments. Sequencing libraries prepared from MPE-Fe(II)– or
MNase-generated fragments were subjected to paired-end sequencing, and the sizes of the fragments were inferred from the positions of the mapped ends.
(C–F) Cumulative base compositions of residues at positions relative to the mapped ends.

E3458 | www.pnas.org/cgi/doi/10.1073/pnas.1424804112 Ishii et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424804112/-/DCSupplemental/pnas.201424804SI.pdf?targetid=nameddest=SF1
www.pnas.org/cgi/doi/10.1073/pnas.1424804112


MNase. This MNase digestion preference was also observed in data
obtained from nuclei digested with a lower concentration of MNase
(MNase Low; Fig. S2A) as well as in results from previous reports
of MNase digestion of chromatin or genomic DNA (Fig. S2 B–E).
In contrast, MPE-Fe(II) digestion of nuclei or genomic DNA

yielded fragments with an even distribution of bases at each
position near the 5′ ends (Fig. 1 E and F). Hence, the sequence bias
of MPE-Fe(II) is substantially less than that of MNase, DNase I
(Fig. S2F, based on data from ref. 22; also see refs. 23, 24), or the
Tn5 transposase used in ATAC-seq (Fig. S2G, based on data from
ref. 27). We also analyzed the distributions of all combinations of
dinucleotides in the vicinity of the 5′ ends of the uniquely mapped
reads (Fig. S3). The MPE-Fe(II) data revealed small peaks and
troughs near the 5′ ends, but this effect was much less pronounced
than that seen with MNase. Thus, the use of MPE-Fe(II) enables
the mapping of nucleosomes with minimal sequence bias.

MPE-Seq Reveals Noncanonical Chromatin Structures in Active
Promoter Regions. There are characteristic patterns of nucleo-
some occupancy and positioning that have been observed at tran-
scriptional promoter regions (3, 4, 7, 8, 10). The area that is
immediately upstream of the transcription start site (TSS) is often
found to be depleted of canonical nucleosomes and is referred to as
a nucleosome-free region (NFR) or a nucleosome-depleted region
(NDR). Well-positioned nucleosomes are commonly seen down-
stream of the TSS in the transcribed region, and the precision of
this positioning decays as distance from the TSS increases.
To analyze nucleosome positioning with the MPE-seq and

MNase-seq data, we selected DNA fragments that were from 141
to 190 bp in length (corresponding to DNA lengths that could be
obtained from mononucleosomes) and assigned each nucleotide
in the middle 60 bp of each fragment a value of 1. Then, for each
position, the sum of the values normalized to the genome-wide
average was plotted as the Nucleosome Positioning Index
(Nucleosome Positioning Analysis and Fig. 2A). The peaks thus
obtained would generally be expected to indicate the positions
of nucleosomes or nucleosome-like species.
Comparison of the MPE-seq data with the MNase-seq data at

standard or low (MNase Low; Fig. 1B) concentrations of MNase
revealed many similarities in the nucleosome positioning peaks at
promoters, such as in the regions downstream of the TSSs in which
a few positioned nucleosomes are often observed. However, im-
mediately upstream of the TSSs, we commonly observed a peak
with MPE-seq but not with MNase-seq (for specific examples, see
peaks labeled a, b, c, and d in Fig. 2B). This MPE-seq–specific
peak can also be observed in the averaged analysis of nucleosome
positioning with 20,195 well-annotated promoters (Fig. 3 A–C). In
contrast, the downstream and farther upstream peaks with MPE-
seq and MNase-seq correlate well (Fig. 3D). Thus, nucleosome
positioning analysis with MPE-seq reveals peaks in the upstream
promoter region that are not seen with MNase-seq.
To gain a different perspective on MPE-Fe(II)– versus

MNase-mediated cleavage of chromatin in promoter regions, we
also carried out “cutting site analysis” (Fig. 2A), in which we
assigned the nucleotide at the end of each digested fragment (of all
size ranges) a value of 1 and then plotted the sum obtained from all
sequenced fragments at each position normalized to the genome-
wide average. As shown in Fig. 3 E and F, there are striking dif-
ferences in the digestion of chromatin at promoters with MPE-Fe(II)
relative to MNase. In particular, upstream of the TSS, the
MNase-seq signal is much lower than that seen with MPE-seq.
This effect appears to be due, in part, to the extensive digestion of
the upstream promoter chromatin by MNase under standard
conditions, as suggested by fragment midpoint versus length plots
(38) (Fig. S4). In further support of this notion, the use of a lower
MNase concentration (MNase Low; Fig. 1B) resulted in less di-
gestion of the upstream promoter chromatin and yielded a profile
(Fig. 3G) with some similarity to that obtained with MPE-Fe(II)
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(Fig. 3E). Overlays of the cutting site data reveal that MPE-Fe(II)
and MNase cleavage patterns are different upstream of the TSS,
but are similar downstream of the TSS (Fig. 3 H and I).
We further sought to investigate the MPE-specific peaks in the

nucleosome positioning index in the upstream promoter region
(Figs. 2B and 3 A–D). Because the nucleosome positioning index is
limited to 141–190 bp DNA fragments (Fig. 2A), we analyzed the
localization of different lengths of DNA fragments in the promoter
region. We observed that short (50–100 bp; 101–140 bp) DNA
fragments exhibit a sharp peak in the immediate upstream pro-
moter region with MPE-seq and MNase Low-seq but not with
standard MNase-seq (Fig. 3 J–L). These findings are consistent
with the fragment midpoint versus length plots (Fig. S4) and
indicate that MNase-sensitive particles are present in the up-
stream promoter region.

Next, to examine the relationship between transcriptional
activity and chromatin structure, we ranked the promoters
according to the transcript levels from RNA-seq data and
generated heat maps of cutting site and nucleosome posi-
tioning data from MPE-Fe(II) and MNase experiments (Fig.
4A). At highly transcribed genes, the nucleosome positions
and cutting sites are much more distinct than those at less
transcribed genes. We additionally examined the 101–140 bp
DNA-containing particles that were generated by MPE-seq,
MNase-seq, and MNase Low-seq (Fig. 4B). The resulting heat
maps revealed a strikingly strong signal of 101–140 bp DNA-
containing particles in the upstream promoter region with
MPE-seq and MNase Low-seq relative to MNase-seq. More-
over, the intensity of the signal of these 101–140 bp particles
correlates with the RNA-seq level.
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Fig. 3. Genome-wide analysis of the chromatin structure of promoters with MPE-Fe(II). (A–C) Averaged Nucleosome Positioning Index of chromatin digested
with (A) MPE-Fe(II), (B) the standard concentration of MNase, or (C) the low concentration of MNase (MNase Low) at positions within 1 kb of the TSS with 20,195
promoters. The estimated average positions of nucleosomes are indicated by ovals. (D) Comparison of nucleosome positioning data with MPE-Fe(II), MNase, and
MNase Low. (E–G) Averaged cutting site analysis of chromatin digested with (E) MPE-Fe(II), (F) the standard concentration of MNase, or (G) MNase Low for each
strand at positions within 1 kb of the TSS with 20,195 promoters. (H) Cutting site analysis of forward reads. (I) Cutting site analysis of reverse reads. (J–L) Analysis of
fragments of the indicated size ranges in chromatin digested with (J) MPE-Fe(II), (K) the standard concentration of MNase, or (L) the low concentration of MNase.
The Fragment Positioning Index was calculated in a manner that is analogous to the Nucleosome Positioning Index (Fig. 2A) (SI Materials and Methods).
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We then examined whether these MNase-sensitive particles
contain core histones. To address this question, we carried out
histone H2B and histone H3 ChIP-seq experiments with the soluble
chromatin particles that were generated by digestion with MPE-
Fe(II) or MNase Low. [Technical note: The ChIP-seq input DNA
samples, which were prepared from soluble chromatin fragments,
are not identical to the DNA fragments in theMPE-seq andMNase
Low-seq experiments, which were performed with total (soluble and
insoluble) chromatin.] With nucleosome-sized DNA lengths (141–
190 bp), we observed a peak of H2B as well as H3 in the upstream
promoter region with MPE-ChIP-seq but not with MNase Low-
ChIP-seq (Fig. 5 A and B). With shorter subnucleosomal DNA
lengths (50–100 bp and 101–140 bp), upstream promoter peaks of
histones H2B and H3 were seen with bothMPE-ChIP-seq as well as
MNase Low-ChIP-seq (Fig. 5 C–F).
It is notable that subnucleosomal chromatin particles (e.g.,

101–140 bp) yielded a stronger histone ChIP signal in the up-
stream promoter region than nucleosome-sized chromatin par-
ticles. These findings suggest the existence of histone-containing
subnucleosomal particles in the upstream promoter region. Heat

maps of the ChIP-seq data further revealed that the intensity of
the histone ChIP signal at the promoter correlates with the
transcript levels, as assessed by RNA-seq (Fig. S5).
These experiments revealed, in particular, that the MPE-Fe(II)–

generated subnucleosomal particles (101–140 bp DNA) exhibited
the most striking correlation with the promoter region and
transcriptional activity (Figs. 3J, 4B, and 5C and Fig. S5B). To
determine the specificity of these particles for the promoter re-
gion, we plotted the averaged occurrence (n = 20,195) of the
101–140 bp MPE-seq fragments from –10 kb to +10 kb relative
to the TSS and found a strong and specific enrichment at the
promoter (Fig. 5G). In addition, we observed a parallel enrich-
ment of the core histones H2B and H3 in 101–140 bp sub-
nucleosomal fragments by MPE-ChIP-seq (Fig. 5H). Hence,
altogether, the MPE-seq and MPE-ChIP-seq data reveal that
there are subnucleosome-sized histone-containing particles in
the upstream promoter region of active genes and that the pres-
ence of these particles correlates with transcript levels of the
corresponding genes.

A

B

Fig. 4. MPE-Fe(II) and MNase digestion patterns at 16,800 promoters. The promoters were ranked according to their transcript levels [fragments per kilobase
of exon per million fragments mapped (FPKM)] from RNA-seq data. The asterisks denote the position of the signal that is immediately upstream of the TSS.
(A) Heat maps from the cutting site and nucleosome positioning analyses (140–191 bp DNA fragments). (B) Heat maps of the Fragment Positioning Index of
subnucleosome-sized particles (101–140 bp) generated by digestion with MPE-Fe(II), MNase, or MNase Low conditions.
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In the context of these data, it is useful to consider that ex-
tensive digestion of chromatin by MNase yields canonical core
particles. In other words, canonical core particles are highly re-
sistant to MNase (see, for example, ref. 5). This property of MNase
enables the identification of stable canonical nucleosomes in
chromatin. However, there have also been reports of noncanonical
chromatin particles that are more sensitive to MNase digestion
than canonical nucleosomes. These noncanonical particles include
“fragile” (MNase-sensitive) and salt-labile nucleosomes (see, for
example, refs. 39–42), which have been seen at active promoters in
vivo, as well as “prenucleosomes” (nonnucleosomal histone-DNA
particles) (43), which have been observed in vitro. The MNase-
sensitive particles that are detected at promoters by MPE-seq may
be related to these fragile and salt-labile nucleosomes.
The analysis of noncanonical chromatin structures is at an early

stage, and the precise nature of these species has not yet been
determined. Here, we have found that the combined use of
MNase-seq and MPE-seq reveals the presence of histone-contain-
ing subnucleosomal particles at active promoters. It is intriguing to
consider that these species may have an important and integral role
in the transcription process.

Analysis of Chromatin at Exon–Intron Junctions. Several studies have
reported distinct nucleosome positioning at exon–intron junctions
(44–47). However, exon–intron junctions contain specific splice
donor or acceptor DNA sequences that could affect the efficiency
of DNA cleavage by MNase (Fig. 6A for 3′ splice sites and Fig.
S6A for 5′ splice sites). Indeed, we observed sharp peaks of cutting
by MNase at exon–intron junctions (Fig. 6B for 3′ splice sites and
Fig. S6B for 5′ splice sites). This effect is also observed when
naked genomic DNA was digested with MNase (Fig. 6C for 3′
splice sites and Fig. S6C for 5′ splice sites). In contrast to the
results seen with MNase, there were only small peaks and troughs
of cutting by MPE-Fe(II) around exon–intron junctions (Fig. 6 D
and E for 3′ splice sites and Fig. S6 D and E for 5′ splice sites).

To see if there is an enrichment of nucleosomes on the exons, we
performed nucleosome positioning analysis with the MPE-seq and
MNase-seq data (Fig. 6F for 3′ splice sites and Fig. S6F for 5′ splice
sites). There is a striking enrichment of signals from MNase-gen-
erated fragments on exons, as has been described in previous
studies (44–47). MPE-Fe(II)–generated fragments also show slight
enrichment of signals on exons, but this effect is not as pronounced
as that seen with MNase-generated fragments. These data indicate
that the sequence specificity of MNase cleavage may have affected
the analysis of nucleosome positioning at exon–intron junctions.

MPE-Seq Reveals Positioned Nucleosomes Around CTCF Binding Sites.
To determine whether MPE-seq can detect nucleosomes that are
positioned next to sequence-specific DNA binding factors, we
examined MPE-seq data in the vicinity of the 21,470 CCCTC-
binding factor (CTCF) binding sites that contain a single CTCF
motif within 1 kb of the flanking DNA. It might also be noted
that only 1,018 of these 21,470 CTCF sites are within 1 kb of an
annotated RefSeq TSS. Cutting site analysis (Fig. 2A) revealed
an oscillatory pattern with an amplitude that decays with the
distance from the CTCF binding motif (Fig. 7A). This pattern is
similar to that seen with MNase-seq (Fig. 7 B and C; see also
refs. 10, 12, 48) and is consistent with the presence of positioned
arrays of nucleosomes in the vicinity of CTCF binding sites. A
fragment midpoint versus length plot (38) yielded a V-shaped
pattern of depleted signals in the middle, indicating protection
from cleavage by the bound CTCF (Fig. 7D). In addition, frag-
ments that are comparable in size to mononucleosomes (∼140–
190 bp) are enriched at the expected positions of the positioned
nucleosomes. We also observed enrichment of small fragments at
the center, which were likely generated from the NDR flanking
the CTCF motif. These small fragments are probably analogous to
those found to be due to CTCF via RNAi knockdown followed by
MNase analysis (14) as well as those seen with DNase I (22). For
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Fig. 5. ChIP-seq analysis of histones H2B and H3 with chromatin digested with MPE-Fe(II) versus MNase Low conditions. The ChIP-seq experiments were
performed with soluble chromatin that was generated by digestion with MPE-Fe(II) or MNase Low conditions; hence, the ChIP-seq input DNA samples are not
identical to the DNA fragments in the MPE-seq and MNase Low-seq experiments, which were performed with total (soluble and insoluble) chromatin. To
distinguish between nucleosome- and subnucleosome-sized particles, we analyzed the data in separate groups that correspond to 141–190 (nucleosome-
sized) bp, 101–140 bp, and 50–100 bp DNA fragments. The peak of histone H2B and H3 localization in the upstream promoter region is indicated by the arrow.
This analysis was performed with 20,195 RefSeq TSSs. (A, C, and E) MPE-ChIP-seq (A) 140–191 bp, (C) 101–140 bp, and (E) 50–100 bp DNA fragments. (B, D, and F)
MNase Low-ChIP-seq analysis with (B) 140–191 bp, (D) 101–140 bp, and (F) 50–100 bp DNA fragments. (G) MPE-seq (101–140 bp DNA fragments) analysis from –10 kb
to +10 kb relative to the TSS. (H) MPE-ChIP-seq (101–140 bp DNA fragments) of histones H2B and H3 from –10 kb to +10 kb relative to the TSS.
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comparison, we have additionally included analogous plots with
MNase and MNase Low digestion (Fig. 7 E and F).
To visualize the MPE-seq–based nucleosome positions around

individual CTCF peaks, we ranked them based on relative CTCF
enrichment from the ChIP-seq data and generated heat maps of
cutting site and nucleosome positioning analyses (Fig. S7A). We
also prepared analogous heat maps from the MNase-seq data
(Fig. S7B). Both the MPE-seq and MNase-seq results show a
correlation between the degree of enrichment by CTCF and the
clarity of the pattern of nucleosome positioning. In this particular
respect, the MPE-seq data are similar to the MNase-seq data.
We further used the cutting site analysis to determine whether

CTCF footprints can be detected with MPE-seq. In Fig. 7G, we
classified CTCF peaks into five groups based on the relative
enrichment of CTCF ChIP-seq signals and then plotted the av-
eraged profile of cutting for each group from –50 bp to +50 bp
relative to the middle of the motif. This plot shows the protection
of residues within the CTCF motif and enhanced cutting at po-
sitions flanking the motif that correlate with CTCF enrichment.
In contrast, MNase generated sharp peaks of cuts at AT-rich
positions within and around the CTCF motif (Fig. 7H.). These
results show that the binding of CTCF to chromatin can be seen
with MPE-seq. We also similarly analyzed the MPE-seq data for
the sequence-specific DNA binding by repressor element-1 si-
lencing transcription factor (REST; also known as NRSF, for
neuron-restrictive silencer factor) (Fig. S8), which had been
previously examined by MNase-sEq. (10). These results indicate
that MPE-seq can potentially be used to detect the binding of
sequence-specific factors to chromatin.

Summary and Perspectives. MPE-Fe(II) is a small molecule (mo-
lecular mass of 729.5 g/mol) that cleaves DNA with little sequence
bias and has been previously used for mapping nucleosome posi-
tions at individual genes. In this study, we combined MPE-Fe(II)
digestion and massively parallel sequencing of the resulting DNA
fragments to map nucleosomes and subnucleosomal particles ge-
nome-wide. By carrying out MPE-Fe(II) versus MNase digestion of
chromatin and genomic DNA in parallel, we were able to compare
MNase-seq with MPE-seq. We observed notable differences be-
tween these methods, such as at promoters and splice sites.
One key feature of MNase is that it efficiently generates ca-

nonical nucleosome core particles. Thus, nucleosome positioning

analysis peaks observed with MNase are likely to represent ca-
nonical nucleosomes. Like MNase, MPE-Fe(II) cleaves the linker
DNA between nucleosomes, but unlike MNase, MPE-Fe(II) gen-
erated peaks of DNA fragments immediately upstream of TSSs.
The most striking differences between MPE-seq and MNase-seq
were observed with subnucleosomal histone-containing particles in
the upstream proximal promoter region of active genes (Figs. 3–5
and Fig. S5). These species may be related to noncanonical chro-
matin particles that are often seen at gene regulatory regions such
as promoters (39–42) but are not revealed by standard MNase-seq
protocols. Thus, MPE-seq may be useful for the identification and
characterization of these noncanonical chromatin structures at
promoters. In this manner, the combined use of MNase-seq and
MPE-seq would provide insights into chromatin structure that
would not be obtained from either method alone.
In these studies, we also found that MPE-Fe(II) can be used

to detect the binding of some sequence-specific DNA binding
proteins. Although there are a number of useful chromatin im-
munoprecipitation (ChIP)-based methods for identifying the
presence of proteins in the vicinity of specific DNA sequences,
MPE-Fe(II) is a high-resolution probe of the accessibility of the
DNA template itself. Such information could be used to com-
plement data from ChIP-based techniques.
In conclusion, MPE-seq is a straightforward method for the

genome-wide analysis of chromatin structure that can be used di-
rectly with cells without complicated genetic modifications. MPE-
seq reveals the accessibility of chromatin with little DNA sequence
bias. We further propose that MPE-seq would be particularly useful
when used in conjunction with MNase-seq, as the two methods
provide complementary data on chromatin structure that would
likely be useful for the study of gene expression.

Materials and Methods
Digestion with MPE-Fe(II). In a typical experiment, 160 μL of J1mouse embryonic
stem cell nuclei (at a concentration that, upon 40-fold dilution, gives an A260 nm

of 0.2; prepared as described in SI Materials and Methods) were used for di-
gestion with MPE-Fe(II). MPE-Fe(II) complex was prepared by mixing 20 μL of
2.5× digestion buffer [1× digestion buffer, 10 mM Tris, pH 7.5, 15 mM NaCl,
60 mMKCl, 0.15 mM spermine, 0.5 mM spermidine, complete EDTA-free protease
inhibitor mixture (Roche)], 12.5 μL of 1 mMMPE, and 12.5 μL of freshly prepared
1mM ammonium iron(II) sulfate. Immediately before initiating the reaction, 2 μL
of 100 mM hydrogen peroxide was added to the mouse embryonic stem cell
nuclei, and 5 μL of 100 mM DTT was added to the MPE-Fe(II). The reaction was

A C

D FE

B

−100 −50 0 500.
0

25
50

75
10

0
Relative Position to 3' Splice Site (bp)

AT
 C

on
te

nt
 (%

)
−200 −100 0 100

0
2

4
6

8
10

Relative Position to 3' Splice Site (bp)

N
or

m
al

iz
ed

 R
ea

ds
 (A

ve
ra

ge
d)

Forward
Read
Reverse
Read

−200 −100 0 100

0
2

4
6

8
10

Relative Position to 3' Splice Site (bp)

N
or

m
al

iz
ed

 R
ea

ds
 (A

ve
ra

ge
d)

Forward
Read
Reverse
Read

−200 −100 0 100

0
2

4
6

8
10

Relative Position to 3' Splice Site (bp)

N
or

m
al

iz
ed

 R
ea

ds
 (A

ve
ra

ge
d)

Forward Read
Reverse Read

−200 −100 0 100

0
2

4
6

8
10

Relative Position to 3' Splice Site (bp)
N

or
m

al
iz

ed
 R

ea
ds

 (A
ve

ra
ge

d)

Forward Read
Reverse Read

−400 −200 0 200

0
1

2
3

4
5

Relative Position to 3' Splice Site (bp)

N
uc

le
os

om
e 

P
os

iti
on

in
g

 In
de

x 
(A

ve
ra

ge
d) MNase Chromatin

MPE−Fe(II) 
Chromatin

MNase DNA
MPE−Fe(II) DNA

AT Content around
3’ Splice Site

MNase Added to
Chromatin in Nuclei

MNase Added to
Purified Genomic DNA

MPE-Fe(II) Added to
Chromatin in Nuclei

MPE-Fe(II) Added to
Purified Genomic DNA

Nucleosome Positioning
Analysis

Fig. 6. MPE-seq versus MNase-seq analyses of 3′ splice sites of internal exons. (A) The average AT content at positions relative to the 3′ splice sites of internal
exons was plotted. (B) Cutting site analysis of MNase-digested chromatin around 3′ splice sites. (C) Cutting site analysis of MNase-digested genomic DNA
around 3′ splice sites. (D) Cutting site analysis of MPE-Fe(II)–cleaved chromatin around 3′ splice sites. (E) Cutting site analysis of MPE-Fe(II)–cleaved genomic
DNA around 3′ splice sites. (F) Averaged Nucleosome Positioning Index around 3′ splice sites.

Ishii et al. PNAS | Published online June 15, 2015 | E3463

BI
O
CH

EM
IS
TR

Y
PN

A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424804112/-/DCSupplemental/pnas.201424804SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424804112/-/DCSupplemental/pnas.201424804SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424804112/-/DCSupplemental/pnas.201424804SI.pdf?targetid=nameddest=SF8
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424804112/-/DCSupplemental/pnas.201424804SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424804112/-/DCSupplemental/pnas.201424804SI.pdf?targetid=nameddest=STXT


initiated by adding 40 μL of the activated MPE-Fe(II) (250 μM) to the mouse
embryonic stem cell nuclei [to a final MPE-Fe(II) concentration of 50 μM]. The
reaction was incubated at 25 °C. We took 60 μL samples after 10, 20, and
30 min of incubation, and the reaction was quenched by the addition of 6 μL of
60 mM bathophenanthroline. To each sample, 200 μL of buffer (20 mM EDTA,

200 mM NaCl, 1% SDS, 0.25 mg/mL glycogen) and 10 μL of 20 mg/mL proteinase
K were added, and the mixture was incubated at 37 °C for 3–4 h. Then each
sample was extracted twice with 300 μL of phenol, extracted once with 300 μL of
24:1 chloroform/isoamyl alcohol, and precipitated by the addition of 40 μL of

3 M sodium acetate (pH 5.2) followed by 1 mL ethanol. The pellet was washed
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with 1 mL 75% (vol/vol) ethanol, dried, and resuspended in 200 μL TE. We added
2 μL of 10 mg/mL RNase A to each sample, and the sample was digested by in-
cubation at 37 °C for 3–4 h. The samples were extracted with phenol and 24:1
chloroform/isoamyl alcohol and were precipitated again as described above. The
resulting DNA was used for sequencing. A detailed description of the other
methodology and data analysis is provided in SI Materials and Methods. The data
have been deposited in the Gene Expression Omnibus (accession no. GSE69098).
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