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Nucleotide excision repair (NER) is responsible for the removal of a
large variety of structurally diverse DNA lesions. Mutations of the
involved proteins cause the xeroderma pigmentosum (XP) cancer
predisposition syndrome. Although the general mechanism of the
NER process is well studied, the function of the XPA protein, which
is of central importance for successful NER, has remained enig-
matic. It is known, that XPA binds kinked DNA structures and that
it interacts also with DNA duplexes containing certain lesions, but
the mechanism of interactions is unknown. Here we present two
crystal structures of the DNA binding domain (DBD) of the yeast
XPA homolog Rad14 bound to DNA with either a cisplatin lesion
(1,2-GG) or an acetylaminofluorene adduct (AAF-dG). In the structures,
we see that two Rad14 molecules bind to the duplex, which induces
DNA melting of the duplex remote from the lesion. Each monomer
interrogates the duplex with a β-hairpin, which creates a 13mer du-
plex recognition motif additionally characterized by a sharp 70° DNA
kink at the position of the lesion. Although the 1,2-GG lesion sta-
bilizes the kink due to the covalent fixation of the crosslinked dG
bases at a 90° angle, the AAF-dG fully intercalates into the duplex
to stabilize the kinked structure.
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Defects of the nucleotide excision repair (NER) system cause
the human disease xeroderma pigmentosum, which is char-

acterized by hypersensitivity to sunlight, resulting from the in-
ability of patients to repair UV-induced DNA lesions (1, 2). Eight
XP complementation groups are known, of which seven are caused
by mutations in genes involved in the NER process (3, 4). NER
recognizes a large array of diverse lesions (5–9). It repairs UV-
and cisplatin-induced intrastrand crosslinks (10, 11). As such, NER
protects higher organisms from the harmful effects of sunlight but
also establishes resistance against cisplatin therapeutics, which is
a major problem associated with this type of chemotherapy (12).
The NER system also repairs a wide variety of single base bulky
DNA adducts formed by environmental carcinogens. NER is thus
the most versatile known DNA repair system (5, 8, 9).
The structurally vastly different lesions are recognized either

within a globally operating NER (global genome repair, GG-NER)
(7, 13) or as part of a transcription coupled NER process (TC-
NER), where the stalled RNA polymerase is the initial NER
inducing signal (14–16). Several lines of evidence lead to the cur-
rently accepted hypothesis that the lesions are initially recognized
by XPC with the help of UV-DDB (UV DNA damage binding
protein) for cyclobutane pyrimidine dimer (CPD) lesions (17–20)
followed by damage verification by XPD/TFIIH (21–24), XPA,
and XPG (3) to finally assemble to the preincision complex (3, 25–
27). This step seems to involve recruitment of the XPA protein,
which is one of the proteins essential for both GG-NER and TC-
NER (28). As such, mutations of the XPA proteins provide one of
the strongest NER phenotypes (29). Although the function of
most XP-proteins within the NER process is understood, the
precise role of XPA has remained unclear XPA is known to
interact with other NER proteins such as RPA, TFIIH, and

ERCC1 (30-33) suggesting XPA to be a NER scaffold protein
(3). Furthermore, detailed biochemical experiments showed that
XPA binds to kinked DNA structures (34) and to DNA duplexes
containing certain types of DNA lesions, such as cisplatin (10, 35,
36) adducts and bulky adducts (5, 37, 38). XPA was found to form a
homodimer (38), and it was demonstrated that it forms a 2:1
complex with the respective DNA (37). Initial structural insights
into the protein architecture were derived from an NMR structure
of the DNA binding domain of XPA (39, 40). However, the precise
structural basis of the interactions of XPA with its DNA substrates
is not known (3, 28).
Here we present two structures of the Saccharomyces cerevisiae

homolog of XPA, Rad14, in complex with DNA containing a
cisplatin 1,2-GG intrastrand crosslink and a N-(deoxyguanosin-8-
yl)-2-acetylaminofluorene (AAF-dG) bulky adduct, which are rep-
resentatives of typical NER substrates (6). The obtained structures
shine light on how one of the major NER proteins interacts
with DNA.

Overall Structure of Rad14 Bound to 1,2-GG Cisplatin and
AAF-dG Containing DNA
We first investigated binding of Rad14 to double-stranded DNA
containing different lesions in a central position (ODN1-5, see
Table S1) using band shift assays (Fig. S1). We confirmed complex
formation with DNA containing a cisplatin 1,2-GG (10, 36, 41)
and an AAF-dG lesion (37, 38) (Fig. S1D and E). We next studied
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the binding stoichiometry with AAF-dG containing DNA (Fig.
S1E) and confirmed the expected formation of a 2:1 complex with
Rad14 (37, 38).
For crystallization studies, we used two truncated versions of

Rad14 (Rad14188–302/306), which represent the DNA binding do-
main. We confirmed that the truncated version of Rad14188–302
(Rad14t) retains the binding characteristics to DNA (Fig. S1G).
Cocrystals were obtained with Rad14t in complex with a 15mer
DNA duplex containing a single AAF-dG in the central position
and with a 16mer duplex with a central cisplatin 1,2-GG lesion
(Fig. 1 C and D). We first determined the structure of seleno-
methionine containing Rad14188–306 featuring a C-terminal strep-
tag in complex with the AAF-dG containing DNA, which provided

good structural data for the protein at 3.1-Å resolution. However,
large parts of the DNA, including the area in which the damage
was located, remained uninterpretable. We therefore substituted
three thymidines with 5-iodo-uracils and replaced the tag. This
new construct resulted in a different crystal form, of which the
Rad14t moiety was solved by molecular replacement using the
coordinates of the previously experimentally determined seleno-
methionine-labeled protein and the DNA was located by Fourier
analysis. The structure was refined to a final resolution of 1.8 Å.
In addition, the structure of the DNA-binding Rad14t fragment
in complex with the 16mer DNA duplex containing a central
cisplatin 1,2-GG lesion was determined to 2.8-Å resolution
(Table S2).
The Rad14 structures show that the protein assumes an overall

α/β-fold (Fig. 1B) quite similar to the NMR structure (Fig. S2A)
of the human XPA homolog, indicating high structural conser-
vation (40, 42). In agreement with the 2:1 stoichiometry de-
termined by gel shift experiments (Fig. 3 F and G and Fig. S1E),
we see in both structures that two Rad14 molecules bind to the
DNA duplex above and below the respective lesion. This binding
is shown for the 1,2-GG cisplatin containing DNA in Fig. 1C and
for the AAF-dG in Fig. 1D. Interestingly, the Zn-finger domains
of both proteins are not in contact with the duplex DNA.
In the structure with the 1,2-GG lesion (Fig. 1C), two Rad14

molecules bind to the undamaged segments of the DNA above
and below the lesion. Each protein interrogates the duplex with a
β-hairpin (residues 253–267), leading to stacking of Phe262 and
His258 onto the last intact base pair on either DNA end and
unpairing of the following bases (Fig. 1A). This intercalation on
both ends creates a central 13-bp duplex recognition element
with the lesion in the middle. The entire structure exhibits a
pseudo C2 symmetry because the DNA is likewise bound in two
different orientations, which differ by a 180° rotation around the
central positioned lesion. Because the 1,2-GG lesion is a cross-
link between two central dG bases, the lesion can be observed for
each of the two possible DNA orientations in two different po-
sitions (in total four positions, see Fig. S3A). For clarity only one
of the structures is shown in Fig. 1C. This observation already
suggests that Rad14 binds lesion independently, mostly triggered
by conformational effects. We used the anomalous signal of the
Pt-atom to estimate the occupancies (DNA orientation 1: 21%
and 27%; DNA orientation 2: 33% and 19%, see Fig. S3A). In
the structure with the AAF-dG lesion (Fig. 1D), we observed
that the DNA is also bound in two orientations with the AAF-dG
lesion located in two different positions linked by the pseudo C2-
symmetry axis. The two duplex orientations are occupied with an
approximate 45–55% distribution as inferred from the anomalous
signal of the iodine (Fig. S3B). Importantly, the 13mer DNA
lesion recognition motif in both structures (AAF-dG and 1,2-GG)
is fully base paired and the lesions are both not in a flipped out
state. Instead, the structures exhibit a sharp kink of 70° at the
position of the lesion showing that Rad14 does not recognize the
lesion itself but likely senses the flexibility of the DNA created in
both cases by the lesions (Fig. 2).
The DNA ends below and above the kinked 13mer recognition

motif are unwound, they lack any H-bonding interactions and are
partially disordered in the structure. The corresponding 5′ ends
of the DNA duplex at both ends of the structure are bound in a
cleft created by the β-hairpin, the end of helix α4, and the anti-
parallel β-sheet domain (Figs. 1B and 2A). The β-hairpin struc-
ture and this cleft are responsible for melting of the duplex above
and below the 13mer recognition sequence. A recent DNA binding
study by Sugitani et al. (43) suggests that the DNA binding prop-
erties of XPA are improved if the binding domain is extended at the
C terminus by 20 amino acids (XPA98–239), of which 9 provide basic
side chains. The improved binding can be explained with the pre-
sented structure. Addition of the amino acids extends helix α7 (Fig.
1D), which leads to improved packing against the DNA duplex
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Fig. 1. Overall structures of the Rad14188–302-DNA complexes. (A) Schematic
diagrams of the Rad14-AAF-dG and Rad14-1,2-GG complexes showing the
different positions where the lesions were observed in orange and red, with
the C1’–C1’ distance of the last base pair in the molten part of the structure.
For the AAF-dG lesion (Left) two positions of the lesion and for the 1,2-GG
lesion (Right) 4 positions of the lesion were observed (Fig. S3). For clarity,
only one DNA orientation with the cisplatin lesion is shown here. (B) Sche-
matic representation of the α/β-folding topology of Rad14188–302, with the
central 3-stranded β-sheet. (C) Ribbon diagrams of the Rad14-cisplatin lesion
DNA complex with the structure of the lesion and the DNA sequence. Rad14
is shown in green and gold (β-hairpin), the DNA backbone is shown in gray,
and the cisplatin 1,2-GG lesion is shown in blue. Residues important for DNA
kinking (Thr239, His258, Phe262, and Arg294) are shown as sticks. (D) Ribbon
diagrams of the Rad14-AAF-dG lesion DNA complex with the structure of the
lesion and the DNA sequence. Rad14 is shown in green and gold (β-hairpin),
the DNA backbone is shown in gray, and the AAF-dG lesion is shown in blue.
Residues important for DNA kinking (Thr239, His258, Phe262 and Arg294)
are shown as sticks. In the DNA sequences, the unpaired, partially disordered
DNA bases are depicted in light gray. Thymidines replaced by 5-iodo-uracils
in the AAF-dG complex are shown in bold.
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backbone with additional charge interactions between the neg-
atively charged backbone and positive amino acids.

DNA Bending and the Lesion Recognition Motif
The melting process, which is induced by the β-hairpin irre-
spective of the lesion (Figs. 1A and 2A), separates the bases at
the duplex ends by about 18.5 Å (C1’–C1’ distance base pair
1 and 15). The most prominent feature of the structures is the
formation of a sharp 70° kink at the central position (Fig. 2 B and
C) where the lesions are situated. Bending occurs into the major
groove and is characterized by a reduction of the interstrand
phosphodiester distance at the closest point of the concave side
to 11.7 Å compared with 16.8 Å in B-DNA. The protein–DNA
interfaces (Fig. 2 D and E) that enable these processes are com-
posed of residues from the β-hairpin (Asn256, His258, Phe262,
and Gln266), α4 (Lys229 and Thr230), the loop between α4 and
α5 (Thr239), and α7 (Arg293 and Arg294). The most prominent
feature of the aforementioned interfaces is the β-hairpin (Fig. 2A),
which establishes the majority of protein–DNA interactions, rep-
resenting the anchor point for the bending process. The DNA is
held in place by intercalation of Phe262 and His258 and further
interactions established by Lys229, Thr230, and Gln266, which
hydrogen bond to the phosphate moieties of base 2 and 3 in the 5′
strand. His258 forms a hydrogen bond with the phosphate moiety
of the base, which gives rise to partially distorted stacking in-
teractions. Asn256 and Gln266 contribute hydrogen bonds to base
2 and the phosphodiester of base 4 (Fig. 2 D and E). These and all
other interactions (with the exception of Asn256) observed in the
complete protein DNA interface are exclusively achieved through
phosphate backbone interactions, which ensure a sequence in-
dependent recognition mechanism. They can be described as in-
terrogating “fingers” that tightly bind the duplex starting 4–5 base
pairs away from the lesion. A second “thumb” like interaction with
the DNA backbone is established by helix α7, which packs against

the backbone close to the lesion. As observed by Sugitani et al.,
extending this helix would likely result in even tighter binding (43).
The “thumb” holds the DNA with the help of Arg294, forming a
charge interaction with the phosphodiester. The “thumb” is fur-
ther supported by an interaction established by Thr239 located
between α4 and α5. In the AAF-dG structures (see below), we
observe in addition that Arg293 keeps the backbone in place. The
combined action of the intercalated Phe262 and His258 residues
and the arginines in the α7-“thumb” forces the DNA to bend into
the major groove. Because the bent conformation is established by
only two interactions, with Arg294 and Thr239, the structure
supports the hypothesis that Rad14 binds to DNA structures that
are easily bendable or which already adopt a bent conformation
before Rad14 binding. In this respect, our structures also explain
the observed binding of XPA/Rad14 to DNA with bulges (34)
because such DNA structures are also kinked (44). The structures
furthermore explain the observed cooperativity of the Rad14/XPA
binding event that is also visible in our gel shift experiments (Fig. 3
F and G and Fig. S1E) (37). In our model, the first Rad14 might
bend the duplex slightly, thus facilitating the second Rad14 binding
step, which provides the ability to form the sharp kink.

Analysis of the (Rad14)2-DNA Complex in Solution
To prove that the crystallographically observed structures also
exist in solution and to investigate the possibility that complex
formation involves binding of Rad14 just to the DNA ends, we
performed protein–protein crosslinking experiments. Analysis of
the crystal structures shows that Lys233 of each Rad14 points
toward each other at a distance of 21.5 Å (Fig. 3A). We therefore
prepared a longer DNA 19mer duplex (ODN8, see Table S1)
with a central AAF-dG lesion and incubated it with Rad14. To
this solution we added the reactive Bis(NHS)PEG5 crosslinker
(Fig. 3B), which places the reactive ester groups at a distance of
∼21.7 Å assuming an extended conformation. Analysis of the
reaction by gel electrophoresis (Fig. 3B) confirmed the formation
of a defined (Rad14)2-DNA species. Interestingly, formation of
only one crosslinked species even in a concentration dependent
fashion was observed arguing that the distance between the two
Rad14 molecules is around 21.5 Å despite the increased length of
the duplex. To prove that the crosslinker has bridged the Lys233
residues of the two monomers we next digested the crosslinked
(Rad14)2 with trypsin and analyzed the fragments by HPLC-MS/
MS. The data show a parent ion signal with the exact molecular
weight (m = 2115.02 Da) of the expected crosslinked dipeptide
species (Fig. 3C) that was further characterized as TECKEDY
(marked in red in Fig. 3A) by MS sequencing (Fig. 3 D and E). We
also detected the typical fragmentation pattern of the ethylene
glycole (PEG) crosslinker with Δm = 44.03 Da confirming the
presence of the crosslinker.
Despite the clear results, it cannot be fully excluded that the

crosslinker reacts with endbound Rad14 with the DNA being in
an unusual bent conformation. To exclude this possibility, we
performed a crosslinking experiment side by side with AAF-dG
containing duplexes of different lengths (15mer ODN6 and 37mer
ODN9, Fig. 3H). Despite the length difference, similar crosslinking
efficiencies were observed, which argues against this possibility. The
crystallographically determined binding mode is furthermore sup-
ported by the observation that Rad14 also binds to longer duplexes
only in the presence of a lesion (Fig. 3G). Undamaged duplexes
are not recognized.
To further investigate the importance of the observed β-hairpin

intercalation, we performed fluorescence depolarization studies
with Rad14t and a Rad14t variant in which we replaced one of
the intercalating residues of the β-hairpin, Phe262, by an alanine
(Rad14tF262A). For this study FITC-dU containing duplexes of
different lengths (15mer ODN11 and 30mer ODN10, see Table S1)
were used, in which the fluorescein, needed for the detection,
functions as the lesion. It is well known that Rad14 binds the
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fluorescein-containing base with significant affinity (see below) (45).
Formation of the lesion recognition complex with FITC-dU and
the full length proteins Rad14fl and XPAfl was demonstrated by
a gel shift experiment (Fig. 3 F andG). As depicted in Fig. 3I, the
F262A point mutation fully abolished the lesion recognition
ability of Rad14t, thus solidifying the model that the intercalation
of the β-hairpin into the duplex is crucial for lesion recognition.

Discussion
In contrast to other DNA repair mechanisms, NER successfully
recognizes structurally vastly differing lesions. Although DNA
binding of the NER proteins XPC (46–48) and XPE (49, 50) are
structurally understood, for XPA, which exhibits the strongest
NER phenotype, it is only known that it interacts with kinked
DNA structures such as DNA containing bulges and also in special
cases with damaged DNA (10, 51, 52). Structural information
about the binding process is lacking. Our structure of the XPA
homolog Rad14 in complex with lesion containing DNA now

uncovers the mechanism of how XPA interacts with the DNA.
The obtained crystallographic results are fully consistent with
previous biochemical data that showed binding of XPA to kinked
DNA structures (34). Importantly, Rad14/XPA, like Rad4/XPC
(18), does not bind the lesion directly but recognizes weakened
DNA duplex structures. We observe that Rad14/XPA binding
goes in hand with formation of a sharp kink at the lesion site by
70°. DNA binding involves two Rad14 proteins. Each protein
inserts a β-hairpin exactly 6 base pairs away from the lesion, which
generates a 13mer recognition motif. The lesion is not in a flipped
out state but stays inside the 13mer duplex motif to stabilize the
sharply bent structure. Bending occurs into the major groove,
which in the case of the cisplatin 1,2-GG lesion means toward the
Pt-atom (Fig. 4A). The intercalation of the β-hairpin “fingers”
separates the DNA strands to form single stranded regions above
and below the 13mer Rad14 binding motif to which other NER
proteins may bind. This DNA binding mode could be one element
that allows XPA to interact with many other NER factors (31–33).
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Fig. 3. Crosslinking experiment of the Rad14t-DNA
complex and mass spectrometric analysis of the diges-
ted protein dimer. (A) Two Rad14t proteins (light and
dark green) bind to one DNA strand containing the
AAF-dG lesion (gray). The two lysines at a distance of
21.5 Å in the peptide sequence TECKEDY are high-
lighted in red. (B) SDS gel of the protein–DNA mixture
incubated with increasing amounts of the Bis(NHS)
PEG5 crosslinker. (Rad14t)2 bands are boxed in red.
The bands were cut out and subjected to enzymatic
digestion. (C) Crosslinked peptide sequences after
enzymatic digest of the proteins. (D) The MS/MS-
spectrum created in an attached HCD-cell of the
mass spectrometer reveals the peptide sequence
enabling peptide identification (the a- and b-ion
series is shown in red, x- and y-ion series is shown in
blue). (E) Mass spectrometric analysis revealing the
PEG fragments from the crosslinker. The PEG chain
fragments with a typical Δm = 44 Da. Electropho-
retic mobility shift assay (EMSA) of Rad14fl (F) and
XPAfl (G) proteins with a central FITC-dU lesion con-
taining and undamaged DNA (UD; endstanding FITC
labeled DNA ODN3 and ODN5, see Table S1). (H) SDS
PAGE of the protein–DNA mixture incubated with
increasing amounts of the Bis(NHS)PEG5 crosslinker.
A 15mer (ODN6) and a 37mer (ODN9) DNA duplex
containing an AAF-dG lesion were used. (Rad14t)2
bands are boxed in red. (I) Fluorescence depolariza-
tion data showing the DNA binding properties of
Rad14t [blue dots: 30mer (ODN10) and purple dots:
15mer (ODN11)] and Rad14tF262A (cyan triangles) to a
central FITC-dU lesion containing DNA duplexes.
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The relatively few interactions between Rad14 and the duplex
suggests that Rad14 binds best to already prekinked DNA struc-
tures (34).
This explains why Rad14 is able to bind to DNA containing

bubbles, bulges and Y-junctions (34). All these substrates can
form easily kinked DNA structures (52, 53). CPD lesions, on the
other hand, are not recognized by Rad14, likely, because these
lesions are less efficiently accommodated in a sharply kinked
structure. Indeed, it is known that CPD lesions hardly influence
the duplex structure and its stability (44). More importantly,
however, is the fact that the stiff four-membered ring cyclo-
butane structure of the CPD lesion points into the major groove,
which might block bending into this groove.
For single-base bulky adduct lesions such as AAF-dG, it is

unclear to which extent they prekink the duplex. For AAF-dG
and AF-dG lesions it was suggested that they exist in two dif-
ferent orientations with either the dG base or the AAF-unit
inside the duplex (44). Melting point data of the AAF-dG–

containing duplex used for crystallization and further thermo-
dynamic studies (Fig. S4 and Table S3) show that the melting
point is substantially reduced by ΔTm = 12 °C (ΔΔH = 3 kcal/mol)
with no effects on ΔS (ΔΔS = 0 cal/molK). These data prove
that the AAF-dG lesion creates a thermodynamically desta-
bilized region in the duplex that can certainly be more easily
kinked. More importantly, in the Rad14 structure with the
AAF-dG lesion, we observe full intercalation of both the AAF
and the dG unit into the duplex (Fig. 4B and Fig. S3B). The
AAF-dG takes the place of a full base pair. The dC counterbase
moves in response into a flipped out conformation (no electron
density for the base) toward helix α7. Such a position of the
AAF-dG fully inside the duplex was never observed, showing the
unusual situation of the molecule in the kinked DNA duplex. It
is most likely that this complete intercalation of the AAF-dG
unit is needed to stabilizes the 70° kink using favorable π-stacking
interactions. This model offers an explanation for binding of
Rad14/XPA to FITC-dU containing DNA. This unit reduces the
stability of the duplex by only a small amount. It may be that

XPA impose some bending force to create a kink. Once the kink
is temporarily formed, it may then be stabilized by intercalation
of the flat and aromatic fluorescein unit. Further crystal struc-
tures are certainly needed to clarify this question.
Our structure is also in agreement with previous detailed

mutagenesis data (34, 54). The residues identified as critical con-
tributors to the recognition of lesions by Rad14 are conserved in
human XPA with the exception of Thr239, which is replaced by
Lys151, Phe262, which is conservatively substituted by a trypto-
phane, and Gln266, which is replaced by a lysine. Although the
side chain of Lys151 is somewhat longer, it would still be fully
competent to fulfill the observed function of Thr239 in Rad14
(Fig. S5). The importance of the critical residues for DNA binding
identified in our structure is supported by a lysine scanning mu-
tagenesis study on human XPA where a K151E variant (corre-
sponding to Thr239) was still able to interact with DNA but
showed significantly decreased affinity to damaged DNA (54). In
the same study, Lys141, Lys145, Lys179, Lys204, and Arg207 were
analyzed as well. Intriguingly, the residues corresponding to
Lys141 (Lys229), Lys179 (Gln266), and Arg207 (Arg294) all
show impaired damaged DNA binding thus highlighting the
importance of those residues for XPA function consequently
validating our structural data.
The structures reported here are unable to clarify the enig-

matic role of XPA in the whole NER process. However, they
provide mechanistic insight into how this important NER protein
is able to interact with kinked DNA structures and lesion-con-
taining duplexes that allow sharp bending. Binding requires in-
terrogation of the duplex with a β-hairpin structure already
observed in Rad4/XPC binding to DNA (18). Here we see sim-
ilarities between both proteins. In summary our structures confirm
that NER proteins and as such also XPA probe the structural
integrity of the duplex, which is the secret behind the broad sub-
strate promiscuity of NER (3).

Materials and Methods
For additional information on cloning of Rad14 and XPA, protein expression
and purification, DNA synthesis, crystallization, data collection, structure de-
termination and structure refinement, protein–DNA binding studies, protein-
crosslinking experiments and LC-MS analysis, DNA melting temperature
measurements, and fluorescence polarization measurements please see SI
Materials and Methods.
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