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Key points

� Many studies have previously suggested the existence of stress hormone receptors on the cell
membrane of many cell types, including skeletal muscle fibres; however, the exact localisation
of these receptors and how they signal to the rest of the cell is poorly understood.

� In this study, we investigated the localisation and the mechanism(s) underlying the physiological
functions of these receptors in mouse skeletal muscle cells.

� We found that the receptors were present throughout muscle development and that, in adult
muscle fibres, they were localised in the extracellular matrix, satellite cells (muscle stem cells)
and close to mitochondria.

� We also found that they signalled to the rest of the cell by activating enzymes called
mitogen-activated protein kinases.

� From these results we suggest that, at physiological concentrations, stress hormones may be
important in skeletal muscle differentiation, repair and regeneration.

Abstract A number of studies have previously proposed the existence of glucocorticoid receptors
on the plasma membrane of many cell types, including skeletal muscle fibres. However, their
exact localisation and the cellular signalling pathway(s) they utilise to communicate with the
rest of the cell are still poorly understood. In this study, we investigated the localisation and
the mechanism(s) underlying the non-genomic physiological functions of these receptors in
mouse skeletal muscle cells. The results show that the receptors were localised in the cyto-
plasm in myoblasts, in the nucleus in myotubes, in the extracellular matrix, in satellite cells
and in the proximity of mitochondria in adult muscle fibres. Also, they bound laminin in a
glucocorticoid-dependent manner. Treating small skeletal muscle fibre bundles with the synthetic
glucocorticoid beclomethasone dipropionate increased the phosphorylation (= activation) of
extracellular signal-regulated kinases 1 and 2, c-Jun N-terminal kinase and p38 mitogen-activated
protein kinase. This occurred within 5 min and depended on the fibre type and the duration
of the treatment. It was also abolished by the glucocorticoid receptor inhibitor, mifepristone,
and a monoclonal antibody against the receptor. From these results we conclude that the
non-genomic/non-canonical physiological functions of glucocorticoids, in adult skeletal muscle
fibres, are mediated by a glucocorticoid receptor localised in the extracellular matrix, in satellite
cells and close to mitochondria, and involve activation of the mitogen-activated protein kinase
pathway.
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Introduction

Glucocorticoids (GCs, steroids) are the main stress
hormones in the body. They are synthesised from
cholesterol and released from cells in the zona fasciculata
of the adrenal cortex. In healthy individuals, they are
released in short irregular bursts that peak �2 h before
the start of the day and their plasma concentration rarely
exceeds 250 nM except during stress when it can be as
high as 700 nM (Krieger et al. 1971). GCs are essential
for life and affect most tissues in the body including
skeletal muscle. Indeed, skeletal muscle plays a key role
in the stress response because it enables individuals to
evade or to fight the stressor. Despite this, little is known
about the physiological functions of GCs in skeletal muscle
especially at the low concentrations normally found in
plasma. Instead, what has been extensively studied and
reported are the effects of treating laboratory animals for
long periods with high doses of synthetic GCs (especially
dexamethasone) on skeletal muscle function (Nava et al.
1996; van Balkom et al. 1996; Ma et al. 2003) and protein
metabolism (Goldberg, 1969; Rannels & Jefferson, 1980;
Wing & Goldberg, 1993). Much is also known about
the effects of lack of (Addison’s disease) and excess of
(Cushing’s syndrome) GCs on skeletal muscle mass and
function.

GCs exert most of their physiological and phar-
macological effects through an intracellular glucocorticoid
receptor (GR, GCR, NR3C1). The GR belongs to the
super family of ligand-activated nuclear transcription
factors that include the steroid, thyroid and retinoic acid
receptors (Kadmiel & Cidlowski, 2013). It is coded for by
a single gene (the NR3C1 gene) that is spliced into two
main isoforms, GRα (which is the active form) and GRβ

(which is inactive and resides in the nucleus where it acts
as a dominant negative inhibitor of GRα) (Kadmiel &
Cidlowski, 2013). GRα (henceforth referred to as GR) is
expressed in most cells, including muscle fibres (= cells),
where the inactive receptor is thought to reside in the
cytosol (hence cytosolic GR). In this state, the receptor
is maintained in its high affinity conformation and is
protected from inactivation by chaperone molecules such
as heat shock proteins (HSPs), e.g. HSP 90, and immuno-
philins, e.g. FK506 binding protein (FKBP) 51 (Pratt &
Toft, 2003). However, in a recent study we showed that,
in adult mammalian skeletal muscle fibres, GRs were

localised close to the surface of muscle fibres where they
co-localised with laminin. We were also able to inhibit their
effects on force using a monoclonal antibody against the
receptor suggesting that they were easily accessible from
the cell surface (Pérez et al. 2013). Although a number
of studies have previously alluded to the existence of
membrane glucocorticoid receptors in other cell types,
including human lymphoma cells (Gametchu, 1993), peri-
pheral blood mononuclear cells (Bartholome et al. 2004)
and neuronal cells (Orchinik et al. 1991), their precise
location is still unknown. It is also uncertain whether in
skeletal muscle the GRs are localised close to the cell surface
throughout myogenesis or just in adult muscle fibres.

In addition to their genomic actions, GCs also exert
actions that occur within minutes and are relatively
insensitive to inhibitors of transcription and translation
(Stahn & Buttgereit, 2008; Pérez et al. 2013). These
non-canonical/non-genomic actions have been described
in many cell types including HeLa cells (Lasa et al. 2002;
Bruna et al. 2003), guinea pig neurones (Hua & Chen,
1989), human endometrial cells (Hafezi-Moghadam et al.
2002), human adenocarcinoma cells (Croxtall et al. 2000),
rat thymocytes (Buttgereit et al. 1997), airway vasculature
(Alangari, 2010) and skeletal muscle (Pérez et al. 2013).
However, the cellular signal transduction events mediating
them are still poorly understood. The receptor/mechanism
underlying their actions is also controversial.

The primary aims of this study were twofold: (1) to
investigate the localisation and physiological functions of
the GR in mouse skeletal muscle cells and (2) to determine
the cellular signal transduction events mediating their
non-genomic physiological actions in adult mammalian
skeletal muscle fibres.

Methods

Small intact skeletal muscle fibre bundles

The experiments reported here were performed at room
temperature (�20°C) using small skeletal muscle fibre
bundles (�540 ± 26 μm in diameter) isolated from the
extensor digitorum longus (EDL; a fast-twitch) or the
soleus (slow-twitch) muscles of adult male C57BL/6 mice.
The mice were killed by cervical dislocation according
to UK legislation (for a summary of the legislation see
Drummond, 2009) and all the experiments conformed
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to the University of East Anglia animal welfare committee
guidelines. Throughout the experiments, the muscles and
muscle fibre bundles were bathed in mammalian Ringer
solution with the following composition (in mM): 109
NaCl, 5 KCl, 1 MgCl2, 4 CaCl2, 24 NaHCO3, 1 NaHPO4, 10
sodium pyruvate plus 400 mg l−1 fetal bovine serum (FBS).
The pH of the Ringer solution was maintained at �7.42
by continuously bubbling it with 95% O2 and 5% CO2.
To avoid any confounding influence of the GCs present
in the FBS, serum from the same batch was used in all the
experiments.

Cell culture

C2C12 cells (an immortalised mouse skeletal muscle
cell line) were grown on coverslips in growth
media (Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 1% L-glutamine plus10% FBS and
1% penicillin and streptomycin (all purchased from
Sigma-Aldrich, Poole, UK) for 3–4 days or until 90%
confluence. Once 90% confluent, they were induced
to differentiate by replacing the growth media with
differentiation media, i.e. growth media containing 2%
horse serum instead of FBS. At the end of the experiment
the cells were washed in phosphate-buffered saline (PBS),
air dried and permeabilised for 15 min using Tris-buffered
saline with Tween 20 (TBST). They were blocked for
non-specific antibody binding for 10 min using 1% bovine
serum albumin (BSA) in PBS. Finally, they were immuno-
blotted for the expression of the GR, laminin and double
stranded DNA as described below.

Determination of the effects of beclomethasone
dipropionate on the MAPK pathway

This experiment was performed as previously described
in Hamdi & Mutungi (2010, 2011). Briefly, the muscle
fibre bundles were mounted horizontally between two
stainless steel hooks in a Perspex muscle chamber (total
volume �40 ml) with a glass bottom. Half of the bundles
(controls) were treated for 5, 10, 30 and 60 min with
the standard Ringer solution plus 34 nM ethanol (the
vehicle used to dissolve beclomethasone (beclometasone)
dipropionate (BDP)). The other half (experimental) was
treated for the same period of time with the Ringer
solution containing 250 nM BDP. At the end of the
experiment, the fibre bundles were snap-frozen in liquid
nitrogen and cytosolic proteins were extracted using
NP40 lysis buffer. The proteins were immunoblotted
for the activation/phosphorylation of c-Jun N-terminal
kinase (JNK; also known as stress-activated protein kinase
(SAPK)), extracellular signal-regulated kinases 1 and 2
(ERK1&2) and p38 mitogen-activated protein kinase
(MAPK) as described below.

Determination of the receptor/mechanism mediating
the effects of BDP in mammalian skeletal muscle
fibres

To determine whether the effects of BDP on the MAPK
pathway were mediated through the GR and whether the
receptor was localised close to the fibre surface, another
set of fast-twitch and slow-twitch bundles was divided
into three groups. Group 1 (controls) was treated with
the standard Ringer solution plus the vehicle used to
dissolve the GC (ethanol) and mifepristone (DMSO).
Group 2 was pre-incubated for 10 min in Ringer solution
containing 10 μM mifepristone (RU486; a GR inhibitor)
(Sigma-Aldrich, Gillingham, UK), whereas Group 3 was
pre-incubated for the same period in a 1:5000 dilution of
a monoclonal anti-GR (ab109022; Abcam, Cambridge,
UK). The fibres in Group 2 were then treated for a
further 30 min with the Ringer solution containing 10 μM

mifepristone alone or mifepristone plus 250 nM BDP,
whereas those in Group 3 were treated for 5 min with
the Ringer solution plus 1:5000 dilution of the anti-GR
alone or 1:5000 dilution of the anti-GR plus 250 nM BDP.
To determine whether the effects of BDP were mediated
via focal adhesion kinase (FAK), another set of fibres was
pre-treated with 10 μM FAK inhibitor (FAKi) 14 (Abcam).
They were then incubated for a further 10 min in Ringer
solution containing the inhibitor alone or the inhibitor
plus 250 nM BDP. At the end of these experiments, the fibre
bundles were frozen and cytosolic proteins were extracted
using NP40 lysis buffer. They were then immunoblotted
for the activation of ERK1&2, JNK and p38 MAPK as
described below.

Immunoblotting

To determine the effects of BDP on the activa-
tion/phosphorylation of ERK1&2, JNK and p38 MAPK,
equal amounts of the proteins were immunoblotted as pre-
viously described in Pérez et al. (2013). Briefly, 10 μg of the
proteins were separated by standard gel-electrophoresis
and transferred onto nitrocellulose membranes. The
membranes were blocked for non-specific antibody
binding using 5% milk. They were then immunoblotted
for the expression of phosphorylated (p) ERK1&2, pJNK
and pp38 MAPK using a 1:500 dilution of rabbit mono-
clonal antibodies (4377, 4671 and 9215, respectively)
from Cell Signaling Technology (New England Biolabs,
Hitchin, UK) and the expression of the GR using a 1:500
dilution of the monoclonal anti-GR from Abcam used
in the experiment above (ab109022; Cambridge, UK).
Finally, they were visualised using SuperSignal WestPico
chemiluminescence substrate (Perbio Science UK Ltd,
Cramlington, UK) and exposure to film.

The following day, the membranes were stripped
and re-probed with a pan-actin antibody (ab3280,
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Abcam, Cambridge, UK) to check for loading. In some
experiments, the fibre bundles were fibre typed using
monoclonal antibodies against fast and slow MyHCs
(Sigma-Aldrich, Gillingham, UK). All the blots were run
in duplicate and each experiment was repeated at least
twice.

Immunocytochemistry

The expression and localisation of the GR in myo-
blasts, myotubes and adult mammalian skeletal muscles
fibre bundles was determined as previously described
in Pérez et al. (2013). Briefly, the EDL and soleus
muscles isolated from adult male C57BL/6 mice were
mounted perpendicularly on cryostat chucks using tissue
Tek OCT compound (Sakura Finetek UK Ltd, Thatcham,
UK). They were snap frozen in liquid nitrogen-cooled
isopentane and 10 μm thick serial sections were cut.
Two of the sections and the two coverslips of myo-
blasts and myotubes (grown as described above) were
blocked for non-specific antibody labelling using 1%
BSA dissolved in PBS. They were incubated at room
temperature, for at least 1 h, with a 1:200 dilution
of a monoclonal rat anti-laminin (MAB1905; Millipore
Corporation, Billerica, MA, USA) and a 1:100 dilution
of the monoclonal rabbit anti-GR (ab109022; Abcam,
Cambridge, UK). They were then washed 5 times in
PBS and incubated in 1:500 dilution of species-specific
secondary antibodies conjugated to Alexa fluorophores
for 1 h. Finally, Hoechest 33342 (a double stranded
DNA-staining dye; Life Technologies, Paisley, UK) was
added 5 min before the end of this incubation. Two more

sections and coverslips (controls) were incubated with the
primary or the secondary antibodies only. At the end of the
incubation period, the sections and coverslips were washed
4 times in TBST, dried and mounted for viewing. Finally,
they were visualised and photographed using an Axioplan
2 Imaging microscope and AxioVision Release 4.8 software
(Carl Zeiss, Cambridge, UK). Like all the immuno-
blotting experiments, the immunocytohistochemistry was
performed in duplicate and each experiment was repeated
at least twice.

Pull-down assay

To determine whether the GR was able to bind laminin,
a modification of the pull-down assay described in
De Beer et al. (1981) was used. Briefly, 250 μg
recombinant human merosin (laminin 2; laminin 211;
Millipore (UK) Ltd, Watford, UK), the main laminin
in skeletal muscle, or 100 μg recombinant mouse
integrin α7β1 (the main integrins in mammalian
skeletal muscle; R&D Systems, Abingdon, UK) were
coupled to cyanogen bromide (CNBr)-activated sepharose
beads (Sigma-Aldrich), according to the manufacturer’s
instructions. The excess ligand was washed off with
coupling buffer and all the unbound active groups
were blocked using 0.2 M glycine. A 300 μl volume
of slow-twitch muscle lysate was added to the beads
alone, the beads plus laminin, or the beads plus integrin,
and left overnight at 4°C on a rotator. Slow-twitch
muscle lysate was used because slow muscle expresses
4–5 times more GR than fast-twitch muscle (Pérez et al.
2013). The following morning the beads were washed

A B C

D E F Figure 1. The localisation of GRs
changes with muscle differentiation
Photographs showing the expression and
localisation of GRs (red), laminin (green) and
double stranded DNA (nucleus; blue) in
myoblasts (A and B), myotubes (C and D)
and muscle fibres (E and F). Note that the
GRs are expressed mainly in the cytoplasm
in myoblasts, in the nucleus in myotubes,
and in a narrow band along the cell surface
in adult muscle fibres. Scale bars: A and B,
5 μm; C and D, 2.5 μm; E and F, 15 μm.
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2 times with TBST and once in PBS. They were then
mixed with 30–40 μl elution buffer (Laemmli sample
loading buffer) and left on a rotator for 1 h. Finally,
they were centrifuged at 2000 g for 20 s and the super-
natant was collected. A 10 μl volume of each supernatant
was separated using standard gel-electrophoresis, trans-
ferred onto nitrocellulose membrane and finally immuno-
blotted for the GR using a 1:500 dilution of the rabbit
monoclonal anti-GR antibody from Abcam as described
above.

Immunofluorescence confocal microscopy

Soleus muscles from 6-month-old C57BL/6 mice were
fixed in 2% paraformaldehyde in phosphate-buffered
saline (PBS) for 2 h at room temperature. Small bundles
were washed twice with PBS and blocked for 1 h in PBS
containing 1% BSA, 10% goat serum and 0.5% Triton

X-100 (added to permeabilise the membrane). They were
incubated overnight at 4°C in primary antibody and the
following morning they were washed 3 times in PBS. They
were incubated with the secondary antibody for 1 h at
room temperature before being mounted on coverslips
with anti-bleach media (Slowfade Gold antifade reagent;
Invitrogen (Molecular Probes) Eugene, Oregon, USA).
Primary antibodies were: anti-RYR1 (Ryanodine receptor
type 1), 34C (dilution 1:30; Developmental Studies
Hybridoma bank, University of Iowa); rabbit monoclonal
anti-GR (dilution 1:100; Abcam). Secondary antibodies
were: Cy3-labelled goat anti-rabbit IgG (dilution 1:300)
for single GR labelling; Cy5-labelled goat anti-mouse IgG
(dilution 1:200) and Cy3-labelled goat anti-rabbit IgG
for double labelling (dilution 1:300). All secondary anti-
bodies were from Jackson ImmunoResearch Laboratories,
Lexington, KY. Specimens were finally viewed using a
scanning laser confocal microscope (LS510 META; Carl
Zeiss, Jena, Germany).
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Figure 2. GRs are localised in the extracellular matrix and around satellite cells in adult mouse muscle
fibres
A and B, immunofluorescence confocal microscopy images showing the localisation of GRs in mouse soleus. Note
that the GRs are localised either in the proximity of the surface membrane, where they appear to form a narrow
and discontinuous band (A; white dashed square) and in satellite cells (B, white arrow) or in the fibre interior where
the signal is mostly localised in the I-band. C, D, E and F, immunogold-labelling electron microscopy photographs
showing the localisation of GRs in mouse slow-twitch fibres. Note that the GRs (dark dots, i.e. gold particles) are
abundant in the extracellular matrix (C and enlargement of the dotted box in D) outside the sarcolemma (C, filled
arrow) and in satellite cells (E, open arrow). GRs are also present within the fibre interior almost exclusively at the
I-band, and mostly in the proximity of mitochondria (C, E and F). G, a confocal micrograph showing a muscle
section immunoblotted for both GRs and RYR1s. Note that the GRs (red) are mostly spread throughout the I-band
inside the double green lines generated by the staining of RYR1s, which marks the position of triads. H, graph
representing the fluorescence intensity profile calculated from images obtained from samples co-immunostained
for RYR1s and GRs. Scale bars: A, 5 μm; B, 10 μm; C and E, 5 μm; D and F, 0.5 μm; G and inset, 10 μm and
1 μm, respectively.
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Immunogold labelling electron microscopy

Soleus muscles were fixed for 20 min at room temperature
in a fixative mixture containing 2% paraformaldehyde
and 0.5% glutaraldehyde (in PBS buffer). Small bundles
were permeabilised and blocked as described above. After
incubation with the rabbit monoclonal anti-GR from
Abcam, secondary antibodies conjugated with Nanogold
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Figure 3. GRs bind laminin in a GC-dependent manner
A and B, Western blots showing the expression of GRs in a
slow-twitch muscle (SM; control), in loading buffer used to elute GRs
from CNBr-activated sepharose beads alone (B), or with the beads
cross-linked with laminin 211 (BL) or with integrin α7β1 (BI). In B the
lysate used in the pull-down assay of the sample labelled (BLGC) was
pre-treated with 500 nM BDP for 10 min before it was used in the
assay. Note that only the beads coupled with laminin are able to bind
and pull down the GR and treating the lysate with GC abolishes this
interaction.

particles were applied for 2 h at 4°C (dilution 1:100).
Samples were then post-fixed with 1% glutaraldehyde
(in PBS buffer), at room temperature, and incubated
with reagents to enhance the signal (Goldenhance EM
Formulation; Nanoprobes, Yaphank, NY, USA) for 5 min.
Fibre bundles were finally embedded and sectioned using
standard electron microscopy protocols (Boncompagni
et al. 2009). Ultrathin sections of �40 nm were cut
using a Leica Ultracut R microtome (Leica Microsystems,
Vienna, Austria) with a Diatome diamond knife (Diatome
Ltd, CH-2501 Biel, Switzerland) and double-stained with
uranyl acetate and lead citrate. Sections were viewed
using a FP 505 Morgagni Series 268D electron micro-
scope (FEI Company, Brno, Czech Republic), equipped
with Megaview III digital camera and Soft Imaging System
(Münster, Germany).

As the monoclonal antibody used in the immuno-
cytohistochemistry, immunofluorescence confocal micro-
scopy and immunogold-labelling electron microscopy has
never been tested before for use in these techniques,
the findings were confirmed using a polyclonal rabbit
anti-GR (Abcam ab35780) that is recommended for use
in immunocytochemistry.

Statistical analysis

As mentioned above, all the immunoblotting experiments
were run in duplicate and each experiment was repeated
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Figure 4. The activation of MAPKs by BDP in mammalian skeletal muscle fibres depends on the fibre
type and the duration of the treatment
Western blots showing the effects of treating fast-twitch (F) and slow-twitch (S) muscle fibre bundles with the
Ringer solution only (–) or the Ringer solution plus 250 nM BDP (+), for 5, 30 and 60 min, on the phosphorylation
of p38 MAPK (A), JNK (B) and ERK1&2 (C). Note that the effects of BDP depend on the fibre type and the duration
of the treatment.
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at least twice. To determine the expression of GRs in
the various muscles, the Western blots were digitised and
the intensity of the various protein bands were analysed
using Scion Image from NIH and normalised to that
of the loading control (actin). Statistical analysis of the
data was performed using SigmaPlot 11.2 (Systat Software
Inc., London, UK). The data obtained from each fibre
type under control and from the various experimental
conditions were compared using a two-way ANOVA with
Tukey’s post hoc test and a P < 0.05 was considered to be
statistically significant.

Results

The results in Fig. 1 show the expression and localisation
of GRs in myoblasts (Fig. 1A and B), myotubes (Fig. 1C
and D) and adult muscle fibres (Fig. 1E and F). They
confirm our previous findings in adult skeletal muscle
fibres (Fig. 1E and F) but also show that the receptors
were expressed throughout myogenesis and that their
localisation, within the cell, changed with differentiation.
Thus, they were localised in the cytoplasm in myoblasts
(Fig. 1A and B), in the nucleus in myotubes (Fig. 1C and D)
and around the periphery of the muscle fibres, where they
co-localised with laminin, in adult skeletal muscle fibres

(Fig. 1E and F). Moreover, this shift in the localisation of
GRs was accompanied by an increase in the expression of
laminin (green staining in Fig. 1D and F).

To visualise the precise localisation of the receptors, in
adult mammalian skeletal muscle fibres, a combination
of immunofluorescence confocal microscopy (CM) and
immunogold-labelling electron microscopy was used.
Since we have previously shown that the GR is expressed
mainly in oxidative fibres (Pérez et al. 2013), the soleus
muscle, which contains mostly oxidative fibres (i.e. type I
and IIA fibres), was used in this experiment. The
immunofluorescence CM confirmed some of our pre-
vious findings. For example, it showed that most receptors
were localised in clusters on the fibre surface where they
generated a narrow, but discontinuous band around the
fibres (Fig. 2A; white dashed square). In addition, it
provided new evidence showing that the receptors were
also localised in large quantities in satellite cells (white
arrow, Fig. 2B) and to a lesser extent inside the muscle
fibres where they formed a striated pattern. The immuno-
gold labelling confirmed the CM data (Fig. 2C, D and
E), and clearly demonstrated that the GR was quite
abundant in the extracellular matrix (Fig. 2C) and in
satellite cells (Fig. 2E). Gold particles were also found
inside the fibres, preferentially, but not exclusively, in
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Figure 5. BDP activates MAPKs in mouse skeletal muscle fibres in a fibre-type and duration-dependent
manner
Summary data showing the effects of treating fast-twitch (F) and slow-twitch (S) muscle fibre bundles with the
Ringer solution only (FC; SC) or the Ringer solution plus 250 nM BDP for 5 (FB5; SB5), 30 (FB30; SB30) and 60 min
(FB60; SB60) on the phosphorylation of p38 MAPK (A), the 54 kDa isoform of JNK (B; p54); the 46 kDa isoform
of JNK (C; p46); ERK1 (D; p44) and ERK2 (D; p42). Note that the effects of BDP depend on the fibre type and
the duration of the treatment. ∗P < 0.05 when the data indicated are compared to those of the corresponding
untreated (control) fibres. †P < 0.05 when the data indicated are compared to those of the corresponding fibres
treated with BDP for 5 min. $P < 0.05 when the data indicated are compared to those of the corresponding fibres
from the other treatments.
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the vicinity of mitochondria (Fig. 2F), that we know
are specially localised at I-bands (on both sides of Z
lines) in adult fibres (Boncompagni et al. 2009). To
determine the exact location of the GR signal inside the
fibres, some of the fibres were double stained with an
anti-GR and an antibody (anti-RYR1, 34C) that marks
the position of Ca2+ release units (CRUs), or triads. In
adult fibres, CRUs are specifically placed at the trans-
ition between A- and I-bands, where they form a very
peculiar transverse double-cross striation on either side
of the I-band (Boncompagni et al. 2009a). They also
contain the sarcoplasmic reticulum Ca2+ release channels,
type-1 ryanodine receptors (RYR1s). Double labelling
for GRs and RYR1s (red and green, respectively, in
Fig. 2G) indicated that the GR staining inside the fibres
was exclusively localised at the I-band, flanked on either
side by the two green lines marking the position of the
triads. These findings also suggested that some of the
gold particles that were not at the I-band may have been
non-specific (Fig. 2C and D). As the I-band region of adult
fibres is rich in mitochondria (Boncompagni et al. 2009),
the results in Fig. 2G agree with those in Fig. 2E and F
showing gold particles in the proximity of mitochondria
(the dark and branched organelles).

To determine what tethers the GR in the extracellular
matrix, laminin 2 (merosin, laminin 211) or integrins of
the α7β1 type coupled to cyanogen bromide-activated

sepharose beads were used to pull down the GR from
slow muscle lysates. As the results displayed in Fig. 3A
show, only laminin-coupled beads were able to bind and
pull-down the GR. Moreover, their ability to bind the
receptor depended on the presence or absence of the ligand
(GC). Thus, adding 500 nM BDP to the muscle lysate
significantly reduced the amount of GR pulled down by
the beads (Fig. 3B) suggesting that the GC was able to
dissociate the GR from laminin.

To determine the cellular signalling pathways activated
by physiological concentrations of GCs in adult skeletal
muscle, small muscle fibre bundles isolated from the EDL
(a fast-twitch muscle) and soleus (a slow-twitch muscle)
were treated with 250 nM BDP (a synthetic GC widely
used in the management of asthma). The phosphorylation
(= activation) of JNK, ERK1&2 and p38 MAPK was
then determined. As the results displayed in Figs 4 and
5 show, the effects of BDP on the phosphorylation of
these kinases was complex and depended on the fibre type
and the duration of the treatment. For example, treating
the muscle fibre bundles with BDP for 5 min increased
the phosphorylation of p38 MAPK and ERK1&2 in the
fast-twitch muscle fibres (Figs 4A and C, and 5A, D and E)
and that of JNK in the slow-twitch fibres (Figs 4B, and 5B
and C). Increasing the treatment time to 30 min further
enhanced the activation of p38 MAPK in the fast-twitch
fibres (Figs 4A and 5A) and that of ERK1&2 (Figs 4C, and
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Figure 6. The effects of BDP are mediated through cell surface (membrane) GRs
Western blots showing the effects of pre-treating fast-twitch (F) and slow-twitch (S) muscle fibre bundles with10 μM

mifepristone (MIF, a GR inhibitor; A and B) or a 1:5000 dilution of an anti-GR (C and D), for 10 min, on the pho-
sphorylation of p38 MAPK (A and C) and JNK (B and D). The muscle fibre bundles were then treated with the
compounds for the durations shown below each blot. Note that both mifepristone and the antibody abolish the
BDP-induced increase in the phosphorylation of both MAPKs.
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5D and E). However, it led to the activation of JNK in
both fibre types (see Figs 4B and C, and 5B and C). In
contrast, prolonging the treatment duration to 60 min led
to a slight decrease in the phosphorylation of p38 MAPK
and a marked decline in that of JNK in the fast-twitch fibres
(Fig. 4A and B, and 5A, B and C) but further enhanced
that of JNK in the slow-twitch fibres (Fig. 4B, and 5B and
C). On the other hand, the phosphorylation of ERK1&2
in the fast-twitch fibres remained elevated and was similar
to that seen after the 30 min treatment (Figs 4C, and 5D
and E), whereas in the slow-twitch fibres it was slightly
reduced (Fig. 5D and E).

The findings in Figs 4 and 5 suggested that the
activation of MAPKs by GCs in mammalian skeletal
muscles was non-genomic (i.e. it occurred within 5 min).
However, they did not tell us the receptor/mechanism
underlying this effect. As the mechanisms underlying
the non-genomic effects of GCs are still controversial
(Lipworth, 2000; Stahn & Buttgereit, 2008; Pérez et al.
2013), we investigated whether the activation of the var-
ious MAPKs by BDP were mediated through the GR
or through another receptor/mechanism. As the results
displayed in Fig. 6A and B show, pre-treating the
muscle fibre bundles with 10 μM mifepristone (RU486,
a GR inhibitor), for 10 min, completely abolished or
significantly reduced the 30 min BDP-induced activation
of p38 MAPK and JNK suggesting that they were mediated
by a GR. To determine whether they were mediated
by a cytosolic GR or a membrane GR, the experiment

above was repeated using the rabbit monoclonal anti-GR
used in the immunocytochemistry and Western blotting
experiment. The rationale behind this experiment was that
the antibody was too large to cross the cell membrane and
that it could only bind the GR and inhibit its effects if the
receptor was easily accessible, i.e. located close to the cell
surface. As the results presented in Fig. 6C and D show,
pre-treating the muscle fibre bundles with the antibody for
10 min completely abolished the BDP-induced activation
of JNK and p38 MAPK in both fibre types suggesting that
they were mediated by a GR that was easily accessible to
the antibody (i.e. a cell surface GR). They also suggested
that the antibody bound the GR close to the ligand binding
site or caused a conformational change to the receptor that
inhibited its activation of the MAPK pathway.

The results presented so far suggested that the effects
of BDP on the activation of the MAPK pathway were
non-genomic and were mediated by a GR located close
to the cell surface. They also suggested that it may be
bound to laminin. However, they did not tell us how
the GC was able to activate the MAPKs. In mammalian
skeletal muscle fibres, laminin is localised in the basal
laminar (one of the two layers that form the base-
ment membrane of skeletal muscles) and is thought to
communicate with the rest of the cell through integrins
(mainly integrinα7β1 in skeletal muscle) and dystroglycan
(Gawlik & Durbeej, 2011). This led us to hypothesise that
the GR signalled to the MAPK through the activation
of focal adhesion kinase (FAK) by integrins (see Fig. 9).
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Figure 7. The BDP-induced activation of p38 MAPK is mediated through focal adhesion kinase (FAK)
Western blots showing the effects of pre-treating fast-twitch (F) and slow-twitch (S) muscle fibre bundles with
10 μM FAK inhibitor (FAKi) 14, for 10 min, on the phosphorylation of p38 MAPK (A), JNK (B) and ERK1&2 (C). The
muscle fibre bundles were then treated with the Ringer solution containing BDP alone or BDP plus the inhibitor
as shown below each Western blot for a further 10 min. Note that pre-treating the fibre bundles with FAKi 14
abolishes the BDP-induced increase in the phosphorylation of p38 MAPK (A) and ERK1&2 (C) but not that of JNK
(B).
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To test this hypothesis, we pre-treated another set of
muscle fibre bundles with the FAK specific inhibitor
FAK inhibitor 14. As the results displayed in Figs 7
and 8 show, pre-treatment of the fibre bundles with the
inhibitor completely abolished the GC-induced activation
of p38 MAPK (Figs 7A and 8A) and ERK1 (p44; Figs 7C,
and 8D and E). However, pre-treatment of the muscle
bundles with the inhibitor alone augmented the activation
of JNK (especially the 46 kDa isoform) in the slow
twitch fibres and returned to the level observed in the
BDP-treated fibres when the bundles were treated with
both the inhibitor and the GC (Figs 7B, and 8B and C).

Discussion

Localisation of the GR in mouse skeletal muscle cells

The results we report here show for the first time that GRs
are expressed at all stages of myogenesis. However, their
localisation changes with differentiation (Fig. 1). They also
revealed that, in adult mammalian skeletal muscle fibres,
they were localised mostly in the extracellular matrix
(Fig. 2A and C), in satellite cells (Fig. 2B and D) and
in the I-band region where they were closely associated
with mitochondria. Although a number of studies have

previously suggested that a membrane glucocorticoid
receptor exists in many cell types (Orchinik et al. 1991;
Gametchu, 1993; Bartholome et al. 2004; Pérez et al. 2013),
this is the first study to show that a GR localised close to
the cell membrane exists. However, as our results show, it
is localised in the extracellular matrix and in satellite cells
and not in the plasma membrane as previous studies have
suggested.

Adult mammalian skeletal muscle fibres, unlike most
other cell types, are long, cylindrical, multinucleated cells
whose nuclei are located close to the fibre surface. Their
cytoplasm (= sarcoplasm) is also packed with contractile
proteins that are organised into striations consisting of
highly regular repeats of thin (actin) and thick (myosin)
filaments. Slow-twitch fibres also contain large quantities
of mitochondria that are mostly found at the I-band region
(Boncompagni et al. 2009) and under the sarcolemma
(mostly in the proximity of capillaries). Here, we propose
that this unique structural organisation of mammalian
skeletal muscle fibres is responsible for the distinctive
distribution and localisation of GRs in adult mammalian
skeletal muscle fibres. We also hypothesise that, as myo-
blasts differentiate into myotubes, GRs migrate to the
nucleus and as contractile proteins are laid down, the
nucleus, the GRs and most other cell organelles are
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Figure 8. FAKi 14 inhibits the BDP-induced increase in phosphorylation of p38 MAPK and ERK1 (p44)
Summary data showing the effects of pre-treating fast-twitch (F) and slow-twitch (S) muscle fibre bundles with the
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pushed to the periphery of the muscle fibres. However,
how the GRs get out of the muscle fibres and localise in
the extracellular matrix is uncertain. Also, why and how
the receptor localises in the proximity of mitochondria
is also uncertain and further studies to investigate these
uncertainties are necessary.

Another possibility is that GRs are bound to or are
closely associated with cytoskeletal proteins such as
dystrophins, dystroglycans, utrophins and laminins. In
adult mammalian skeletal muscle fibres, these proteins
are important in the maintenance of cell shape, structure
and function, and are closely associated with the cell
membrane (Gawlik & Durbeej, 2011). Indeed, GCs have
been shown to increase the content of dystrophin and
utrophin in both normal and dystrophic differentiating
human skeletal muscle satellite cells (Sklar et al. 1991;

Pasquini et al. 1995). In the present study, GRs were
also found to be able to bind laminin (Fig. 3). The
reason why GC treatment increases the accumulation
of these proteins is uncertain. Here we postulate that,
in mammalian skeletal muscles, GCs, and hence GRs,
may be important for the synthesis, recruitment and/or
organisation of these extracellular matrix proteins.
Indeed, the present findings show that myoblasts
expressed little or no laminin (Fig. 1A and B) and
laminin only started to appear in myotubes when the GRs
translocated into the nucleus (Fig. 1C and D).

Effects of GCs on the MAPK pathway

Another novel finding in the present study is the
observation that treating mammalian skeletal muscle
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Figure 9. A schematic diagram summarising the mechanism we propose underlies the non-genomic
effects of BDP in mammalian muscle fibres
Our hypothesis is that some of the GRs (‘GCR’ in the figure) are localised in the basement membrane where they are
bound by laminin and that their stimulation by GCs leads to the activation of either integrins (in fast-twitch fibres)
or dystroglycan (in slow-twitch fibres). We also think that integrins recruit and activate FAK leading eventually to
the phosphorylation of p38 MAPK and ERK1&2, whereas dystroglycans act lower down the pathway and lead to
the activation of JNK. We also think that FAK has inhibitory effects on the dystroglycan pathway.
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fibre bundles with physiological concentrations of BDP
increases the phosphorylation/activation of ERK1&2, JNK
and p38 MAPK in a fibre type- and duration-dependent
manner (Figs 4 and 5). MAPKs are also activated in brain
tissues of rats subjected to short periods of psychological
stress (Gutièrrez-Mecinas et al. 2011) as well as in
hippocampal and PC12 (rat phaeochromocytoma) cells
treated with low doses of corticosterone (Li et al. 2001;
Qi et al. 2005). However, treatment of most other cell
types, including HeLa cells, vascular endothelial cells,
macrophages, mast cells and monocytes, with low doses
of GCs has been shown to have the opposite effect, i.e. it
decreases MAPK activation (Franklin et al. 1997; Caelles
et al. 1997; González et al. 2000; Kassel et al. 2001; Imasato
et al. 2002; Lasa et al. 2002; Bruna et al. 2003). Together
these findings suggest that the effects of GCs on the MAPK
pathway depend on the tissue that the cells are derived
from and the physiological role of stress and MAPKs in that
tissue. For example, in tissues such as the brain and skeletal
muscle that are directly involved in the stress response
and where activation of MAPKs by short term stress is
beneficial (Gutièrrez et al. 2011; Pérez et al. 2013; present
study), physiological concentrations of GCs increase the
activation of MAPKs. Conversely, in tissues such as the
immune system where activation of MAPKs by stress is
detrimental to the long term survival of the organism,
GCs inhibit their activation (Franklin et al. 1997; Caelles
et al. 1997; González et al. 2000; Bruna et al. 2003).

Physiological functions of GCs

In mammalian skeletal muscle cells, all three MAPKs
(p38 MAPK, JNK and ERK) have been implicated in the
regulation of myogenesis and the expression of skeletal
muscle-specific genes (Bennett & Tonks, 1997; Cuenda
et al. 1999; Weston et al. 2003). Additionally, intense
exercise (Widegren et al. 2000) and marathon running (Yu
et al. 2001), both of which lead to fibre type switch, have
been shown to induce the release of GCs and the activation
of p38 and ERK1&2 in the vastus lateralis portion of
the quadriceps femoris muscle (note that the vastus
lateralis consists mostly of fast-twitch muscle fibres).
p38 MAPKs have also been shown to act as molecular
switches in the activation of quiescent satellite cells (Jones
et al. 2005). Myogenesis is important in skeletal muscle
development, whereas satellite cell activation is essential
for skeletal muscle repair/regeneration. The fact that GC
treatment increases the activation of all three MAPKs in
mouse skeletal muscle fibres (present study) and strenuous
exercise activates p38 and ERK1&2 in fast-twitch fibres
suggests that GCs may play an important role in both myo-
genesis and skeletal muscle repair/regeneration. However,
the exact role of GCs in myogenesis and satellite cell

activation is uncertain and further studies to confirm this
are necessary.

The GC-induced activation of ERK1&2 we report
here may also be responsible for the GC-induced
increase in maximum isometric force (Po) in slow-twitch
muscle fibres previously reported by Pérez and her
colleagues (Pérez et al. 2013). Here we speculate that
the GC-induced activation of ERK1&2 leads to the
phosphorylation of the regulatory myosin light chain
(RMLC) and the potentiation of Po as previously shown
in Hamdi & Mutungi (2010). Fast-twitch and slow-twitch
muscle fibres express different isoforms of RMLCs that
are phosphorylated at low stimulation frequencies in
fast-twitch fibres and at high frequencies in slow-twitch
fibres (Moor & Stull, 1984). The phosphorylation of
RMLCs in fast-twitch fibres increases sub-maximal force
(including twitch contraction), whereas their function in
slow-twitch muscles is unknown as their phosphorylation
does not seem to affect twitch amplitude (Moore & Stull,
1984). Here we speculate that the phosphorylation of
RMLCs in slow-twitch fibres leads to the potentiation of
maximum isometric force. However, the exact mechanism
underlying the GC-induced increase in force is uncertain
and further studies to confirm this are needed.

Mechanism underlying the effects of GCs in skeletal
muscle

As mentioned above, in most cells, GCs inhibit the
MAPK pathway. They do this either by up-regulat-
ing the synthesis and activation of proteins such as
glucocorticoid-induced-leucine zipper, MAPK phospha-
tase-1 and annexin-1 (González et al. 2000; Lasa et al.
2002) or by directly interacting with components of
the MAPK pathway (Caelles et al. 1997; Bruna, 2003).
The results reported here suggest that the effects of
GCs in mammalian skeletal muscle fibres are mediated
through GRs localised close to the cell surface (Fig. 6)
and that their stimulation leads to the activation of focal
adhesion kinase (FAK, Fig. 9). Here we hypothesise that
in mammalian skeletal muscle fibres, membrane GRs are
bound to laminin and that their stimulation by GCs
leads to a conformational change in laminin and the
activation of FAK by integrins (Fig. 9). In mammalian
skeletal muscles, laminin binds to and signals through
both integrin α7β1 and dystroglycan (Gawlik & Durbeej,
2011). Therefore, we think that the conformational change
in laminin activates integrin α7β1 in fast-twitch muscle
fibres and dystroglycan in slow-twitch fibres (Fig. 9). We
also think that integrins recruit and activate FAK leading
eventually to the phosphorylation of p38 MAPK and
ERK1&2, whereas dystroglycans act slightly lower down
the pathway and their stimulation leads to the activation
of JNK. We also think that FAK has inhibitory effects on
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the dystroglycan pathway (Fig. 9). However, the exact
mechanism mediating the GC-induced increase in the
activation of MAPKs in mammalian skeletal muscle fibres
is uncertain and further studies to determine this are
necessary.
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Caelles C, Lafarga M & Muñoz A (2000). Glucocorticoids
antagonize AP-1 by inhibiting the
activation/phosphorylation of JNK without affecting its
subcellular distribution. J Cell Biol 150, 1199–1207.
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