
Maximizing the Yield of Small Samples in Prevention Research: 
A Review of General Strategies and Best Practices

Cameron R. Hopkin, Rick H. Hoyle, and Nisha C. Gottfredson
Duke University

Abstract

The goal of this manuscript is describe strategies for maximizing the yield of data from small 

samples in prevention research. We begin by discussing what “small” means as a description of 

sample size in prevention research. We then present a series of practical strategies for getting the 

most out of data when sample size is small and constrained. Our focus is the prototypic between-

group test for intervention effects; however, we touch on the circumstance in which intervention 

effects are qualified by one or more moderators. We conclude by highlighting the potential 

usefulness of graphical methods when sample size is too small for inferential statistical methods.
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Ideally, every prevention study would produce data from a sufficiently large sample that any 

research question of interest to the investigators could be informed by results from state-of-

the-science analyses without concerns about meeting statistical assumptions or making 

errors of inference. In reality, many prevention studies, often for reasons beyond the control 

of the investigators (e.g., small, culturally distinct target population), result in data from 

samples which, because of their small size, are not suitable for some analytic methods. As a 

result, important research questions that could be addressed if the sample size were larger 

must be amended or abandoned altogether. The aim of this manuscript is to present a 

summary of general strategies and best practices within the existing literature to guide 

prevention researchers in maximizing the yield of analyses in prevention research when 

samples are relatively small.

When Is a Sample Small?

What do we mean when we describe a sample as “small”? Is an N of 50 small? How about 

100? The answer, of course, is that it depends. An N of 1 is adequate for some study designs 

(Kratochwill & Levin, 2010), whereas an N of 200 or more may be considered a minimum 

for others (Hoyle & Gottfredson, in press; see Hoyle, 1999, for a fuller account). A related 

(and important) question is, how small is too small? Certainly samples that are small enough 
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that otherwise acceptable data from a single case can have disproportionate influence on 

parameter estimates and tests given the analytic method are too small (Fok et al., in press); 

however, samples that are large enough to minimize concerns about such influence may, for 

some analyses, still be considered small. In this manuscript, we use “small” to describe 

samples that are near the lower bound of the size required for satisfactory performance 

(including relative insensitivity to acceptable data from individual cases) of the particular 

statistical model chosen to address the questions that motivated the research. A sample is 

“too small” if its size falls below this lower bound. The evaluation of satisfactory 

performance can involve multiple dimensions. The most frequently cited dimension is 

statistical power, the likelihood of detecting an effect of a certain size if it is observed.1 To 

that end, this manuscript focuses on coverage of strategies for maximizing statistical power 

when N is constrained. The results of prevention studies may have value beyond revealing a 

statistically significant effect (see, e.g., Bacchetti, Deeks, & McCune, 2011); thus, we offer 

suggestions that go beyond maximization of statistical power to touch on strategies for 

extracting value from a study when statistical power is inadequate for hypothesis testing 

(e.g., estimating effect sizes for planning future studies or inclusion in meta-analyses). Most 

of these strategies are recommended regardless of the adequacy of the sample size for a 

study given the design and research questions, but they are particularly useful for studies in 

which the available sample is (or will be) near the lower bound of the size required of the 

statistical model most appropriate to the research questions.

Practical Strategies for Contending with Small Samples

Hansen and Collins (1994) proposed strategies for increasing the statistical power of a study 

without increasing the sample size. In reality, two of their proposed strategies refer 

specifically to strategies for maximizing sample size. This seeming contradiction reflects a 

distinction between the number of cases (i.e., people, families, schools) sampled—the initial 

sample—and the number of cases from which data are analyzed—the effective sample. 

Although it is nearly always the case that at least some data are provided by all cases in the 

initial sample, it is frequently the case that some portion of the data are not provided by all 

cases, resulting in an effective sample with fewer cases than the study was expected to 

produce. Any strategy that can reduce the number of missing cases or make use of the 

incomplete information provided by some cases without the introduction of bias into the 

parameter estimates and standard errors will yield an increase in statistical power without 

additional sampling.

Attrition is commonplace in prevention trials, in which post-intervention data may be 

collected a year or more after individuals (or families, or schools) were initially assessed. In 

a meta-analysis of 85 longitudinal substance-abuse prevention studies, Hansen, Tobler, and 

Graham (1990) found that attrition ranged from an average of 19% for studies with three 

month follow-up to 34% for those with a three year follow-up. Attrition is particularly 

1Our focus on statistical power assumes a traditional null hypothesis statistical testing (NHST) approach to data analysis. We 
recognize the shortcomings of this approach and its frequent misuse; however, because it remains the primary approach to the analysis 
of data from prevention trials, it is the approach on which our analysis and recommendations focus. For readers interested in concerns 
about NHST and potential alternatives, Nickerson (2000) and Harlow, Mulaik, and Steiger (1997) provide balanced, largely 
nontechnical presentations.
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worrisome because, in addition to the loss of cases and, consequently, statistical power, bias 

may be introduced into the parameter estimates (e.g., means, correlation coefficients), 

raising questions about the meaningfulness of between-group comparisons. Hansen et al. 

found that the duration between waves accounted for little of the variance in proportion of 

attrition, pointing to the differential reactions to assessments and treatments as likely causes. 

A detailed analysis of attrition in a single study of inner-city middle school students in an 

alcohol, tobacco, and other drug prevention study found that students who dropped out prior 

to the eight-month follow-up were more likely than those who completed the study to 

belong to a family that had relocated between baseline and follow-up and reported higher 

levels of family conflict, less parental supervision, and greater perceived risk of alcohol and 

drug use (Zand, Thomson, Dugan, Braun, Holterman-Hommes, & Hunter, 2006). Despite 

impressive attempts to retain participants, the effective sample size of 104 was both 

significantly lower than the initial sample size of 127 and of a size that would be 

questionable for all but the simplest statistical models. Yet the efforts at retention likely 

made the difference between a study for which simple analyses could be conducted with 

adequate power and one for which power would be unacceptably low for even the simplest 

analyses. Investments in retention of participants narrow the gap between initial and 

effective sample sizes and, in so doing, improve statistical power and reduce bias without 

additional sampling.

It is possible for a longitudinal study to retain all members of the initial sample for the 

duration of the study yet nonetheless produce incomplete data. In the face of missing data 

due either to attrition or nonresponse, case-wise deletion discards valid data, thereby 

reducing power and biasing estimates and tests. Other strategies such as pairwise deletion (if 

correlations or covariances are to be analyzed) and replacement of missing data with 

imputed values retains data provided by research participants but introduces biases into 

estimates and tests. Fortunately, modern missing data methods allow researchers to take full 

advantage of the information provided by research participants without biasing estimates 

and tests by imputing values for missing data and treating them as legitimate values (e.g., 

Enders, 2010; Graham, 2009; Schafer, 1997).2 In many cases, these methods can reduce the 

gap between the initial and effective sample sizes to zero, avoiding the loss in statistical 

power and bias in estimates and tests that result from traditional approaches to handling 

missing data such as case-wise deletion and mean substitution.

The remaining strategies suggested by Hansen and Collins (1994) concern increasing the 

size of the observed effect (i.e., difference between groups). Given the standard equation for 

computing effect size, which is a ratio of the effect of interest (e.g., difference between 

means, regression coefficient) and the population variance (expressed as standard deviation), 

there are two categories of approaches that, given a fixed sample size, would increase 

statistical power by increasing effect size: (1) increase the effect of interest, (2) decrease the 

population variance. We summarize each in turn.

Although effects can be reflected in a number of statistics, the focus of many, if not most, 

prevention studies is the difference between means; thus, we focus on practical measures for 

2See von Hippel (2013) for potential problems and solutions for use of these methods with small samples.
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increasing the difference between group means. To the extent that the intervention or 

manipulation can be modified by the researcher, it should be designed to target the primary 

mechanisms that would give rise to group differences. For example, if a manipulation is 

designed to increase resistance to peer influence and the exercise of such resistance requires 

self-efficacy, then the intervention or manipulation should focus squarely on the 

development of self-efficacy. The use of this commonsense strategy requires a clear 

understanding of the cognitive, affective, and motivational mechanisms that underlie 

prevention-relevant behaviors and the development of intervention components designed to 

change those mechanisms. The best designed intervention will not be effective if research 

participants do not receive full exposure to it. As such, an additional means of increasing the 

difference between groups given a well-grounded intervention is to invest in measures to 

ensure that the intervention is delivered with integrity (Dumas, Lynch, Laughlin, Phillips 

Smith, & Prinz, 2001). The intervention also should be delivered for a length of time 

necessary to change the targeted mechanisms and, thereby, produce behavior change. 

Relatedly, effects of the intervention should be assessed at a point in time when the effect is 

likely to be maximized. These considerations assume an understanding of how the 

intervention works in terms of exposure and timing (see Collins et al., 2011, for other 

considerations and strategies).

If sample size cannot be increased and the effect of interest is at its maximum, another 

means of increasing statistical power is to reduce variance other than variance attributable to 

the intervention or manipulation. Such variance arises from two sources: sample 

heterogeneity and unreliability of measurement (Hansen & Collins, 1994). The 

consideration of sample heterogeneity is one of balance—maintaining the representativeness 

of the sample while minimizing within-group variance that contributes to inflated test 

statistics. Although within-group variance can be reduced by including additional 

independent variables (e.g., ethnicity, gender), doing so leads to smaller Ns per group and 

reduced power. An alternative, discussed below, is to account for the variance by including 

covariates in the analyses. Additional variance that decreases power by lowering effect sizes 

may arise from unreliability of measurement. For a given effect size and degree of true 

sample heterogeneity, an increase in reliability of measurement reduces variance not 

attributable to the intervention or manipulation and, in so doing, increases the likelihood of 

detecting an effect by reducing the confidence interval around estimates of means.

One simple way to reduce uncontrolled heterogeneity is to use within-subjects designs 

whenever possible. This is because for every participant, the score on the outcome variable 

can be attributed to three sources: 1) the effect of the intervention or predictor of theoretical 

interest, 2) measurement error due to the imperfection of any given measure’s ability to tap 

the construct of interest, and 3) that person’s extraneous personality and context variables 

that were not measured yet influence the score. In a within-subjects design, the same person 

participates in all possible conditions so that the third source of variability, which is 

potentially the largest of the three, can be eliminated. Interrupted time-series design with 

multiple baselines (described by Hawkins, Sanson-Fisher, Shakeshaft, D’Este, & Green, 

2007) are a particularly efficacious type of within-subjects design for testing intervention 

effects within individuals or communities.
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Despite their relative superiority in detecting effects compared to equivalent between-

subjects designs, designs in which participants are exposed to all conditions are not always 

feasible or desirable. Powerful interventions, for instance, may lead to carryover effects; if a 

participant does not return to a reasonable baseline on the construct in question within the 

desired timeframe, his or her data in other conditions will be affected by the preceding 

intervention condition. When within-subjects designs are not appropriate, the power and 

precision of estimates in between-subjects designs may be increased by the inclusion of 

covariates that measure person-centered variables or account for individual differences in 

response to treatment. Raudenbush (1997) provides a detailed explanation of why including 

explanatory covariates may have a large impact on statistical power. Conceptually, it is clear 

that the more noise in the outcome variable that is explained by covariates, the easier it will 

be to detect meaningful predictor effects. In a slightly different context, Collins, Schafer, 

and Kam (2001) showed that using an “inclusive strategy” (i.e., including as many 

predictors as possible) decreased bias and increased efficiency of maximum likelihood 

estimates. Although Collins et al. (2001) were focusing on estimation in the presence of 

missing data, their work is relevant here. This is because random effects may be understood 

to be “missing” variables that must be estimated from all available information. Thus, 

inclusion of predictors may be particularly important for recovering variance component 

estimates.

When multiple predictors are tested simultaneously in an overall test of model significance, 

power is influenced by the number of predictors in the model (Cohen et al., 2003). Yet, it is 

a misconception that more covariates lead to lower power to detect an effect for a single 

predictor of interest. Rather, as shown by Raudenbush (1997), it is desirable to include 

covariates that explain a high degree of residual variance in the outcome when no inference 

is made regarding the effects of such covariates. Doing this essentially increases the 

effective reliability of the outcome variable. On the other hand, if an analyst makes multiple 

comparisons, then they should be compelled to make the appropriate corrections for them 

(e.g., Wang & Ware, 2013). Thus, it is wise for analysts with small samples to consider 

carefully which hypotheses they want most to test, and refrain from testing hypotheses of 

secondary importance.3

The flip side of minimizing error variance is maximizing the construct-relevant variance of 

measured variables. If the sample size is non-negotiable and small, a researcher might 

consider collecting a non-random sample in which individuals with high and low values of 

the independent variable are selected (Cohen, Cohen, West, & Aiken, 2003). This approach 

works because it maximizes the variability of the independent variable, thereby increasing 

the chance of detecting a significant effect of variation in the independent variable on 

variation in the dependent variable. Although such non-random sampling is not best 

practice, as it will tend to inflate the effect size as well as jeopardize the external validity of 

the study, an extremely small sample size might justify it so long as the sampling method is 

explicitly revealed and justified in the research report. This approach is used often in studies 

that seek to describe age-related effects on an outcome variable, for instance by sampling 

3An informative discussion of the use of covariates to increase statistical power is provided by Dennis, Francis, Cirino, Schachar, 
Barnes, & Fletcher (2009).
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from younger and older participants (with few in the middle). Similarly, a prevention 

scientist might sample very low-risk and very high-risk individuals to test the differential 

effect of an intervention on these groups, with the assumption that medium-risk individuals 

would fall in the middle.

Detecting Interaction Effects

Researchers working with small samples should think particularly carefully about testing 

interaction effects. In prevention research, intervention effects may only be effective for a 

range of individuals, or they may only be effective under certain conditions (Wang & Ware, 

2013). This type of moderated effect is tested as a statistical interaction. In spite of their 

intrigue, interaction effects are doubly plagued by having both a relatively high Type I error 

rate compared to additive main effects (particularly when predictors contain measurement 

error; Embretson, 1996; Kang & Waller, 2005), as well as lower power than the main effects 

(Brown et al., 2011). For these reasons, tests of interaction effects when sample size is small 

should be approached thoughtfully. Collins, Dziak, and Li (2009) showed that reduced 

factorial designs are preferable to complete factorial designs. In other words, researchers 

should design studies that include only the experimental contrasts that are of specific 

theoretical interest; statistical models should conform to these specific hypotheses. 

Fractional factorial designs such as this come at the expense of being able to fully 

disentangle all possible interaction effects because not all variables are fully “crossed,” but 

when multiple manipulations are planned and many of the higher-order interactions are 

assumed to be negligible in magnitude and of no theoretical interest, such designs can 

greatly reduce either the number of conditions or, more importantly, the number of 

participants required to achieve acceptable power. The target sample size should be dictated 

by the lowest number that is necessary for testing hypothesized statistical interactions with 

adequate power. A more complete discussion of strategies for detecting moderated effects 

can be found in a special issue of Prevention Science on the topic (Supplee, Kelly, 

MacKinnon & Barofsky, 2013).

The husbanding of research resources toward the variables and effects of greatest interest 

demonstrated in the fractional factorial design form the core of the multiphase optimization 

strategy (Collins et al., 2011), an overarching study design paradigm drawn primarily from 

engineering science in which possible intervention components are treated like candidates to 

be tested individually via small, focused trials that include as few comparisons as possible to 

test their efficacy before inclusion in larger intervention studies. Although many researchers 

prefer to think of their research in a more serial, independent fashion, approaching 

prevention studies in this programmatic fashion allows the careful research team to build a 

database of effective intervention components and be thriftier in the use of both research 

dollars and–relevant to our focus here–the number of participants required.

Even in the undesirable eventuality that a researcher’s data from an individual study is 

hopelessly underpowered for traditional analyses, all is not lost. Increasingly, researchers are 

moving toward a model of collaborative science through meta-analysis and integrative data 

analysis across multiple independent studies (Brown et al., 2011; Curran & Hussong, 2009). 

This approach has gained traction particularly in the field of genetics because it would be 
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impossible to detect miniscule effects of single genetic markers without pooling resources 

across multiple studies. In the event of an unworkably small sample size or otherwise 

unpublishable results, it is advisable to record in an easily-retrievable and readily-interpreted 

format certain data for easy inclusion in a future meta-analysis or integrative data analysis: 

sample size, primary variables involved, relevant measures of effect size for all outcomes, 

and confidence intervals for group means (indeed, consistent reporting of effect sizes and 

confidence intervals should be standard practice regardless of the “publishability” of the 

results). Such a post-mortem procedure is not time-intensive and can conceivably change a 

“wasted” study into a stepping stone for future findings. This practice can and should be 

encouraged in the field of prevention science, not least because doing so allows for an 

enhanced ability to detect moderated effects of prevention interventions (Brown et al., 

2011). Because different studies invariably assess different subgroups of the population, 

there is more heterogeneity across studies than within (e.g., with respect to age, ethnicity, 

geography, or culture). If researchers take care to measure these characteristics, then this 

heterogeneity can be leveraged to test for moderation using meta-analytic methods.

When a Sample is too Small for Hypothesis Testing

Ideally, prevention scientists would always begin working with their data using data 

visualization methods (e.g., Friendly, 1995; Young & Bann, 1996). These methods can be 

particularly useful when sample size is too small for parameter estimation or hypothesis 

testing. Data visualization does not offer many options for increasing power, per se, but it 

may serve as an identifying end-point for situations in which statistical inference is not a 

reasonable possibility. When only a handful of cases are available, analysts should plot the 

within-group association between the predictor variable(s) of interest and the outcome 

variable. Plots should be used for in-depth data description and not for generalization to the 

population. Although this may seem to be the defeatist’s option, it is in fact eminently 

practical in that the data are being employed to the maximum extent possible and serving as 

a springboard for more effective data collection instead of merely lining a file drawer in the 

back of an investigator’s office. As an example, Carrig, Wirth, and Curran (2004) provide an 

easy-to-use SAS macro for visualizing person-specific growth trajectories with repeated 

measures data. A similar approach should be followed with data from individuals within 

groups.4

Summary and Conclusions

Many prevention researchers live with the unfortunate reality that limited availability of 

financial resources or limited access to, or size of, the population of interest results in 

samples that are smaller than they ideally would be given the requirements of the analytic 

strategy best suited to the research questions. We have suggested practical ways for 

prevention scientists to optimize statistical power and make good use of data when statistical 

power is inadequate for hypothesis testing using inferential statistics. At the same time, we 

have urged caution in generalizing too far beyond what is appropriate given study 

4Information about approaches to data visualization can be found in Young (1996) and a collection of papers edited by Post, Nielson, 
and Bonneau (2003).
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constraints. We would also caution that, when the costs of obtaining even a small sample are 

high (e.g., personnel costs, participant burden), the benefits might not be sufficient to 

warrant those costs. If, however, the costs associated with a study likely to yield a small 

sample can be justified, then the use of strategies we have described will serve to maximize 

the value of the study. Although the issues, strategies, and cautions vary from one study to 

the next, we offer these general suggestions for working with data from small samples.

Compensate for a small sample size by optimizing study features that you can control

There is more to power than just sample size. When planning studies, focus on study 

features that you can control, such as reliability of measurement. Measure as many 

theoretically-strong indicators as possible. Maximize the predictive power of your model by 

including covariates that are strongly related to the outcome of interest, and eliminate 

covariates that have no explanatory power. Finally, try to avoid censoring important 

variability in your outcome measures through coarse categorization (e.g., median splits), a 

practice that greatly reduces power.

Consider your research questions carefully; optimize resource allocation to maximize 
inference for the most important parameters

When dealing with complex models, not all model parameters are estimated with equal 

precision. Consider which parameters are trustworthy and focus on interpreting these, 

without placing much emphasis on the parameters that are not trustworthy. When interest 

centers on the effects of a particular predictor, aim to maximize variability across the full 

range of that predictor’s values. This can be achieved by over-sampling on the extreme ends 

of the variable distribution, for instance.

Visualize your data and use descriptive statistics liberally

With very small samples, it is usually best to limit statistical inference and to focus instead 

on describing the data with descriptive statistics and data visualization. Although the results 

of such analyses are not as persuasive as more rigorous analyses in which all relevant 

processes are considered simultaneously, they can move a research program forward, laying 

the groundwork for sharper focus and more efficient investment of resources in subsequent 

studies.

In short, the anticipation of a small sample for a prevention study should prompt an intense 

focus on other features of the study. These range from the choice of measures (including the 

number) to the inclusion of potentially useful covariates to the adjustment of research 

questions given the analytic options for which the sample size is appropriate. Optimizing 

these features of a study may make the difference between an acceptable and an ill-advised 

treatment of data produced by the study.
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