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Abstract

Cognitive control allows us to follow abstract rules in order to choose appropriate responses given 

our desired outcomes. Cognitive control is often conceptualized as a hierarchical decision process, 

wherein decisions made at higher, more abstract levels of control asymmetrically influence lower-

level decisions. These influences could evolve sequentially across multiple levels of a hierarchical 

decision, consistent with much prior evidence for central bottlenecks and seriality in decision-

making processes. However, here, we show that multiple levels of hierarchical cognitive control 

are processed primarily in parallel. Human participants selected responses to stimuli using a 

complex, multiply contingent (third order) rule structure. A response deadline procedure allowed 

assessment of the accuracy and timing of decisions made at each level of the hierarchy. In contrast 

to a serial decision process, error rates across levels of the decision mostly declined 

simultaneously and at identical rates, with only a slight tendency to complete the highest level 

decision first. Simulations with a biologically plausible neural network model demonstrate how 

such parallel processing could emerge from a previously developed hierarchically nested 

frontostriatal architecture. Our results support a parallel processing model of cognitive control, in 

which uncertainty on multiple levels of a decision is reduced simultaneously.

Keywords

serial vs. parallel; executive function; computational model; prefrontal cortex; basal ganglia

1. Introduction

In complex environments, adaptive behavior can involve rule-like dependencies on 

numerous conditions. Behavior in such domains relies on a capacity known as cognitive 
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control – i.e., the use of knowledge, perception, and goals to guide action selection (Badre & 

Wagner, 2004; Bunge, 2004; Miller & Cohen, 2001; O'Reilly & Frank, 2006). Cognitive 

control is often conceptualized as having a hierarchical architecture, such that the way that 

contexts are interpreted in order to select a specific action can be contingent on more 

abstract, superordinate policies or goals (e.g., Badre & D'Esposito, 2007; Koechlin, Ody, & 

Kouneiher, 2003).

The game of chess provides a colloquial example of this hierarchical dynamic. Moving a 

chess piece involves a decision that is, at its simplest level, a motor process that displaces an 

object. However, the choice of move also derives from more abstract considerations, such as 

the rules of the game, the state of the board, the player's prior experiences, and a prevailing 

strategy. Similar hierarchical abstractions likely constrain many real world behaviors.

Traditionally, action selection on the basis of rules has been conceptualized as just such a 

hierarchical, multi-step process, with early perceptual stages giving way to a stimulus-to-

response (S-R) mapping stage, which then determines the final motor action that is executed 

in a terminal response stage (Biederman, 1972; Braverman, Berger, & Meiran, 2014; 

Rubinstein, Meyer, & Evans, 2001). The traversal of more abstract rules (rules that select 

other rules) would presumably transpire during the S-R stage of this classical single-channel 

model. However it remains unknown whether the addition of these higher-order 

contingencies results in the addition of new S-R stages (with new bottlenecks), 

corresponding to each rule, or rather is accomplished in parallel within a single S-R mapping 

stage.

In the laboratory, hierarchical control is often studied using rules with multiple levels of 

contingency. Decision trees, in which some rules are contingent on others, create multiple 

orders of policy abstraction. Policy is the mapping between a state, an action, and an 

anticipated outcome, and policy abstraction is the extent to which a rule determines an 

action. A rule that maps a stimulus directly to a response is a first-order policy (e.g. if the 

shape is a square, press 1). A second-order policy is a more abstract rule that maps a 

stimulus to a first-order rule (e.g. if the color is red, use the shape rules), and so forth.

In recent years, cognitive neuroscience has leveraged this logic to provide new insights into 

the processing architecture that might support hierarchical decisions. Most notably, there has 

been evidence that the functional organization of frontal cortex may support hierarchical 

control by allowing a physical separation between decisions at each level of contingency, as 

a function of rule abstraction. A range of studies suggests that frontal cortical areas that are 

more rostral process the most abstract aspects of decision-making (Badre & D'Esposito, 

2007; Badre, Hoffman, Cooney, & D'Esposito, 2009; Christoff & Gabrieli, 2000; Christoff, 

Keramatian, Gordon, Smith, & Mädler, 2009; Koechlin et al., 2003; Koechlin & 

Summerfield, 2007; O'Reilly, Noelle, Braver, & Cohen, 2002).

These data have been cited in support of models of hierarchical cognitive control wherein 

multi-level rules are executed via spatially separate but interacting neural circuits. For 

example, the cascade model of Koechlin et al. (2003) conceptualizes hierarchical control as 

emerging from a series of uncertainty-reducing steps progressing from rostral to caudal 
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frontal cortex. Though these steps do not map directly onto different levels of contingency, 

uncertainty reduction is serial from rostral to caudal frontal cortex. Evidence of this priority 

of processing was supported by directional interactions from front to back within frontal 

cortex, as estimated through fMRI effective connectivity analysis.

A separate model from Frank and Badre (2012) conceptualizes hierarchical control as 

arising from multiple interacting frontostriatal loops. In this model, separate frontal areas 

support different levels of a decision, with striatally-mediated “gates” acting as the interface 

for this communication (Badre & Frank, 2012; Collins & Frank, 2013; Frank & Badre, 

2012; see also Kriete, Noelle, Cohen, & O'Reilly, 2013). Information related to higher-level 

decisions is maintained in rostral frontal cortex, and it influences more caudal sectors of 

prefrontal cortex via corticostriatal interactions. This allows for a gating dynamic by which 

more caudal areas of frontal cortex can be selectively modulated given the more abstract 

constraints represented rostrally.

Importantly, however, models like the ones noted above raise new questions about the 

temporal dynamics of hierarchical decision-making that have received comparatively scant 

attention. In particular, it is unclear whether the physical separation of circuits processing 

different levels of abstraction also requires serial decision-making during hierarchical 

control. That is, it is unknown whether lower-level decisions start only when higher-level 

decisions have completed (a serial model), or whether different levels of the decision are 

processed simultaneously, with higher levels continuously constraining lower levels (a 

parallel model).

Both systems could be adaptive. Given a large enough capacity, parallel processing can 

result in time savings, as progress is made on all decisions simultaneously. However, in such 

a system, energy may be inefficiently spent making decisions about features that will 

ultimately prove irrelevant to response selection. Alternatively, a serial model may be less 

time-efficient and more energy-efficient: as decisions at higher levels are made, the number 

of decisions that must be considered at lower levels is systematically reduced (Figure 1). 

Thus, decisions among higher-level processors reduce demands on capacity-limited lower-

level processors, an adaptive feature of hierarchical architectures.

Though the parallel versus serial nature of choice during multiply contingent hierarchical 

rules has not been investigated systematically, evidence for at least some degree of seriality 

comes from the rich literature on the “central processing bottleneck” during response 

selection (Dux, Ivanoff, Asplund, & Marois, 2006; Gottsdanker & Stelmach, 1971; Levy, 

Pashler, & Boer, 2006; Pashler, 1994; Welford, 1952). These studies have suggested that 

processing of stimulus-response mappings is highly capacity limited and must occur one at a 

time, enforcing serial processing when multiple such mappings must be processed (though 

see Meyer and Kieras, 1997).

However, many of the paradigms that support these inferences (including the psychological 

refractory period paradigm) involve asynchronous presentation of stimuli and two 

independent tasks. This is in contrast to the multiple levels of contingency required by 

hierarchical control problems, wherein decisions are interdependent on one another in a 
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ranked way. This aspect of prior work raises the possibility that more parallel cognitive 

processing might be observed when the structure of the task better affords it: for example, 

when stimuli are presented simultaneously and pertain to the same rule structure. Indeed, 

Schumacher et al. (2001) demonstrated that the psychological refractory period disappears 

when the two independent tasks are presented simultaneously.

The study of task switching – when cues are used to select between two or more stimulus 

dimensions and associated rule sets for behavior – has provided evidence that people can 

process decisions at “task” (usually 2nd order) and “response” (1st order) levels separately. 

For example, evidence of advance preparation effects (e.g., endogenous versus exogenous 

switch costs; Rogers & Monsell, 1995; Monsell, 2003; De Jong, 2000) and within-trial 

preparation effects (Braverman & Meiran, 2010; Goldfarb & Henik, 2007) indicate that 

people can make task-level decisions separately in time from response-level decisions. 

Similarly, there is evidence for putatively higher order switching effects that are 

behaviorally separable from a local task-level switch, such as with mixing costs (Mayr, 

2001) and task sequence-level costs (Schneider & Logan, 2006). Moreover, the study of 

multi-level switching has shown asymmetries wherein behavior costs incurred by higher 

order switches are inherited by lower order decisions but not vice versa (Kleinsorge & 

Heuer, 1999). This type of asymmetry is consistent with the hypothesis that participants 

represent the task as a hierarchical structure. Thus, the study of task switching provides 

evidence consistent with the hypothesis that people structure tasks in terms of separate 

multi-level decisions and can order them as hierarchical structures.

Nevertheless, these studies have provided few insights into the temporal dynamics of these 

decisions. The observation of preparation effects might be suggestive of serial processing, 

but most studies that demonstrate these effects do so in tasks where cues and other stimulus 

elements are themselves presented serially. As such, these studies leave open whether 

people would separate these decision stages in time when they have the opportunity to 

process everything in parallel.

Neuroscience data have similarly contributed little to the question of temporal dynamics 

during hierarchical control. However, a recent EEG study supported a serial model of 

decision-making (Braverman et al., 2014). The authors manipulated task conflict (an S-R 

stage manipulation) and response conflict (a response stage manipulation) independently in 

their paradigm, which involved simultaneous presentation of all aspects of the stimulus. 

Examining the timing of ERPs for high-conflict vs. low-conflict trials, they found that the 

task conflict effect was evident significantly earlier than the response conflict effect. They 

suggested that this showed that the task-processing, i.e. the S-R stage, was temporally 

distinct from the response stage. However, these results did not reveal temporal patterns 

within the S-R phase. In other words, they did not address how a complex hierarchical rule 

structure with multiple contingencies is traversed.

The present study seeks to test the hypothesis that decisions required by multiply contingent 

rules are processed serially. Specifically, we used a hierarchical decision task that requires 

traversal of a three-level decision tree to make a response. A response deadline procedure 

was used that allowed us to assess the accuracy and timing of decisions made at each level 
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of abstraction independently from the other levels. This approach provides conjoint 

measures of the accuracy and speed of processing. It has been used effectively to estimate 

the time course by which information becomes available to response systems for a wide 

range of cognitive processes (Benjamin & Bjork, 2000; Hintzman & Curran, 1994; McElree 

& Dosher, 1989; Öztekin, Güngör, & Badre, 2012; Öztekin & McElree, 2007, 2010; 

Wickelgren, Corbett, & Dosher, 1980). In the present task, information pertaining to all 

levels of the hierarchical decision was presented simultaneously, and the task was designed 

such that parallel and serial processing would produce distinct trajectories of error rates 

across sampled deadlines.

Our results are inconsistent with strong serial processing hypothesis, providing evidence of 

primarily parallel processing within the S-R stage in complex, hierarchical decision-making. 

We also demonstrate that a previously developed model of response selection that has an 

underlying hierarchical architecture with physically separated corticostriatal decision-

making circuits can explain the sources of the temporal dynamics evident in our behavioral 

results. These empirical and computational analyses converge to suggest that hierarchical 

decision-making within the S-R stage can be processed in a parallel manner.

2. Experiment 1 – Behavioral Task

2.1 Methods

2.1.1 Participants—Twenty-three participants (mean 22.1 years, range 18-28, 12 female) 

were recruited from the Providence, RI area to participate in a behavioral task performed on 

a computer. All participants were right-handed, had normal or corrected-to-normal vision, 

and reported that they were free of neurological or psychiatric disorders. They had all 

completed at least 12 years of education. Data from an additional eightparticipants were 

excluded for reasons of poor accuracy (<65%) at long intervals during the practice or 

experimental phase. An additional participant was excluded for failing to comply with task 

instructions: they responded to fewer than half of the experimental trials. Informed consent 

was obtained from all participants, and they received payment for their time.

2.1.2 Task design—The basic task involved response selection based on a complex set of 

rules. On each trial, participants pressed one of eight buttons in response to a stimulus that 

varied trial-to-trial along seven independent dimensions (shape, pattern, location, 

orientation, color, border width, and size). Each dimension was binary (e.g. the color was 

either red or blue). To select a response, participants were trained to use a hierarchically 

structured, third-order set of rules that mapped combinations of features to each button 

(Figure 2). The experiment was divided into three parts: a rule-learning phase, a response 

deadline practice phase, and the experimental phase.

2.1.2.1 Rule-learning phase: In the first phase, participants learned and practiced the 

hierarchical rules they would use to make a response, with auditory feedback after each trial. 

All participants were taught the rules in the same order (Figure 3). Comparing error rates for 

each of the low- and middle-level rules did not reveal any significant effects due to the order 

of rule learning (see Appendix A).
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Participants first learned two of the low-level rules, practicing each rule on its own for 12 

trials. Next, they were taught the middle-level rule that combined those two low-level rules, 

with 24 practice trials. Then they learned the other two low-level rules and the middle-level 

rule that combined them in the same way. Finally, participants were taught the top-level rule 

that combined all of the other rules. At this point, in addition to verbal instructions, the 

experimenter showed the participant a visual representation of the rules (similar to Figure 

2a). The participant practiced using all of the rules for a minimum of 48 trials, repeating this 

practice block as needed (mean number of trials=75.1, SD=35.0). The block was repeated 

until participants reached at least 65% accuracy in the second half of the block 

(mean=87.5%, SD=8.8%), and they reported that they felt comfortable continuing. Then 

they practiced responding to a stimulus within a 4-second deadline. They practiced this for 

at least 24 trials until they successfully responded to at least two thirds of the trials, with 

additional practice as needed (mean number of trials=32.3, SD=11.7).

2.1.2.2 Response deadline practice phase: Participants then proceeded to the response 

deadline practice phase. On every trial, a stimulus appeared, and then a tone was played 

when the deadline for that trial was reached. Participants were instructed to make a response 

as soon as possible after the deadline, even if they were unsure of the correct answer. They 

were encouraged to respond on every trial, even if they felt they were guessing randomly. 

There was no auditory feedback in this phase.

Deadlines were drawn from a discrete set with a range from 50ms to 3500ms, with most of 

the deadlines less than 2000ms. The set of deadlines was adjusted several times throughout 

data collection (Appendix B). Deadlines were adjusted in an effort to gain as many 

observations as possible. In particular, we wanted most of the trials to occur before 

participants had completed the decision. Analysis of preliminary results suggested that many 

responses were occurring after error rates had reached an asymptote, and we adjusted the set 

of deadlines accordingly. Deadline presentation was randomized.

Participants were informed that trials must meet the following criteria in order to be 

included in analysis: (a) there must be a button press, (b) the response must come after the 

trial's tone, and (c) the time between the tone and the response (“response delay”) must be 

less than 600ms. Participants practiced using the rules with the new timing. A screen 

displayed the latency between the response cue and the response after each trial. At the end 

of every block (64 trials), there was a summary of the participant's performance in that 

section, consisting of their mean response delay and the number of “no response” trials. This 

phase of the experiment was stopped when participants were responding promptly to 

approximately 80% of the trials, and when they indicated that they were comfortable with 

the procedure. Participants completed one to three blocks of the response deadline practice 

phase (mean number of trials=114.8, SD=29.8).

2.1.2.3 Experimental phase: Finally, participants began the experimental phase of the task. 

This phase was nearly identical to the response deadline practice phase, except that 

participants were not informed of their response delay after every trial. All participants 

completed at least six blocks of task (384 trials). A subset of 17 participants performed an 

additional two blocks for a total of 512 trials. Trials were added to the paradigm partway 
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through data collection because we felt that participants could continue the experiment 

without losing focus.

Following the task, participants completed a post-task questionnaire that asked them to 

produce as many of the rules as they could remember and rate their attention and 

performance during the task.

2.1.3 Apparatus—All experimental scripts were programmed and run on a Macintosh 

computer using MATLAB with the Psychophysics Toolbox (www.psychtoolbox.org). 

Participants responded to each stimulus by pressing one of eight keys on a keyboard. The 

keys used were in the “home row” of the keyboard, with index fingers positioned on the “f” 

and “j” keys. The response keys were labeled 1 through 8. Participants were instructed to 

have all of their fingertips touching the keys at all times. Auditory feedback was presented 

through the built-in computer speakers.

2.1.4 Data trimming and preprocessing—Following conventional response deadline 

procedures, trials were excluded from analysis if (a) there was no response, (b) the response 

occurred before the response deadline, or (c) the response came more than 600ms after the 

deadline. In addition, 10 trials were excluded across all participants because of a technical 

error. On average, participants met the criteria in 82.4% (SD=11.4%) of their trials, or 396 

trials per participant (SD=75).

2.1.5 Error rate calculations—Trials were binned by the time of the response deadline, 

and error rates for each level of the hierarchy were calculated within each bin. For any given 

stimulus, each specific combination of correct and incorrect decisions on the three levels of 

the rule structure would result in a unique button press (Figure 4). Thus, each response was 

classified as being independently correct or incorrect for each of the three levels. Error rates 

were calculated as the proportion of the trials in which the response violated the feature(s) 

for a single level of the hierarchy. This allows for one response to be classified as an error 

on multiple levels of the hierarchy. For example, consider a response that was correct given 

the top-level feature, but incorrect given the middle-level feature and incorrect given the 

low-level feature (e.g. response “8” in Figure 4). This response would be considered both a 

middle-level error and a low-level error. Defining errors as such equates the level of chance 

for all levels of the hierarchy – given random responding, a participant would be likely to 

make each error type 50% of the time (though the level of chance for overall accuracy 

would be 12.5%).

2.1.6 Statistical modeling—To characterize the temporal dynamics of decision-making 

in this task, three parameters were estimated for each level of the decision tree based on the 

error rates at each time bin. The first parameter, start, was defined as the point in time at 

which participants first began responding in a manner that was consistent with an ascent 

from chance performance in applying a particular rule. Three such “start” parameters were 

estimated, one for each level of the rule hierarchy (top, middle, and low). Thus, start-top 

was an estimate of the earliest time at which participants were more likely to press one of 

the four buttons that would be consistent with the top-level feature of the stimulus than any 

of the four buttons that were inconsistent with it. Similarly, start-middle was an estimate of 
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the earliest time at which participants were more likely to press one of the buttons consistent 

with the middle-level features of the stimulus than one of the buttons that would violate the 

middle-level rules. Finally, start-low was an estimate of the earliest time at which 

participants were more likely to press the buttons that matched the low-level features than 

the buttons that did not.

The second parameter, asymptote, was an estimate of the asymptotic probability that a 

participant would make an error for a given level of the hierarchy. This parameter was based 

on the assumption that at some point during the trial, presumably when participants finish 

making the decision, the error rates should stabilize at some (possibly non-zero) value. The 

asymptote parameter thus allowed for the likely possibility that participants would make 

mistakes even without the response deadline procedure. Three such parameters were 

estimated, one for each level of the rule hierarchy. Asymptote-top was the asymptotic error 

rate for the top-level rule, asymptote-middle was the asymptotic error rate for the two 

middle-level rules, and asymptote-low was the asymptotic error rate for the four low-level 

rules.

The third parameter, end, was the time at which the error rate reached the asymptote. Like 

the other types of parameters, three end parameters were estimated. Endtop was the time 

when asymptote-top was reached, end-middle was the time when asymptote-middle was 

reached, and end-low was the time when asymptote-low was reached.

A hierarchical Bayesian model was established using the three parameters to calculate the 

error rate on a single level of the hierarchy at time t:

(1)

Parameters were estimated using a Markov chain Monte Carlo simulation with Gibbs 

sampling. The analysis script was written and run in R64 (version 2.15.1) communicating 

with the program JAGS (Just Another Gibbs Sampler, version 3.1.0). The model was 

hierarchical: distributions of the parameters were estimated for the entire group of 

participants, assuming a normal distribution. Individual participant parameters were drawn 

from these distributions.

A large range of simulations of our model, using different underlying decision dynamics, 

revealed that it is capable of recovering the parameters of interest and distinguishing 

between a parallel and serial decision process. Simulation analyses are detailed in Appendix 

C.

For any given stimulus, each specific combination of correct and incorrect decisions on the 

three levels of the rule structure would result in a unique button press. Responses were thus 

classified into one of eight categories according to their accuracy on all levels of the rule 

structure. The parameters were estimated using the reaction time and this classification of 

the response. Estimation was conducted on included trials from all 23 subjects.
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The probability that a participant would make an error on each of the levels of the rule 

structure was assumed to decline linearly between the start and the end times, decreasing 

from chance level (50%) to the asymptote. We tested several variations on this model. In 

one such variant, uncertainty declined according to a sigmoidal rather than linear function. 

In another variant, the start for any given level was constrained to be later than start for any 

of the higher levels (i.e., start-top < start-middle < start-low). A “robust” version of this 

model was also tested, using group parameters sampled from t-distributions, rather than 

normal distributions. Another model allowed for the possibility of two different “modes” of 

decision-making within a trial, with hysteresis between them (as in Dutilh, Wagenmakers, 

Visser, & van derMaas, 2011). In the first part of the trial, the fast guess mode, responses 

would be made randomly (i.e. all error rates would be at chance). Then, there would be a 

transition to stimulus-controlled responses, with a period of hysteresis, such that in the 

transition, uncertainty could instantaneously decrease from chance (to some lower but 

variable value). Results from these alternative models were qualitatively identical to the 

results of the simpler model reported here and so are not discussed further.

2.2 Results

2.2.1 Model free analysis—Our data indicate that our response deadline manipulation 

was successful. As response times (RT) increased, so did overall accuracy (Figure 5a). Thus, 

participants tended to obey the deadline and were increasingly successful at determining the 

correct response when given more time to make their decision. The average accuracy over 

all trials was 65.1% (SD=16.2%), but for trials with a response time over 2600ms, the 

average accuracy was 89.9% (SD=10.5%). These error rates were similar to those observed 

during a pilot study in which responses times were unconstrained (mean accuracy 87.7%; 

SD=8.7%; t(26)=3.01, p<0.01 ). Thus, the window of time sampled by the response deadline 

procedure was sufficient for participants to reach an asymptotic level of accuracy in some 

trials. Finally, participants generally responded promptly to the deadlines, with an average 

delay between the deadline and the committed response of 331.6ms (SD=33.1ms). 

Altogether, these results confirm the success of our response deadline manipulation.

In contrast to predictions of the serial hypothesis, the decreases in overall error rates with 

increasing deadlines reflected roughly equivalent changes in accuracy at each level of the 

hierarchy (Figure 5b). These error rates were changing in an approximately parallel pattern: 

uncertainty at all three levels of the decision appears to have been resolved in tandem. This 

is unlike what would be expected from a fully serial model, in which the error rate at one 

level of the hierarchy would decrease before the others deviated from chance. However, 

these results are noisy because the response deadline procedure only sparsely samples the 

time span in question, and because this analysis necessitated the binning of trials.

We also conducted similar analyses to examine how various factors may have affected the 

temporal dynamics of the decision, including the effects of gaining experience with the rules 

over the course of the experiment (Appendix D) and task-switching effects (Appendix E). 

Though both of these factors influenced the evolution of error rates over time, the analyses 

reinforce the robustness of the parallel pattern of decision making.
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2.2.2 Statistical modeling—To better parse the temporal dynamics of the different levels 

of policy, we turned to a hierarchical Bayesian modeling approach for estimating three types 

of parameters related to the temporal dynamics of hierarchical control. As laid out in the 

methods section, for each of the three levels of the hierarchical rule, we estimated the 

following three parameters: the time at which uncertainty started to decrease (start-top, 

start-middle, start-low), the time at which uncertainty stopped decreasing (end-top, end-

middle, end-low), and the asymptotic error rate reached at the end time point (asymptote-top, 

asymptote-middle, asymptote-low).

In support of the good fit of our model, the fitted asymptote parameter estimates were highly 

correlated to asymptotic accuracy as calculated on the raw data. Specifically, the estimated 

asymptotes for errors on each level were used to calculate an overall accuracy rate, in order 

to compare it to accuracy rates calculated directly from the data. The accuracy rate for each 

participant, based on the estimated parameters, was calculated using the formula:

Participant-specific accuracy rates were calculated from the behavioral data using all trials 

with reaction times greater than 1428ms (equal to the last end parameter estimated). These 

accuracy values were highly correlated with those calculated from the asymptote parameter 

(r=0.97) (Figure 6). This correlation supports the efficacy of the modeling approach, and 

suggests that the parameter values are representative of the underlying temporal patterns.

The parameters recovered are consistent with a primarily parallel model, in which all of the 

levels of the decision are resolved at the same time (Figure 7). All of the start parameters for 

the group distributions were approximately equal (start-top=72.3ms, SD=135.66ms; start-

middle=82.5ms, SD=173.95ms; start-low=37.63ms, SD=50.26ms). Using the posterior 

density of the estimated group parameters, all of the start parameters fell well within the 

95% credibility intervals of each other.

We also found highly similar end parameters across levels of the hierarchy 

(endtop=1224.5ms, SD=329.91ms; end-middle=1413.8ms, SD=453.41ms; end-

low=1427.8ms, SD=455.80ms). End-top was slightly lower than end-middle and end-low, 

suggesting that participants resolved the top level of the decision a little earlier than the 

middle and low levels. The posterior density of the group mean for end-top was outside the 

95% credibility interval of the other two end parameters. In addition, using the participant-

specific estimates from the model, a paired t-test of end-top and end-middle was significant 

(t(22)=2.76, p<0.05), and the paired t-test of end-top and end-low showed the same trend, 

although it was not significant (t(22)=2.00, p=0.06). No significant difference was found 

between end-middle and end-low, using the participant-specific estimates or the mean group 

estimate.

The entire time frame for the decision (i.e. the start and end parameters) estimated by the 

model was also consistent with the pattern seen in the binned error rates, based on visual 

inspection.
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2.3 Discussion

Our results are inconsistent with a fully serial S-R stage during hierarchical control. Rather, 

though there are small differences in end times between the top-level decisions and the 

lower-order decisions, the change in error rates over time suggests a mostly parallel process 

of decision-making toward a response. This conclusion is supported by both the change in 

error rates over time and from the start and end times estimated from the Bayesian model. 

Specifically, error rates on all three levels of the decision appeared to start declining 

simultaneously, and they reached an asymptote at roughly the same time for the low and 

middle levels of the hierarchical decision. These results support a primarily parallel 

processing model of the complex hierarchical decision.

It is important to emphasize that we observed this largely parallel dynamic during a very 

complex decision, involving third-order policy abstraction. There were seven varying 

dimensions to track, three levels of contingency to traverse, and eight competing responses 

to consider. Despite the load that this task would place on capacity limited working memory 

and decision-making systems, performance nevertheless reflected a high degree of 

parallelism.

At the same time, our results do not indicate that the various levels of this hierarchical 

decision were carried out in a wholly undifferentiated manner. Specifically, the error rate for 

the top level of the decision was estimated to start with the lower levels of the decision, but 

reached asymptote at a slightly, but significantly earlier time point than the other two levels. 

This observation argues against a fully undifferentiated or “flat” form of processing of the 

various levels of our task, a point we elaborate in the General Discussion.

3. Experiment 2 – Neural Network Modeling

The existence of such highly parallelized temporal dynamics could be seen to challenge the 

neurocognitive architectures such as a cascade of a decision processes that have been 

proposed in prior work to capture hierarchical cognitive control (Collins & Frank, 2013; 

Frank & Badre, 2012; Koechlin et al., 2003). For example, the interacting corticostriatal 

loops model proposes that interactions across frontal regions are not completely continuous 

in time, but are instead punctuated by an emergent gating function arising from cortico-

striato-thalamo-cortical connectivity and reinforcement learning processes (see also 

Chatham et al., 2011; Hazy, Frank, & O'Reilly, 2007; Kriete et al., 2013; O'Reilly & Frank, 

2006).

To understand our behavioral results within the context of frontostriatal gating accounts, we 

attempted to capture our results using a previously developed multiple-loop neural network 

architecture (Collins and Frank, 2013). Counter-intuitively, we find that this frontostriatal 

gating model could naturally account for parallel-like processing, despite the operation of 

discrete, punctate gating dynamics. Our analysis further indicates how this parallel dynamic 

might arise in the brain, and what factors determine the degree to which some decisions 

(e.g., the top-level) might partially precede the lower ones, as observed in the behavioral 

data.
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3.1 Methods

3.1.1 Model architecture and dynamics—In order to investigate the temporal patterns 

of decision-making that can emerge from a hierarchically structured neural network, we 

simulated task performance using a modified version of a neural network architecture with 

multiple, nested corticostriatal loops from Collins and Frank (2013) that was implemented in 

the Emergent neural simulation software (Aisa, Mingus, and O'Reilly, 2008; Figure 8). The 

neurobiologically realistic model simulates the frontal-striatal interactions that are thought to 

be integral for hierarchical cognitive control, and it can learn and perform a two-level 

hierarchical stimulus-response task analogous to the third-order task used in Experiment 1.

Collins and Frank explored their model in the context of acquiring hierarchical rule 

structures, considering task-switching costs, learning speeds, and task-set clustering. The 

model captured behavioral effects both in reaction times within a trial and over longer time 

scales. These effects were robust across variations in the model's parameter settings. In 

addition, the structure of the model is in line with research that shows that striatum is 

instrumental in such high level executive functions as task-switching (van Schouwenburg, 

den Ouden, & Cools, 2010; Moustafa, Sherman, & Frank, 2008) and working memory 

(O'Reilly & Frank, 2006; Cools, Sheridan, Jacobs, & D'Esposito, 2007; Baier et al., 2010).

Our implementation of the model was mostly unchanged from that of Collins and Frank 

(2013), with minor exceptions. Specifically, in order to accommodate the structure of our 

hierarchical task, two rows of units were added to the layers Input, PFC_out, and PC (see 

architecture description below, as well as Collins & Frank, 2013 for more details). However, 

the patterns of connectivity between these layers were preserved, and thus the network was 

largely the same as the original. This was intentional. In this way, we did not iteratively 

adjust the model to capture our behavioral results, but rather report results from simulations 

run on a multiple corticostriatal loop model that had been developed independently to 

capture other data.

The network has two nested corticostriatal loops, each of which involves connectivity 

between a cortical layer and a striatal layer. The loops are structured hierarchically, 

simulating the rostro-caudal organization of the frontal lobe, and the network learns 

stimulus-response mappings through reinforcement learning. The network receives stimulus 

input into two different layers: Context, which represents information relevant to the higher-

level decision, and Input, which represents information relevant to the lower-level decision. 

Each of these layers has distinct groups of units that are active for each feature variant.

Context units project to the prefrontal cortex layer (PFC), which is the cortical layer 

involved in the higher-level corticostriatal loop. Input projects to a layer called PFC_out, 

which sends activity only to parietal cortex (PC), the cortical layer involved in the lower-

level loop. Contextual information from the higher-level loop reaches the lower-level loop 

through cortico-cortical projections between PFC and PFC_out, as well as through a 

diagonal projection from PFC to Striatum, the striatal area in the lower-level loop. Once the 

network has accumulated enough evidence for a particular response in the premotor cortex 

layer (PMC), it selects that response by activating one of the units in the Output layer.
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In the lower-level loop, PMC has a pair of units for each of the four responses, and it 

projects directly to the layer where the network outputs responses (Output). Lateral 

inhibition within PMC creates competition between the responses. When the network is 

presented with a stimulus, if it does not have a strong mapping to a response, activity in 

PMC is noisy and does not produce a response. PMC has bidirectional connectivity with the 

Thalamus layer, which also has units corresponding to each response. When a stripe of 

thalamic units becomes active, it provides a strong excitatory boost to the corresponding 

motor units in PMC, and the other responses are inhibited through lateral inhibition. The 

network's ability to gate out a single response relies on this connectivity.

Thalamic units are normally inhibited by high tonic rates of activity in the globus pallidus 

internal segment (GP_Int). The Striatum layer has both Go and NoGo units for each 

response, which cause the corresponding thalamic units to be disinhibited and inhibited 

respectively, via connectivity through GP_Int and the globus pallidus external segment 

(GP_Ext). Therefore, the activation of striatal Go and NoGo units for each response relative 

to the others reflects the probability that that response will be gated out. Striatum receives 

input from PC, the cortical layer involved in the lower loop, as well as from the higher 

loop's cortical area, PFC, via a diagonal projection between the nested loops.

The structure of the higher-level loop is similar to that of the lower-level loop, with the 

cortical layer PFC processing higher-level information about the stimulus and passing it to 

the lower loop via connectivity to Striatum2 and PFC_out.

As an explanation of hierarchical control, the Collins and Frank (2013) model extends and 

generalizes previous related corticostriatal gating models of hierarchical control, such as 

Frank and Badre (2012). Nevertheless, the core components of this prior theory of 

hierarchical control are included in this more general model. First, the model separates 

higher versus lower order selection between two corticostriatal loops. Thus, the PMC and 

PFC in the model correspond to the dorsal premotor cortex (PMd) and anterior premotor 

cortex (prePMd) layers in Frank and Badre (2012), respectively. Importantly, just as in 

Frank and Badre (2012), selection occurs through an output gating process of selection from 

within working memory, and diagonal connections allow the higher order loop to influence 

output gating by the lower order loop. Thus, though more up to date and general, Collins and 

Frank (2013) shares the same core account of hierarchical control in terms of separate 

corticostriatal interactions along the rostro-caudal axis of the frontal lobe. As such, we 

sought to test this more current model in the present work.

3.1.2 Basic model training and simulation procedures—The simulations were run 

in order to determine how the network's support for each possible response to a stimulus 

evolved over time, as well as how those temporal patterns were affected by changing the 

strength of various connections in the network. The network performed a two-level 

hierarchical task, structured like a single top-level branch of the behavioral paradigm (Figure 

9). There were eight possible stimuli, spanning all possible combinations of the two variants 

of three dimensions (called, for convenience: shape, orientation, and location). The shape, 

which guided the top-level rule, was presented to Context. The conjunction of the orientation 

and location, the two low-level dimensions, was presented to Input.
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The network was trained on the task solely on the basis of reinforcement learning (as in 

Collins & Frank, 2013). The training phase was terminated once the network had performed 

without error for five epochs in a row (40 trials). At this point, the connection weights that 

the network had learned were saved. In each trial of the testing phase, the network selected a 

response to a stimulus, and activity was recorded from the units in Striatum throughout the 

entirety of each trial. The weights that had been learned were reloaded before each test trial. 

This effectively reset any activity that would produce switch effects between trials, which is 

different from the behavioral paradigm. However, the aim was to examine the dynamics of 

hierarchical decisions without necessarily including switch effects, particularly given that 

switch effects do not appear to have influenced the temporal pattern of decision making 

across levels in the behavioral experiment (Appendix E).

3.1.3 Model manipulations—The entire training and testing procedure was run multiple 

times under specific modifications to the relative weights of connections to Striatum from 

PFC and PC. As described above, striatal Go and NoGo activity is critical for thalamic units 

to become disinhibited, which is necessary for the network to gate out a response. Therefore, 

Go and NoGo activity reflects the likelihood that the network will produce each of the 

responses. Striatum receives information about the stimulus from PFC and PC. PFC 

receives a projection directly from Context, and it is part of the higher-level loop. PC is part 

of the lower-level loop. It receives projections from PFC_out, which is influenced both by 

Input (low-level features) as well PFC (and thus indirectly, Context). Therefore, the balance 

between the influences of these two layers (PFC and PC) on Striatum determines which 

responses are supported and suppressed by striatal Go and NoGo units, and thus how the 

hierarchical decision proceeds over time. The relative balance of the projections is set by a 

relative weight parameter (wt_scale.rel), a scaling factor that determines how much a layer 

is influenced by each projection that leads to it without altering the total amount of input to 

the layer. For any two projections that go to the same layer, the ratio of their input strengths 

is equal to the ratio of their relative weight parameters. We tested separate simulations of the 

model across systematic manipulations of the relative weightings of PFC and PC to 

Striatum.

For each setting of the relative weight parameters, the network was initialized five times 

with random weights and trained, and each trained network was given five testing epochs. 

Therefore, each setting of the projection was recorded for 25 total epochs (200 trials). The 

wt_scale.rel values tested for the projection between PFC and Striatum were 0.75 (the 

default), 0.5, 0.3, and 1.25. Other inputs to Striatum, which remained at default, include PC 

(wt_scale.rel=1.25) and SNc (wt_scale.rel=2). One additional parameter setting was tested, 

in which the relative weights of the projections from PFC and PC to Striatum were reversed 

(PC to Striatum wt_scale.rel=0.75, and PFC to Striatum wt_scale.rel=1.25).

3.1.4 Measurement of response representations over time—Activity in Striatum, 

the lower-order striatal layer, was recorded because it is updated continuously as higher 

cortical levels process information, and it is closely connected to Output. Striatum has two 

columns corresponding to each response: one with Go units, which have the net effect of 

disinhibiting that response, and the other with NoGo units, which have the net effect of 
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inhibiting the response. The patterns of Go and NoGo activity for each response provide 

insight into when, during the course of a trial, the network makes certain parts of the 

decision. Solving part of the decision can be conceptualized as using the presented 

information to eliminate some responses, while keeping others in contention, with the goal 

of eventually choosing the single appropriate response. Therefore, if the network has Go 

activity for a certain incorrect response, it has not yet resolved the part of the decision that 

would eliminate that response. This logic mirrors that targeted in human behavior by the 

response deadline procedure, but as we have access to the internal representational states of 

the model, this recording more directly assesses which responses remain candidates 

throughout the trial.

Thus, striatal Go and NoGo activity was used as a measure of how much support the 

network had for each response at any given time in a trial, with activation in that response's 

Go column (Goa, for response a) increasing support for it and activation in the NoGo 

column (NoGoa, for response a) decreasing support. Therefore,

is the net striatal activity in support of response a (“response support”). In order to compare 

the strength of activity between responses at a particular time point, a normalizing factor 

was applied:

(2)

The denominator incorporates Go and NoGo activity over all the responses, and thus it is the 

same for all responses at a single time point. The absolute value is necessary to avoid scaling 

issues when there is approximately equal Go and NoGo activation across the entire layer. 

This is not a calculation of probability, but it incorporates both Go and NoGo activation, and 

the normalizing factor allows for comparison of response activations within a time point. 

Thus, it is an appropriate and interpretable measure for comparison with estimates of human 

behavior from our statistical model.

For each trial, the trajectory of striatal support for each response was classified by error type, 

as in the analysis of the behavioral task. That is, the response corresponding to correct usage 

of both the top- and low-level rules was classified as the correct response. The response 

corresponding to the correct use of the top-level rule but incorrect use of the appropriate 

low-level rule was classified as a low-level error. The other two responses were classified as 

top-level errors. One such top-level error response was inconsistent with the top-level rule 

only (termed top error/low correct), while the other response was incorrect according to both 

the top- and low-level rule (termed top error/low error).

3.2 Results

3.2.1 Default network weights—In the network's default settings, the strength of the 

projection from PFC to Striatum (wt_scale.rel=0.75) is less than the strength of the 

projection from PC to Striatum (wt_scale.rel=1.25). As can be seen in Figure 10a, initially, 
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there was no net activity supporting or inhibiting any of the responses, due to net inhibition 

of all responses early in the trial (i.e. more NoGo than Go activity). After the initial dip, the 

correct response started to obtain more net Go activity than any of the others, becoming 

disinhibited almost immediately. Thus, early in the trial, information from both PC and PFC 

accumulated in Striatum, such that the responses inconsistent with lower- or higher-order 

policy received less conjunctive support than the single correct response. In a corresponding 

behavioral paradigm, this would be akin to a participant appearing to solve two levels of the 

decision at the same time (i.e., parallel processing).

Support for the correct response continued to increase throughout the trial, though not 

monotonically, until sufficient evidence accumulated for the network to output a response. 

In the middle of the trial, at around cycle 45, a transient increase in the amount of support 

for the top correct/low error response coincided with a decrease in the amount of support for 

the top error/low correct response. Although information from the higher-level loop 

influenced striatal activity earlier in the trial, as the single correct response was supported 

above the other options, additional evidence about the higher-level decision appears to have 

reached Striatum at this time: net support for the top-level errors went to zero, while the two 

responses consistent with the top-level feature received more support. After this boost in 

evidence, support for the correct response continued to increase while net support for the 

others settled to zero, until the network output the correct response, ending the trial.

3.2.2 Less relative influence of PFC on Striatum—To decrease the direct influence 

of PFC on Striatum, the relative weight of that projection was reduced to 0.5 while keeping 

the relative weight of the PC to Striatum projection constant (wt_scale.rel=1.25). As can be 

seen in Figure 10b and similar to the default setting, all responses were inhibited at around 

cycle 20, although this dip was less pronounced in this network configuration. Then, 

evidence increased for both the correct response and the top error/low correct response, 

reaching a temporary plateau of positive net Go activation. Unlike the default, however, 

there was no significant difference between these two response probabilities (paired t-tests: 

df=4, p>0.05 until cycle 48). Thus at this point in time, Striatum had equal support for both 

responses consistent with the low-level input, while the two responses that violated the 

lower-order policy were inhibited. In a behavioral experiment, the participant would appear 

to have solved only the low level of the decision at this time.

At around cycle 45, the net positive activation for the correct response began to increase 

again, and it also increased transiently for the top correct/low error response. The two 

responses that received a boost at this point in the trial were consistent with the higher-order 

policy, while support for the top error/low correct response decreased. This would be the 

point in time when the participant appeared to solve the top level of the decision. For the 

remainder of the trial, the correct response had increasingly more support than all of the 

incorrect responses.

When the relative weight of PFC on Striatum was decreased further (wt_scale.rel=0.3) 

while maintaining the default setting for the PC to Striatum projection (wt_scale.rel=1.25), 

depicted in Figure 10c, the first change in net support for any of the responses occurred at 

around 20 cycles. At that time, support for the correct response and the top error/low correct 
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response increased rapidly to a plateau, while the other two responses continued to have 

approximately equal Go and NoGo activity. As in the previous settings, at this point 

Striatum had equal support for the two responses consistent with the lower-order policy, 

above the two responses that violated that level of the decision. For approximately 40 

cycles, the response probabilities did not change, and there was no significant difference 

between the correct response and the top error/low correct response (paired t-tests: df=4, 

p>0.05 until cycle 58) or the top correct/low error response and the top error/low error 

response (paired t-tests: df=4, p>0.05 until cycle 55). Again, in a behavioral paradigm, the 

subject would appear to have solved only the low level of the decision at this time.

Then, at around 55 cycles, the probability of the correct response increased while the 

probability of the top error/low correct response decreased. At this point, the Striatum was 

accumulating support for the single response consistent with both orders of policy: in other 

words, resolving uncertainty for the top level of the decision. There was also a small 

transient increase in the probability of the top correct/low error response, but it was far less 

pronounced than the two previously described parameter settings. This indicates that a 

weaker relative influence of PFC compared to PC prevents Striatum from accumulating 

support for the response that violates the low-level information, even though it is consistent 

with top-level information.

3.2.3 More relative influence of PFC on Striatum—The relative weight of the 

projection from PFC was increased such that Striatum received equal input from PC and 

PFC (wt_scale.rel=1.25 for both projections). As shown in Figure 10d, the initial dip of 

support for the four responses began earlier and lasted slightly longer for this configuration 

than it did for any of the previous settings. When support for all responses first began to 

increase, only the correct response was differentiated from the others and had net positive 

support. This suggests that both higher- and lower-order information was influencing 

activity in Striatum, as the correct response was the only one consistent with both orders of 

policy. In a behavioral task, this would appear as though the subject were solving both levels 

of the decision simultaneously. At cycle 45, the correct response probability increased more 

rapidly, and there was also a sizable boost in the support for the top correct/low error 

response: i.e., the two responses consistent with the top-level information received a boost in 

support. The increase in support for the top correct/low error response was transient, as in 

the default setting, while support for the correct response continued to increase until the 

network output the response.

Finally, the relative weights of PFC and PC were reversed from the default, so that PFC had 

more influence on the Striatum layer than PC did (PFC wt_scale.rel =1.25, PC wt_scale.rel 

=0.75). The pattern of activity shown in Figure 10e is nearly identical to the pattern when 

PFC and PC had equal influence on Striatum, but the late boost in support for the top 

correct/low error was even more pronounced, and it decreased more slowly. This supports 

the idea that a stronger relative influence of PC is what prevents Striatum from 

accumulating support for the response that violates the low-order policy but is consistent 

with the top-level information.
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3.3 Discussion

The neural network simulations suggest that a hierarchical frontostriatal architecture can 

indeed support parallel processing of a decision. In the default settings of the model, it was 

apparent that the network favored only the correct response as soon as accumulating 

evidence showed any difference between the four options. In order for this to occur, there 

must have been information from both levels of the rule structure influencing striatal Go and 

NoGo activity. Had only one level of the decision been influencing striatal activity at a time 

(i.e. serial processing), the network would have supported half of the responses at first, and 

then the correct response would have gained all of the support at a later time point.

Interestingly, a more serial pattern in early decision stages was observed only when the 

connection from PFC to Striatum was weakened (and thus the PC to Striatum connection 

relatively strengthened). As soon as striatal activity differentiated the responses, the two 

responses consistent with the low-level rule had the greatest support. This suggests that the 

network used the low-level features of the stimulus to eliminate half of the responses, even 

though information about the top-level decision had not yet influenced striatal activity. At a 

later time point, all of the activity favored the single response that was consistent with both 

top- and low-level features of the stimulus, indicating that both levels of the decision had 

been solved. Thus, temporally distinct stages of the onset of the decision were clear when 

the PFC to Striatum connection was weakened.

Conversely, when the PFC to Striatum projection was given greater relative weight than in 

the default settings, the temporal pattern was more parallel in the early phase of the decision, 

akin the behavioral results. Evidence for the correct response accumulated more quickly, 

and the difference between the correct response and the three errors was even more 

pronounced.

The amount of support given to the incorrect responses is also important for interpretation of 

the neural network results. In the default settings, support for the two top-level errors 

decreased to zero in the middle of the trial, as support for the other two responses (including 

the correct response) received a sizable boost. In the behavioral paradigm, this would be the 

time when the participant appeared to solve the top level of the decision (i.e. eliminating 

responses inconsistent with top-level information). Critically, this boost of top-level correct 

responses included an increase in support for a response that was incorrect on the low level. 

In the behavioral task, this dynamic would yield responses that appear as though the 

participant had not yet finished solving the low level of the decision. This pattern is 

consistent with the earlier end time for the top level of the decision compared to the lower 

two levels in Experiment 1. This feature of the temporal pattern was present when the 

connection from PFC to Striatum was at default levels or stronger, and it became less 

pronounced when that connection was weakened. Thus, just as it resulted in a more parallel 

dynamic early in the decision, the strength of the PFC-Striatum connection also supports the 

slightly earlier end point of the top-level decision in the behavioral results.
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4. General Discussion

Our results suggest that when traversing multiple contingencies, hierarchical decision-

making within the S-R stage is strikingly parallel. Behavioral results from Experiment 1 

indicate that participants were processing all levels of the hierarchical rule structure at 

roughly the same time, although they completed the top level of the decision slightly earlier 

than the others. The simulations of Experiment 2 suggest that this parallel processing is 

consistent with the frontostriatal connectivity thought to underlie cognitive control. In the 

default settings of the neural network (derived from simulating an independent task), the 

processing of a two-level hierarchical decision occurred in parallel, causing the correct 

response to be supported more than all the others from an early time point in the trial. The 

neural network results also provided a potential mechanism by which a lower level of the 

decision might finish later than the top level, as observed in Experiment 1. In the network 

settings that produced parallel processing, resolution of the top level of the decision 

coincided with a transient boost in support for an error on the low level (the response that 

was also consistent with top-level information). At that time, the correct response was 

supported more than all of the others, indicating parallel processing, but the low level of the 

decision was not complete until later in the trial, when support for the low-level error 

disappeared. Thus, the top level of the decision was solved slightly earlier. Importantly, 

model manipulations associated both of these features – parallel early decision evolution and 

differentiated decision resolution – with greater PFC to striatum influence.

Our results support a parallel processing system, but they certainly do not rule out the 

prospect of serial processing or a bottleneck in decision-making. First, though our task 

requires resolving a considerable amount of uncertainty —27 possible stimuli mapping to 

eight responses—each dimension-based rule was only a binary choice. It seems reasonable 

to assume that there is some limit at which parallel processing would be overly costly and 

more clearly maladaptive. For example, if a higher-level decision could significantly 

decrease the amount of uncertainty on a lower level, it would be more efficient to delay 

processing of the lower level of the decision until the higher level had been resolved. This 

would lessen demands for the lower level of the decision, making the problem more 

tractable. Thus, there could be situations where serial processing is adaptive, and in these 

situations, the system (as with any parallel architecture) may strategically or by necessity 

exhibit a serial processing dynamic.

Second, our results do not necessarily contradict the conventional multi-stage model of 

response selection that posits serial perceptual, S-R, and response stages. Indeed, there may 

still be a basic separation between the decisions made during the S-R stage and their motor 

implementation at response (e.g., Braverman et al., 2014). In our model, this distinction is 

reflected, to some degree, in the difference between the evolution of the decision in striatum, 

and the actual output of the response in the model's motor cortex. Rather, what our results 

indicate is that within the S-R stage, multiple contingent decisions can be managed in 

parallel rather than strictly in series.

The temporal patterns evident in our results imply that the distinct frontal areas implicated in 

prior studies of hierarchical cognitive control (Badre & D'Esposito, 2007; Badre et al., 2009; 
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Christoff & Gabrieli, 2000; Christoff et al., 2009; Koechlin et al., 2003;O'Reilly et al., 2002) 

may process information simultaneously. Such parallel processing is possible in our task 

because each stimulus contained information relevant to every level of the decision. By this 

hypothesis, one rostral frontal area may use the top-level feature to select the relevant 

middle-level feature, while a more caudal frontal area uses the middle-level features to 

select relevant low-level features. Likewise, a still more caudal frontal area could use these 

low-level features to select a set of viable responses. To settle on a single response, as 

demanded by our task, information must still be combined across these different levels.

The neural network model sheds light on this conundrum, as well as illuminating how a few 

key connections may influence the temporal pattern of a decision. We used an independently 

developed and tested model, in order to test whether existing theory captures the essential 

patterns from the behavioral results. The model's task had two orders of policy, unlike the 

three levels of the behavioral paradigm, because that was the degree of abstraction that the 

model was originally built to accommodate. Thus, though there were small changes to the 

model, the essential structure and connectivity was preserved. The simulations demonstrate 

that a hierarchical network can represent and process a multi-level rule structure in parallel.

In principle, a simple three-layer neural network could also perform the behavioral task, 

simply by representing a “flattened” version of the rules: complex feature conjunctions, 

rather than hierarchical contingencies, can also uniquely map stimuli to responses in our 

task. Notably, this flattened rule structure would make similar behavioral predictions as a 

hierarchical decision that is solved in parallel. That is, the behavioral results that suggest that 

three levels of hierarchical rules are resolved simultaneously would also result if the task 

were represented with a single level rule structure. The significant difference between end-

top and the other end parameters argues against the use of such a flat representation by our 

participants, as described above. It remains possible that participants used a partially 

flattened hierarchy, separating the top level, but combining the middle and low levels using 

feature conjunctions. However, separable effects of middle-level switches and low-level 

switches suggest that this is not the case (Appendix E). While prior models predict flattening 

will occur with extended practice of hierarchical control tasks (Frank & Badre, 2012), the 

possibility for progressive flattening is an important direction for future work.

Future work should also explore further predictions of our model for the temporal dynamics 

of cognitive control. First, our model suggests that the strength of PFC to striatal projections 

impacts the temporal dynamics of decision-making during hierarchical control. To the 

degree that “connection strength” can be measured (an admittedly assumption-laden 

prospect with current technologies), this hypothesis leads to straightforward predictions 

about the impact of these connections on performance during the task we test here.

There are a number of possible biological mechanisms that could alter the strength of 

connectivity between PFC and striatum, and thus modulate the degree to which decisions are 

performed in parallel. Several dynamic state changes could result in individual flexibility on 

a short-term basis, including metabolic state (e.g. recent glucose consumption) or greater 

spine densities on the afferent connections in striatum, which can undergo relatively rapid 

changes in response to synaptic activity (Yagishita et al., 2014; Oh, Hill, & Zito, 2013; 
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Matsuzaki et al., 2004). Similarly, individual differences in connectivity or influence might 

map onto differences in decision-making performance. There are several more static traits 

that could account for heterogeneity between individuals, such as the degree of myelination 

or the efficiency of NMDA/AMPA signaling (e.g. genetic polymorphisms in glutamate 

receptors). To the degree that this top down influence is dynamic and under control of the 

brain, it could provide a potential mechanism by which serial versus parallel decision-

making can be dynamically regulated based on task demands and strategy.

Broadly consistent with the present results and modeling, prior research has provided 

evidence for a model in which a finite central capacity can be shared between multiple tasks 

(Logan & Gordon, 2001; Navon & Miller, 2002; Tombu & Jolicoeur, 2003, 2005). This 

capacity sharing model allows for the possibility of simultaneous performance of multiple 

tasks. However, it can also behave as a bottleneck if one task is prioritized such that it 

consumes the entire central capacity. In fact, some of the literature supporting this 

possibility of parallel processing maintains that serial processing is often more strategic 

(Logan & Gordon, 2001; Meyer & Kieras, 1997a, 1997b). This framework appears broadly 

consistent with the present computational model in which top down signals from PFC to 

striatum can have the consequence of making the decision more or less serial. Moreover, our 

results motivate the further hypothesis that these corticostriatal dynamics might be a means 

by which allocation of central capacity among one or more tasks is allocated. Such a 

hypothesis would be important to test in future research.

A second prediction from our model is that upon being given a response deadline, 

participants rapidly utilize information from separate frontal regions to help select a specific 

response. Recently a specific kind of frontostriatal gating has been implicated in such 

hierarchical modulations – a stochastically time-consuming process known as “output 

gating” (Chatham, Frank, & Badre, 2014). One clear prediction is that similar sluggishness 

and variability should be visible in the latency of responses relative to the deadline. 

Furthermore, this sluggishness and variability should scale with the depth of the hierarchical 

rule being used. That is, in a task with a less abstract rule structure, the average delay 

between deadline and response should be both shorter and less variable.

A third, related prediction motivated by our model is that without top-down control, such as 

through output gating across the putative frontal hierarchy, response selection processes 

should predominantly reflect the information that is represented in cortical areas most 

proximal to motor cortex. In trials with very short deadlines, it is possible that not all of the 

frontostriatal circuits successfully underwent the time-consuming output gating process in 

time for the response. As a result, these trials may contain a somewhat larger proportion of 

top- and middle-level errors.

This last prediction is broadly consistent with research on hierarchical control in patients 

with frontal lobe damage. Two studies have shown deficits in hierarchical control at policy 

levels that were higher, but not lower, than the level directly affected by the lesion along the 

rostro-caudal axis of lateral frontal cortex (Badre et al., 2009; Azuar et al., 2014). Thus, to 

the degree that one must rely on output gating of higher order information, a lesion to more 

rostral frontal cortex would disrupt performance. This would be akin to a loss of top down, 
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“diagonal influence” from rostral PFC to caudal striatum. As such, the lesion would be an 

extreme of the model manipulation that weakened the diagonal connection between PFC and 

striatum. Thus, under such conditions, the model predicts that the responses themselves 

would be dominated by lower-order information. In the patients tested by Badre et al. 

(2009), the response mappings overlapped across feature sets, and so this prediction could 

not be tested. However, if response mappings were separated or if asymmetries in feature 

salience were manipulated, the model predicts that patients will show biases in their errors 

reflecting an overreliance on lower order information. These predictions are also broadly 

consistent with the general vulnerability of frontal lobe patients to prepotent response 

pathways.

It is notable that our neural network simulations revealed non-monotonic features not 

apparent in the experimental data (see Figure 10). As we can directly measure the internal 

components of the model, the model provides better resolution in time than behavior, as well 

as a more precise way of interpreting the trajectories themselves (as evidence for each 

response). The overall parallel evolution of these decisions captures the essential findings of 

the behavior, but the enhanced resolution and specificity of these measures reveals new 

complexities in the time-courses of evidence for each decision within striatum that are not 

available in behavior. In some sense, these changes constitute additional novel predictions of 

the model. Testing such predictions would need to focus on striatal measures specifically 

and could be conducted through neuroimaging, like EEG (e.g. Borst & Anderson, 2015) or 

combined EEG/fMRI (Frank et al., 2015) or even direct striatal recordings.

Another difference between the model and the behavioral data is the manner in which the 

rules were learned: the model learned the rule set via reinforcement learning, whereas the 

human participants learned through explicit instruction. At a high level, this difference 

reflects a commonly cited limitation of computational modeling: namely, models often 

require different training procedures than human beings. A common response to this point is 

that the learning in the model mirrors – albeit in a simplified form – the acquisition of 

control policies that a human experiences over a lifetime spent behaving in the real world 

before entering the lab. Thus, by the time a human adult participant does a task, the 

instructions merely draw on already learned policies for cognitive control via some process 

of analogy, and thus mirror the test phase of the model. A similar point applies in the present 

case, wherein we examined the performance of both the model and the human participants 

during the test phase. Nevertheless, the specific rules were novel for humans, and so a form 

of explicit learning took place during the training phase to map these rules to existing 

policies, and this process was not captured in the model.

However, there are two factors that mitigate concern over this potential difference. First, 

using only a second order rule, at least one prior study (Badre, Kayser, & D'Esposito, 2010) 

has shown that hierarchical rules acquired through pure reinforcement learning exhibit 

similar patterns of frontal activity during performance as those acquired through explicit 

instruction. Second, even though it was explicit, our participants learned the rules in a 

progressive training procedure, practicing one rule at a time and combining them 

incrementally. Thus, if anything, the training procedure would have encouraged a serial type 

of representation in the human participants. However, such serial processing was not 
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evident, even when analysis was restricted to the practice phase or early in the test phase 

(Appendix D). Hence, the observed similarities between the model and the behavioral data 

are all the more striking, given the potential differences in training.

Another important consideration is whether the effects observed here could be attributed to a 

perceptual stage rather than the S-R stage. It is certainly the case that abstract rules can 

affect perceptual processes. Indeed, evidence of preparation effects in the traditional task 

switching literature may be partially attributable to the construction of such an advance 

attentional set. Similarly, in the theoretical framework we use in this paper, this process 

might correspond to an “input gate”, whereby a cue would indicate what other stimulus 

information to allow into working memory to influence responding (Frank et al., 2001; Hazy 

et al., 2007). Just as with output gating, input gating can be driven by higher order rules. For 

example, Chatham et al. (2014) used a serial stimulus ordering manipulation during a 2nd 

order rule task to separately test input versus output gating of working memory. This study 

found that both types of gating make use of similar corticostriatal systems that are central to 

the present model.

Nevertheless, we are doubtful that perceptual attentional selection or an input gating process 

is driving the effects in the present study. First, as noted previously, most task switching 

studies showing preparation effects use serial stimulus presentation, providing cues in 

advance of target stimuli. Chatham et al. (2014) similarly encouraged input gating by 

providing higher order contextual cues in advance of lower order cues. However, when 

stimulus information is presented simultaneously as we did in this study, there is evidence 

that people tend to encode task-irrelevant information into visual working memory 

(Marshall and Bays, 2013; Shen, Tang, Wu, Shui, & Gao, 2013) and filter after the fact; a 

process akin to output gating.

Second, the present results are themselves inconsistent with filtering of irrelevant 

dimensions, as the initiation time for each level of the decision was simultaneous. The top-

level rule indicated which middle-level feature was relevant for a particular stimulus. Thus, 

if an input gating/attentional selection strategy were being used, solving the higher level first 

would allow for early attentional resources to be directed toward the relevant middle-level 

feature and away from the irrelevant middle-level feature. However, the middle-level error 

rate appeared to start declining just as early as the top-level feature. In other words, not only 

was the middle-level decision in process before the top-level rule completed, but this 

suggests that attention could not have been biased toward either of the middle-level features 

initially. The same reasoning follows for the middle-level rules biasing perception of the 

low-level features. Thus, it seems likely that these effects are occurring at the S-R stage, and 

moreover, it is output gating, rather than input gating, that is the process being governed by 

the higher order rule in this task. Nevertheless, this does not rule out the possibility that 

people can make use of input gating strategies in other contexts. The process by which 

people choose to strategically input or output gate is a topic for future research.

Finally, some aspects of our results might reflect characteristics of hierarchical rules rather 

than hierarchical decision-making per se. For example, the earlier top-end time could arise 

because top-level rules are more frequently relevant than any given lower-level rule. This 

Ranti et al. Page 23

Cognition. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



differential exposure might contribute to the faster resolution or prioritization of that level of 

the hierarchy. Thus, future study will be required to determine whether the parallel dynamic 

observed here might also apply in other hierarchical control settings without the specific 

concrete features of this design.

In summary, the results from our response deadline experiment support a parallel S-R stage, 

wherein multiple contingent decisions are made roughly in parallel, though with the top-

level decision resolving slightly earlier than the lower-order decisions. Simulations with a 

neural network that implements a hierarchical multiple frontostriatal gating loop architecture 

also produced evidence of parallel evolution of decisions at all levels of contingency. 

Interestingly, this model suggests that the top down influence of PFC on striatum may result 

in both dynamics observed in behavior. A greater influence of PFC resulted in a more 

parallel initiation of the decision, overcoming a bottom-up bias toward decisions proximate 

to the response, and a differentiation of the resolution of the decision, with the higher level 

resolving first and so influencing the lower decision. These results are consistent with 

theories proposing a dynamic cognitive control system that leverages frontostriatal circuits 

for solving complex tasks.
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Appendix A: Rule Learning Order Effects

We compared error rates for different rules in the hierarchy, in order to explore how the 

temporal ordering of the rule-learning procedure may have impacted results. All participants 

learned and practiced the rules in the same order (Figure 3). We looked at the average error 

rates for the two middle-level rules and the four low-level rules. All participants were 

included in this analysis.

There was no significant difference in the average number of errors between the two middle-

level rules (paired t-test: t(22)=1.18, p=0.25) (Figure A.1a). Thus, the order in which 

subjects learned the middle-level rules seems to have had little effect on their performance.

Examining the number of errors for each of the low-level rules revealed minor differences 

(Figure A.1b). Low-level rules were taught in pairs, followed by a middle-level rule that 

combined them. Thus, participants learned the border thickness rule (low level), followed by 

the color rule (low level), and then the size rule (middle level, combining the previous two). 

Next, they learned the orientation rule (low level), followed by the location rule (low level), 

and then the shape rule (middle level, combining the previous two). There was no significant 

difference between the number of errors made for the first pair of low-level rules compared 

to the second pair (paired t-test: t(22)=1.64, p>0.05).
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However, the low-level rules taught first within their pair (i.e., border thickness and 

orientation) had fewer errors than the rules taught second within each pair (color and 

location, respectively). These effects were significant, assessed via paired t-tests (border 

thickness (1st) vs. color (2nd): t(22)=3.04, p<0.01; orientation (3rd) vs. location (4th): 

t(22)=7.99, p<0.01).

Despite differences in the number of errors made for each of the low-level rules, these 

effects do not appear to have emerged from the overall order in which participants learned 

the rules, per se. In addition, our analyses collapse across each level of the hierarchy. 

Though these differences may have increased the variance in our sample, this variability 

does not account for the observation that participants performed the decision across levels in 

parallel.

Figure A.1. Order of rule learning
Average number of errors made for individual rules on (a) the middle level of the hierarchy 

and (b) the low level of the hierarchy. Error bars depict standard error.

Appendix B: Deadlines for the Response Deadline Procedure

Appendix B

Deadlines for the Response Deadline Procedure

Set 1 (n=1) [ms] Set 2 (n=2) [ms] Set 3 (n=2) [ms] Set 4 (n=18) [ms]

50 50 50 50

200 200 100 100

350 300 185 175

500 400 270 250

650 500 355 325

800 600 440 400

950 700 525 475

1100 800 610 550

1250 900 695 625
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Set 1 (n=1) [ms] Set 2 (n=2) [ms] Set 3 (n=2) [ms] Set 4 (n=18) [ms]

1400 1000 780 700

1550 1100 865 775

1700 1200 950 850

1850 1300 1035 925

2000 1400 1120 1000

2150 1500 1205 1075

2300 1750 1290 1150

2450 2000 1375 1225

2600 2250 1460 1300

3000 3000 2500 2500

3500 3500 3500 3500

Table B.1: The set of deadlines for the response deadline procedure was adjusted several times throughout data collection. 
Four different sets of deadlines were used in total: each set had 20 deadlines ranging from 50ms to 3500ms. The deadlines 
that participants actually experienced varied slightly from these times, because of hardware delays. The number of 
participants for each set is presented in the table.

Appendix C: Parameter Recovery Tests

Simulations were run in order to verify the ability to recover parameters in the hierarchical 

Bayesian model from the data collected in the behavioral experiment. For each simulation, a 

mock data set was generated, with trials from a number of “subjects.” A temporal pattern for 

each data set was set by selecting values for each of the nine parameters that the model 

would estimate (start, end, and asymptote values for the three levels of the hierarchy). A 

mean and standard deviation were chosen for the distribution of each parameter among the 

entire group. Subject-specific values for each parameter were drawn using a normal 

distribution with the group mean and standard deviation. Each subject had a set of several 

hundred trials, with “reaction times” that spanned the length of the experimental trial (<4s).

For each trial, the probability of making an error was calculated separately for each level 

(top, middle, and low), using the subject-specific parameters and the “reaction time.” The 

error rate on each level was set to decrease linearly from chance (50%) at the start time to 

the asymptote level at the end time, as implemented in Equation 1. Using these error rates 

for each level, a response was probabilistically chosen for each trial. Finally, the Bayesian 

model was used to estimate the parameters from the mock data set (which included subject 

numbers, reaction times, and response types). The parameters that were estimated were 

compared to the values that were originally assigned to the data set. This procedure was 

repeated for data sets that had a variety of temporal patterns, and the model was consistently 

able to recover the parameters accurately (Figure C.1).
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Figure C.1. Model simulations
The model successfully recovered the parameters underlying the mock data sets, for a 

variety of temporal patterns, some of which are pictured here. The graphs above illustrate 

the parameters that were selected to create the mock data sets (in the “Generative” column), 

as well as the parameters that were recovered by the model (in the “Recovered” column). 

Each graph shows how the probability of making an error on each level of the decision 

changes across time in a trial, as well as the changing probability of making a correct 

response. Some of the temporal patterns tested include: (a & b) serial: error rates decrease 

for one level at a time, (c) partially parallel: each level has a different start and end, but 

there is some overlap in the resolution of uncertainty, (d) equal start: error rates for all 

levels start to decrease at the same time, (e) equal end: error rates on all levels reach 

asymptote at the same time, (f) asymptotic differences: error rates are different between 

levels at the end of the trial, (g) partially parallel: the top level resolves before the middle 

and low levels, which have the same start time, and (h) middle before top: the error rate for 

the middle level of the decision starts to decrease first.

Appendix D: Experiential Effects

We explored the possibility that experience with the task in Experiment 1 may have affected 

the temporal pattern of the decision by examining error rates in three different subsections of 
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the experiment: the response deadline practice phase, the first two blocks of the 

experimental phase, and the fifth and sixth blocks of the experimental phase. For each phase, 

we plotted how error rates on each level of the decision changed over the trial period, 

mirroring the standard analysis carried out over the whole session (see Figure 5b). However, 

because these analyses relied on a fraction of the trials used for full session analysis, there 

was insufficient data to generate estimates of each individual's error rates for each of the 20 

response deadlines. Thus, we pooled data across participants and examined how group-level 

error rates changed over the course of the trial period.

First, we examined error rates during the response deadline practice phase (Figure D.1a), 

which was the earliest time in the experiment when participants were behaving according to 

the complete rule structure. In order to include as much data as possible, we included trials 

where the response delay was more than 600ms, which was one of the exclusion criteria for 

experimental trials. We also compared error rates in the first two experimental blocks 

(Figure D.1b) to error rates in the fifth and sixth experimental blocks (Figure D.1c).
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Figure D.1. Experiential effects on group-level error rates
These plots show how error rates for each policy level change over the window of time 

sampled in three subsections of the experiment: (a) the response deadline practice phase, (b) 
the first two experimental blocks, and (c) the fifth and sixth experimental blocks. All 

participants were included in this analysis, and trials were pooled between individuals (i.e., 

error rates are on the group level). Responses are binned by deadline and plotted by average 

response time (measured from the onset of the stimulus).
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All three subsections of the experiment show the same general trend as seen in Figure 5b: 

error rates on all levels of the decision appear to decline in parallel. At the earliest time point 

available, the error rates are under the level of chance (50%) and generally continue to 

decline over the course of the trial. The top-level error rate also follows the same trend in all 

subsections: it appears to decline slightly faster than error rates for the other two levels. In 

addition, the time frame over which the error rates are declining does not appear to shift 

substantially over the course of the experiment: most of the decline occurs before 1500ms.

However, the asymptotic error rate does seem to have been affected by familiarity with the 

task. Early in the experiment, in both the response deadline practice phase and the first two 

experimental blocks, the error rates do not appear to reach an asymptote by the longest 

deadline. Error rates continue to decline after 1500ms until the end of the trial period, 

although the rate of decline is much slower. In contrast, the error rates seem to have reached 

a relatively stable low by the same time in the fifth and sixth blocks.

This practice effect was evident in the average accuracy rates within the last four response 

deadline bins. Average accuracy was 67.5% (SD = 22.3%) in the response deadline learning 

practice phase, 80.5% (SD = 14.5%) in experimental blocks 1 and 2, and 87.3% (SD = 

14.8%) in experimental blocks 5 and 6. Paired t-tests between the accuracy for longer trials 

showed a significant difference between the response deadline practice phase and the first 

two experimental blocks (t(17)=2.88, p=0.01), as well as the practice phase and the fifth and 

sixth experimental blocks (t(17)=3.66, p<0.01). There was a trending difference between the 

first two experimental blocks and the later experimental blocks (t(17)=1.93 p=0.07). These 

changes are consistent with an overall performance improvement across all levels of the 

decision with practice.

Overall, we do not find evidence for an experience-dependent flattening of the rule structure. 

Of course, the earliest point in the experiment when we can examine the timing of the 

decision is the response deadline practice phase, which follows a lengthy rule-learning 

phase. It is possible that subjects had already learned to collapse the low- and middle-level 

rules by that phase. However, the consistency of the general parallel trend across different 

subsections of the experiment suggests that participants may also have been solving the 

middle- and low-level rules simultaneously, rather than learning over time to respond to 

feature conjunctions. Familiarity with the rules seems to have primarily affected the speed at 

which participants completed all levels of the decision, rather than the relative timing of 

each level.

Appendix E: Switch Effects

Task-switching is a critical factor to consider in the results from the behavioral paradigm. 

Due to the structure of the rules, switches occurred at different frequencies for each level of 

the policy. Thus, the slightly earlier end-time of the top-level decision may have been a 

result of more frequent rule repetition. In order to explore such effects, we conducted 

analyses of task switching at different levels of the rule structure.
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We assigned a switch to a given level based on the highest level at which a switch occurred 

between trials. Thus, we defined a switch on the middle- or low-levels as occurring only if 

the relevant higher-level features repeated. This labeling followed from the logic of the 

present design, which required that a switch at a given level always entailed switching at all 

lower levels. Therefore, it was not possible to code switch and repeat across levels as a fully 

factorial crossing. First, we tested how each type of rule switch affected error rates, 

comparing switch trials to trials where all the rules repeated (Figure E.1).

Across levels, a switch on any given level of the hierarchy resulted in an increased average 

error rate for that level relative to repeat trials. This effect was significant for the middle-

level error rate in middle-level switch vs. repeat trials (paired t-test: t(17)=6.01, p<0.001), as 

well as the top-level error rate in top-level switch vs. repeat trials (paired t-test: t(17)=7.19, 

p<0.001). The effect was not significant for the low-level switch cost (paired t-test: 

t(17)=1.47, p>0.05).

Figure E.1. Error rate switch cost
Switch costs were calculated by subtracting the error rate in a repeat trial (all rules repeat) 

from the error rate in each type of switch trial. Error bars depict standard error.

A switch on any given level also resulted in a switch cost for error rates on lower levels of 

the hierarchy. This follows naturally from the fact that a higher order rule switch also 

resulted in a switch of all lower level rules. These observations are supported statistically. 

There was a switch cost on the low-level error rate when the middle level rule switched 

(paired t-test: t(17)=4.19, p<0.001), as well as when the top-level rule switched (paired t-

test: t(17)=5.34, p<0.001). There was also a significant switch cost on the middle-level error 

rate when the top-level rule switched (paired t-test: t(17)=5.21, p<0.001).

Notably, switching at a given level did not consistently impact likelihood of an error at a 

higher level. In other words, we compared the repeat conditions at higher levels with and 

without a lower level switch. When the low level rule switched, there was not a significant 

switch cost apparent in middle level error rates (paired t-test: t(17)=0.32, p>0.05) or top-

level error rates (paired t-test: t(17)=0.68, p>0.05). When the middle-level rule switched, 

there was a slightly higher rate of top level errors (paired t-test: t(17)=3.44, p<0.01). 
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However, the switch cost on top-level error rates was higher when the top-level rule was 

switching, compared to middle-level switches (paired t-test: t(17)=6.48, p<0.001). Note that 

the significance levels for these paired t-tests were Bonferroni corrected.

To summarize this initial analysis, we found that switching made individual levels of the 

decision more difficult and had an asymmetrically greater effect on error rates at lower but 

not higher levels, consistent with the hierarchical structure of the task. This is consistent 

with prior work that has examined effects of multi-level task switching (Kleinsorge & 

Heuer, 1999). Moreover, the observation of distinct switching effects at the middle and low 

level suggests that participants may not have employed a partially flattened task structure 

that combined the middle and lower levels.

Next, we examined how the timing of the decision may have been affected by top-level rule-

switches vs. rule-repetitions (Figure E.2a-b). Unsurprisingly, there was a switch cost on the 

initiation point when the top-level rule switched and a pronounced benefit when the top-

level rule repeated. The middle- and low-level error rates began at very similar levels in both 

types of trials, although they were slightly lower when the top-level rule repeated.

Despite these initial differences, the time frame over which the error rates declined looked to 

be largely the same across switch and repeat: error rates reached a stable low at around 

1500ms in both the switch and the repeat trials. Strikingly, the top-level error rate was 

numerically less than the other error rates by this point in both the switch and the repeat 

trials, consistent with the faster resolution of the top-level decision seen in the full data set. 

This pattern suggests that the top level of the decision was being resolved earlier than the 

middle and low levels, even when the top-level rule switched. This is evidence that the top-

level timing differences that we report are not an artifact of task-switching, per se. The 

parallel pattern was also observed for both switch and repeat trials for both middle and low 

levels of decision, as well (Figure E.2c-f).

The cost of switching a rule appears to affect the initial error rate, but not the parallel nature 

of the decision or the time at which error rates reach a relatively stable low. This analysis 

revealed effects of switching at each level, but it was not the case that the top level's earlier 

end time could be accounted for based on frequency of switching. Moreover, the evidence of 

separable effects of switching between the low and middle levels may suggest that 

participants did treat these separately, as opposed to a partially flattened structure.
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Figure E.2. Rule-switching effects on group-level error rates
This analysis includes the 18 participants who were presented with the final set of deadlines. 

Responses were pooled across the group, binned by deadline, and plotted by average 

response time (measured from the onset of the stimulus).
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Figure 1. Serial reduction of uncertainty
When each level of a hierarchical decision is resolved, it reduces uncertainty on all lower 

levels. In the three-level binary decision tree shown, solving a level reduces the number of 

relevant items on all lower levels by half. Potentially relevant paths are shown in black for 

each stage of the serial decision, while irrelevant paths are gray.
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Figure 2. Experimental task
(a) The experiment involved a stimulus-response task with rules that were structured 

hierarchically. The three levels of hierarchy are labeled in this figure (top, middle, and low). 

The stimuli for the task had seven dimensions, named in boxes. Each dimension had two 

variants (e.g. stripes and patterns), which either indicated which lower-level dimension was 

relevant, or mapped directly to a response. The responses are numbered 1-8 at the bottom of 

the tree and correspond to buttons pressed using the fingers shown in (b).
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Figure 3. Order of rule learning
Participants learned and practiced the rule set incrementally and in a prescribed order.
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Figure 4. 
Each level of the decision, examined independently from the others, reduces the number of 

responses that are potentially correct (from eight to four). In this figure, the responses that 

are consistent with each level of the hierarchy are circled (for the example stimulus, pictured 

on a black background). Only one of the eight responses is consistent with all three levels of 

the rule set (button 2): this is the correct response.
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Figure 5. 
These plots show how (a) accuracy and (b) error rates for each policy level change over 

the window of time sampled. These analyses only include the 18 participants who were 

presented with the final set of deadlines. In both graphs, responses are binned by deadline 

and plotted by average response time (measured from the onset of the stimulus). Error bars 

show standard error.
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Figure 6. 
The asymptotic accuracy calculated from the model results was highly correlated to the 

asymptotic accuracy calculated from the raw behavioral data (r=0.97).
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Figure 7. Results from MCMC modeling
The mean and standard deviation of the distributions for the group parameters are shown 

above, represented graphically (a) and in a table (b).
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Figure 8. Emergent network
Modified version of the basal ganglia loop model from Collins & Frank (2013), shown in an 

exemplar state of activity. Layers are labeled and represented as bordered rectangles 

containing circular units. Cylinders indicate the strength of a unit's activity at a particular 

moment. Our model manipulations affected the strength of the connection from PFC to 

Striatum and the connection from PC to Striatum. PC: Parietal cortex; PFC: Prefrontal 

cortex; PMC: Premotor cortex; SNc: Substancia nigra pars compacta; STN: Subthalamic 

nucleus; GP_Int: globus pallidus internal segment; GP_Ext: globus pallidus external 

segment. Layers labeled “2” indicate the higher-order loop.
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Figure 9. Task for Emergent simulations
A schematic of the task that the network learned, with two levels of hierarchy (top and low), 

three features (shape, orientation, and location) and four possible responses (R1-R4).

Ranti et al. Page 46

Cognition. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. Emergent results plotted as trajectories of each response type
Support for each response was calculated from striatal Go and NoGo activity (see equation 

2) averaged over five runs of the network (i.e. five initializations of the weights). Each run 

consisted of five epochs (40 trials). Inset illustrates what each response trajectory would 

correspond to on a decision tree for an example trial of the experiment. (a) Trajectory of 

response support over time using the default network weights. In the default settings, the 

weight of the connection from PFC to Striatum was less than the weight of the projection 

from PC to Striatum. (b) Trajectory of response support over time when there is less 
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influence of PFC on Striatum. The relative weight of the projection from PFC to Striatum 

was decreased from 0.75 to 0.5, while the relative weight of the projection from PC to 

Striatum remained at the default level of 1.25. (c) Trajectory of response support over time 

when there is the least influence of PFC on Striatum. The relative weight of the projection 

from PFC to Striatum was decreased to 0.3, while the relative weight of the projection from 

PC to Striatum was kept at the default level of 1.25. (d) Trajectory of response support over 

time when there is equal PFC and PC influence on Striatum. The relative weight of PFC on 

Striatum was increased from the default, so that it had an equal influence on Striatum as the 

PC layer. (e) Trajectory of response support over time when there is more influence of PFC 

than PC. The default relative weights of the PFC and PC projections were reversed, so that 

the PFC projection on Striatum had a higher relative weight (1.25) than the PC projection to 

Striatum (0.75). (f) Evolution of response support from each model manipulation (labeled in 

a-e) is represented using a tree structure, with thicker lines indicating more support for a 

particular branch. The four highlighted phases are as follows: 1. All responses are inhibited. 

2. The responses that are correct on the low level (solid lines) have more support. The 

response correct on both levels has the most support. With less influence of PFC on 

Striatum (2a), support for the two responses correct on the low level are similarly supported. 

With more influence of PFC on Striatum (2b), the correct response has more support than all 

others. 3. Both responses correct on the top level (blue lines) get a late boost of support, 

while support for the top-level errors (red lines) goes to zero. 4. Support for the top 

correct/low error response decreases, and support for the response correct on both levels 

increases until the end of the trial.
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