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Abstract

Microfluidic inertial focusing reliably and passively aligns small particles and cells through a 

combination of competing inertial fluid forces. The equilibrium behavior of inertially focused 

particles in straight channels has been extensively characterized and has been shown to be a strong 

function of channel size, geometry and particle size. We demonstrate that channels of varying 

geometry may be combined to produce a staged device capable of high throughput particle and 

cell concentration and efficient single pass complex fluid enrichment. Straight and asymmetrically 

curved microchannels were combined in series to accelerate focusing dynamics and improve 

concentration efficiency. We have investigated single and multiple pass concentration efficiency 

and results indicate that these devices are appropriate for routine cell handling operations, 

including buffer exchange. We demonstrate the utility of these devices by performing a ubiquitous 

fluorescence staining assay on-chip while sacrificing very little sample or processing time relative 

to centrifugation. Staged concentration is particularly desirable for point of care settings in which 

more conventional instrumentation is impractical or cost-prohibitive.

Introduction

Inertial microfluidic focusing is a passive, high-throughput particle and cell focusing 

technique with diverse applications in particle and cell sample filtration1–3, 

encapsulation4–6, separation7–13 and flow cytometry14, 15. This unique microfluidic 

phenomenon passively aligns microparticles and cells to well-defined lateral and 

longitudinal locations without the need for external actuation16–19. Inertial focusing is the 

product of a force balance between opposing inertial lift forces and occurs under flow 

conditions characterized by Reynolds numbers that approach or exceed a value of one19, 20. 

In straight channels, these hydrodynamic lift forces arise from interactions between 

particles, fluids and surfaces, combining to produce well-defined, predictable equilibrium 

focusing behavior21–25. Initially observed in a cylindrical tube16, inertial lift forces confine 

dispersed particles to narrow equilibrium focusing positions within microchannels, where 

the number and orientation of focusing positions is dictated by microchannel 

geometry16, 26–28.

At high flow rates, asymmetrically curved microchannels induce a secondary recirculating 

(Dean) flow perpendicular to the primary flow direction29. This secondary recirculating flow 

arises from the gradient in fluid velocity between the center and top and bottom walls of the 
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curved channel. Inertia carries the fluid in the channel center toward the outer side wall of 

the curve, where mass conservation establishes two counter-rotating vortices. Inertially 

focused particles are subjected to these secondary flows, referred to as “Dean flows”, and 

experience a drag force that displaces them from their straight channel equilibrium positions 

toward the inside of the focusing curve. The biasing of these particles from their straight 

channel equilibrium positions results in lateral repositioning that is, in turn, balanced by the 

lift force induced by the inner wall. Previously, the offsetting of particles by curved channels 

has been used in staged inertial focusing channels15 to generate focused streams of single 

particles.

There has been considerable effort focused upon the development of compact, lightweight 

and cost-effective laboratory equipment for point-of-care (POC) applications30–32, which 

are particularly desirable for settings in which conventional instrumentation is impractical or 

cost-prohibitive. POC technologies based upon microfluidic inertial focusing for the passive 

handling, concentrating, and sorting of complex biological suspensions are particularly 

attractive33–36. Numerous other reports have demonstrated the ability to concentrate 

particles37, 38 some using dielectrophoresis39–41, magnetophoresis13, 42, 43 or 

acoustophoresis44, 45 for microfluidic bioassays, but these techniques are lower throughput 

or require external hardware and actuation. We have developed a staged inertial focusing 

approach that is passive, high throughput and robust. We examine the relationship between 

geometry and particle focusing for the development of an autonomous staged microfluidic 

device capable of efficiently simplifying sample handling procedures. We show that staged 

inertial focusing can be applied effectively to concentrate particle suspensions with very 

high throughput and single pass efficiency. Despite this being a microfluidic approach, a 

single channel may process milliliters of fluid per minute and channels may be easily 

parallelized for even higher throughput. In this work, the equilibrium behavior of inertial 

focused channels has been extensively characterized and the constitutive phenomena 

described empirically. In POC scenarios, these devices may be readily substituted for 

centrifugation, which is energy-intensive and can result in significant sample loss.

Materials and Methods

Standard soft lithography methods were used to fabricate and replicate microfluidic devices 

in polydimethylsiloxane (PDMS)46, 47 (Sylgard 184. Dow Corning). PDMS microchannel 

replicas were bonded to clean glass slides following exposure to oxygen plasma. 

Microparticle suspensions were pumped with a syringe pump (neMESYS, cetoni GmbH) 

into microchannels from a 5 mL plastic syringe via Tygon tubing (0.01″ ID). Long exposure 

imaging was used to capture streaks from particle ensembles in channel expansions using 

fluorescence microscopy (Olympus IX71 inverted microscope and a VisionResearch 

Phantom v310 camera). One-dimensional fluorescent intensity profiles perpendicular to the 

flow direction were acquired and normalized using image processing and analysis software 

(ImageJ64, National Institutes of Health).

Polystyrene bead solutions were prepared from green fluorescent polystyrene microparticle 

stock solutions (Thermo Scientific) with an aqueous suspension of 1% solids, a density of 

ρ=1.05 g/cm3, and a diameter of a=9.9 μm. Microparticles were dispersed into deionized 
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water and iodixanol (OptiPrep, Sigma Aldrich) to final solution concentrations. To prepare 

neutrally buoyant solutions, fluid density was modified with OptiPep to match the density of 

the polystyrene microparticles.

Particle suspensions with an initial concentration of 2×106 beads/mL were loaded into a 

5mL syringe, and injected into microfluidic devices at a velocity of 0.5 m/s. The device 

contained 3 outlets: concentrator outlet 1 (fraction 1), concentrator overflow outlet 2 

(fraction 2) and bulk fluid outlet 3 (fraction 3). Each output solution was collected 

separately, and outlets 1 and 2 were recombined prior to analysis. A hemocytometer was 

used to calculate the concentration of effluent particle solutions. The combined solution 

(fractions 1 and 2) from the first pass was then re-injected into the same device and 

collection and analysis was repeated for the second pass. This protocol was repeated for a 

total of four passes.

Cell suspensions were prepared using A431 cell lines maintained in Dulbecco’s Modified 

Eagle Medium (Lonza) supplemented with 10% fetal bovine serum (ATCC) and 1% 

penicillin/streptomycin (Millipore) at 37°C and 5% CO2. Cells were grown to confluence, 

trypsinized with a 0.25% trypsin solution, labeled with CellTracker Blue CMAC (Life 

Technologies), and resuspended at a concentration of 2×106 cells/mL in 16% OptiPrep in 

PBS. Eosin Y (Sigma) was added to the cell suspension to achieve a final concentration of 

25 μM.

All microfluidic channels were primed with a 0.01% Tween 20 solution to prevent cell 

aggregation. The cell suspension was loaded into a 5 mL syringe and passed through the 

channel at a velocity of u=0.5 m/s. The same enrichment protocol was followed for 

fluorescent polystyrene microparticles and cells. A total of four passes were performed, 

provided sufficient sample was collected from the previous pass. Experiments at each 

condition were performed in triplicate. Following the third and fourth passes, the final 

combined output of fractions 1 and 2 were diluted to the original cell concentration (2×106 

cells/mL) with 16% OptiPrep in PBS. In order to demonstrate complete removal of the eosin 

dye from the cell suspension, the concentration of eosin in this diluted sample was measured 

based on the absorbance at 525 nm (extinction coefficient=89,313 M-1cm-1) using a 

TECAN Microplate Reader. The concentration of eosin in the bulk fluid output (fraction 3) 

collected from the third pass of outlet 3 was also measured. A cell suspension at a 

concentration of 2×106 cells/mL in 16% OptiPrep in PBS (no eosin) was used as a blank for 

the diluted sample.

Results and Discussion

It has been well documented that inertial focusing can be used to concentrate solutions of 

cell or particles. Even under optimal conditions, however, channel geometry imposes 

physical constraints upon the efficiency of particle concentration by inertial focusing48–50. 

Interacting Stokes’ wakes produce long-range interparticle separations22 that reduce the 

effective particle concentration within a given collectible fraction, resulting in excess fluid 

being drawn off with the particles. It is therefore desirable to minimize the fluid volume-to-

particle ratio in order to maximize concentration efficiency. As seen in Figure 1, inertial 
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focusing behavior was observed from below using long-exposure fluorescent imaging, and 

aggregate particle positions were visualized as “streaks”. We define a device’s concentration 

efficiency as α = 1-WS/WC, where WS is the width of the particle streak and WC is the 

width of the channel in which the streak was measured. This ratio provides a partial measure 

of a channel’s concentration efficiency.

To increase the concentration efficiency of inertially focused particles, the interparticle 

spacing must also be decreased without increasing the relative particle streak-width to 

channel-width ratio. As previously demonstrated3, channel expansions can be a useful tool 

to reduce interparticle spacing. As a microfluidic channel expands, the average fluid velocity 

decreases. While inertial forces dissipate quickly due to a decrease in the particle Reynolds 

number (Rep)7, corresponding to the fluid velocity, the particles maintain a uniform relative 

lateral position that is dependent on their initial position as they enter the expansion (Figure 

1a–c). As the channel expands the drop in fluid velocity is uniform, except very near the 

channel side-walls. As stream lines diverge along the expansion section of the channel, 

imperceptible variations in particle position become amplified. The decreasing fluid velocity 

also reduces that magnitude of the viscous dissipation that constrains interparticle spacing. 

In turn, interparticle spacing is reduced, resulting in a concentration efficiency increase. The 

increase in efficiency is linear with decreasing velocity until the point at which interparticle 

collisions begin to occur, which manifests in a broadening of the streak width as particles 

become deflected off-axis. With a minimization of particle stream broadening and 

interparticle spacing in the expansion, staged inertial focusing devices with expansions are 

capable of significantly higher concentration efficiencies and collection yields than inertial 

focusing devices without expansion sections.

A particle’s equilibrium focusing position dictates its position as it enters the expansion, 

which can be manipulated by channel geometry. Straight, high aspect ratio channels (h/w < 

1, Figure 1a) produce two equilibrium focusing positions, one at each channel face, centered 

on the channel’s longitudinal centerline. Short channel faces are unpopulated as no shear 

gradient exists in the lateral dimension. Focusing depletes the entire fluid volume of 

particles across the remainder of the channel. Asymmetrically curved channels were 

fabricated with cross sections similar to straight, wide high aspect ratio channels, and 

produce similar focusing behavior. However, they also posses asymmetrical curvature which 

induces a secondary, orthogonally unidirectional Dean flow that shifts equilibrium focusing 

positions to the inside channel edge7, 22, 28, 29, reducing the number of focusing positions 

from two to one as demonstrated by the blue particle streak in Figure 1b and Figure 2a. 

Straight, high aspect ratio channels (h/w > 1) contain two visible focusing positions, one at 

each channel face, centered on the channel’s vertical centerline. These two focusing 

positions are visualized by the two green streaks in Figure 1c. While particles are tightly 

focused by this geometry, concentration efficiency is confounded by the presence of two 

lateral particle positions. To most effectively concentrate and collect particles, therefore, a 

single, tightly focused stream is desired. Particle stream broadening was assessed for each of 

these three channel geometries by observing particle behavior in the expansion section. 

Fluorescence intensity was measured at the beginning (WC1), middle (WC2) and end (WC3) 

of the expansion using long-exposure fluorescent microscopy (Figure 1d). Figure 1e shows 
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one dimensional intensity profiles for each geometry considered in Figure 1a–c at WC3. The 

width of the particle streak is expressed as the full width-half maximum (FWHM) of the 

fitted gaussian distribution for each intensity profile. Theoretically, the FWHM of an optimal 

particle focusing streak should be equivalent to the FWHM measured from the intensity 

profile of a single fluorescent particle. Consequently, measured FWHM values were 

normalized by dividing the streak FWHM by the FWHM measured from a single particle of 

diameter a=9.9 μm. Therefore, optimum equilibrium focusing behavior should converge to a 

value of FWHM/a = 1. Values greater than 1 indicate sub-optimal focusing or particle 

stream broadening. Figure 1f illustrates the effects of channel geometry on particle stream 

broadening in the expansion section for straight high aspect ratio (h/w > 1, width w=20μm, 

height h=35μm; h/w < 1, width w=60μm, height h=35μm) and curved microchannels (width 

w=60 μm, height h=35μm) with similar geometric aspect ratios. Straight, wide high aspect 

ratio channels (h/w < 1) produced the most particle stream broadening, whereas tall high 

aspect ratio channels showed the least amount of particle steam broadening. Figure 1g 

demonstrates the functional outcome of channel geometry on the relative amount of the 

expansion populated by particles for WC1, WC2 and WC3. Curved channel geometries 

preformed the best overall, with less than 2% channel consumption by the effluent particle 

stream, while straight wide high aspect ratio channels (h/w <1) preformed the worst with 

over 20% particle stream channel consumption at position WC3.

The improvement in concentration efficiency between curved channels and tall, high aspect 

ratio channels is due solely to the number of lateral focusing positions (one vs. two, 

respectively). It was therefore anticipated that tall, high aspect ratio concentration efficiency 

would be improved by eliminating one of the two lateral equilibrium focusing positions. As 

previously demonstrated15, and shown in Figure 2c, this can be achieved by biasing particles 

to one side of the channel with a staged asymmetrically curved/straight channel 

configuration. To examine the limitations of biasing via asymmetrically curved 

microchannels we evaluated a series of eight channels with increasingly wider focusing 

curves. Focusing curve widths ranged from w=40 μm to w=180 μm in increments of Δw=20 

μm and a channel height of h=35 μm. The fluid velocity was u=0.5 m/s in the smallest 

channel, and scaled with geometry to maintain constant Rep number over the range of 

channel widths. In curved channels, relative particle focusing position changes with focusing 

curve width as illustrated schematically in Figure 2a. Figure 2b illustrates this shift as one-

dimensional intensity profiles taken from long-exposure streak images for increasing 

focusing curve widths. Figure 2b shows that an increase in focusing curve width results in 

an increase in particle displacement from the channel centerline. Because the particles’ new 

equilibrium position is defined by the balance of drag experienced by a particle within a 

Dean flow and the wall induced lift force, wider channels will necessarily produce greater 

deviations from the centerline.

While asymmetrically curved channels can both focus and bias particles, it was speculated 

that their focusing performance was poor relative to their straight, high aspect ratio analogs. 

To investigate this performance, particles were pre-focused within a straight wide high 

aspect ratio channel (h/w < 1) before being fed to an asymmetrically curved channel. Two 

sets of eight channels with varying focusing curve widths and an expansion section 
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downstream of the curvature were examined. One set of eight channels had a straight, wide 

high aspect ratio channel with a width of w=80 μm and a height of h=35 μm leading into the 

curved section, while the other set did not. Focusing curve geometries and flow conditions 

were identical to previous experiments. Intensity profile data was collected at the focusing 

curve farthest downstream prior to the expansion. Black bars in Figure 2d displays the 

concentration efficiency for this device configuration.

Next, focused, biased particles exiting the asymmetric curvature were fed directly into a 

straight vertically-oriented (h/w > 1) high aspect ratio section. This final section aligned 

focused particles along a uniform lateral streamline near the channel wall before being 

introduced into the expansion. Particles also assumed uniform longitudinal spacing, which is 

greater than the mean spacing imposed by curved channels15 as illustrated schematically in 

Figure 2c. Green bars in Figure 2d indicate the concentration efficiency for this four stage 

focusing device.

In comparison to other previously described channel geometry combinations, the four stage 

focusing device appeared to yield the greatest concentration efficiency at widths WC1, WC2 

and WC3 in the expansion. The combined effect of staging can be explained by considering 

the function of each channel section. Section 1 fully focuses particles to the centerline, at a 

higher yield than a curved channel alone. This is supported by the observation of a small, 

but present, particle peak mirroring the primary peak in the asymmetrically curved channel 

results of Figure 1e. Section 2 efficiently biased the focused particle stream to one half of 

the channel. Section 3 laterally re-focused and longitudinally spaced the focused and biased 

particles. Section 4 compacted particle trains51 to minimize interparticle separation. The net 

result of these four processing steps was not only optimal concentration efficiency, but also 

maximum collection yield.

To validate device characterization, particle concentration experiments were performed in 

each of the geometries examined in Figures 3b–c. First, a feed solution of 2×106 beads/mL 

was injected into devices and all 3 outlet fractions were collected separately. Post collection 

concentrated outlets 1 and 2 were then combined and mixed thoroughly prior to analysis. 

The concentrated solution of combined fractions 1 and 2 from the first pass were then re-

injected into the same device and output collection and analysis was repeated for the second 

pass concentrated and bulk solutions. This protocol was repeated for a total of four passes. 

Figure 3b displays the particle collection yield in beads/mL as a function of pass number for 

each of the channel configurations examined previously. Figure 3c shows the fold increase 

of the concentrated samples for the geometries depicted in Figure 3b as a function of pass 

number. All measurements for Figures 3b–c were conducted in various channel 

configurations with a horizontally-oriented channel (w=80μm), focusing curve (w=120 μm), 

vertically-oriented channel (w=20 μm, h=35μm) and a constant fluid velocity of u=0.5 m/s.

Each of these three optimized sections were combined into a single four-stage focusing 

device for final analysis (Figure 3a). Based upon our analysis above, we determined that an 

optimal staged concentrator device would consist of an inlet, a straight horizontally-oriented 

(h/w <1) high aspect ratio channel (width w=80 μm), a series of asymmetric curves 

(focusing curve width w=120 μm), a short straight vertically-oriented (h/w >1) high aspect 

Reece et al. Page 6

RSC Adv. Author manuscript; available in PMC 2015 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ratio channel and an expansion section leading into a single bulk solution outlet and two 

concentrated stream outlets as the schematic in Figure 3a illustrates. Two concentrated 

solution outlets were included in this design because concentrator outlet 2 acts as an 

overflow outlet for higher pass numbers where the highly concentrated particle stream 

exceeds the collection capacity of concentrator outlet 1. The second outlet not only captures 

overflow particles, but also buffers fluctuations in collection position, making the overall 

device performance more robust.

Having determined that the four-stage inertial focusing device was optimally suited for 

particle concentration efficiency and yield, multi-pass particle separations were performed 

and analyzed. Identical protocol were used for these experiments as those described in 

Figures 3. A total of three trials were conducted using this protocol. Figure 4a is a 

micrograph of the concentrator outlet stream in the expansion section of the channel. Figure 

4a also shows equal volumes of the initial solution and fractions collected after each pass. 

Results for this concentration experiment are summarized in Figures 4b–c. Figure 4b 

displays the number of beads collected in bulk and concentrated fractions following each 

pass. With increasing passes, the number of beads collected in concentrated fractions 1 and 

2 increases. Figure 4c corresponds to Figure 4b and represents the fold increase as a function 

of pass number. The average fold increase for passes 1 through 4 were determined to be, 4, 

13, 20 and 28, respectively. It is noted that higher pass numbers produce a slight increase in 

occurrence of beads in the bulk solution indicating the performance threshold of the device. 

Following inertial focusing, the majority of the collection channel is unpopulated with 

particles, which are concentrated to a narrow streamline. At high initial particle 

concentrations, therefore, the carrying capacity of the focusing streamline is exceeded and 

streak broadening occurs as particles interact50. As such, the number of passes used depends 

upon the desired concentration factor and the acceptable degree of particle loss. This 

tradeoff will likely be based upon application.

Concentration of Cells for Solution Exchange

Inertial focusing devices represent an alternative to centrifugation for point-of-care settings 

and for samples requiring more delicate handling. The passive nature of inertial focusing 

allows for gentle cell handling that increases cell viability in biological sample 

processing7, 13. Centrifuges are commonly used to exchange media or to remove excess 

unbound molecules following a staining or binding protocol (e.g. binding an antibody-

fluorophore conjugate to cell surfaces). To demonstrate the applicability of inertial focusing 

devices to the removal of unbound molecules, we prepared cell suspensions with Eosin Y 

dye, and subsequently quantified the reduction in the dye concentration following sequential 

passages. Eosin Y was used as a representative dye in part due to its frequent use as a 

cellular stain.

Figure 5a presents the relative reduction in eosin concentration once the cells are 

resuspended to their original concentration following the third and fourth passes. 

Demonstrating the potential of these devices to be used in place of centrifugation for rinsing 

cells after labeling, more than 88% of the eosin was removed with the bulk fluid following 

the third pass for each of the three trials. Figure 5b shows the cell density in the concentrated 
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(fractions 1 and 2) and bulk fluid (fraction 3) for each pass for the three trials performed. As 

observed with fluorescent microparticles, the concentration of cells from each outlet 

increased as the concentrated output (fractions 1 and 2) was repeatedly passed through the 

optimized microfluidic concentrator device. Figure 5c illustrates the fold increase for 

concentrated suspensions represented in Figure 5b. The average concentration fold increase 

observed for cell suspensions of passes 1 through 4 were 2, 4, 10, and 15, respectively. This 

represents a slight reduction in performance relative to tests conducted with polystyrene 

beads, but this is expected since the cells used were somewhat larger and heterogeneous in 

size. As demonstrated by the successful processing of both cells and particles, this 

technology is well suited for high-yield, efficient biological sample processing.

Conclusion

We have used inertial microfluidic focusing to develop a staged microfluidic separation 

device capable of effective, high-throughput complex fluid enrichment. We have 

investigated the influence of geometry on particle enrichment and found relationships 

between overall device performance and channel geometry. Geometric improvements were 

made to generate a high-yield, tightly focused single stream of particles, which minimizes 

particle-to-buffer ratio in the effluent stream. We have found that four-staged inertial 

focusing devices provide the highest per pass concentration efficiency. We have investigated 

the performance of this concentration device, and have demonstrated its overall 

effectiveness with bead and cell suspensions. Single and multiple pass concentration 

efficiencies were demonstrated to be sufficient for routine and complex tasks, alike, 

including media exchange or the removal of unbound antibodies or fluorophores during 

assays. This technology has the capability to enable simple, autonomous sample handling 

for diagnostic and other clinical operations at the point-of-care.
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Figure 1. 
Inertial focusing behavior in select channel geometries, terminating in expansions, is 

visualized schematically and by long exposure fluorescent imaging. Focusing performance 

was observed in channel expansions following: a) a horizontal (h/w < 1) high aspect ratio 

channel, b) an asymmetrically curved microchannel and c) a vertical (h/w > 1) high aspect 

ratio channel. d) Collage of long exposure particle streak images overlaying (a)–(c) at 

positions corresponding to increasing expansion channel width, WC1, WC2 and WC3. e) One 

dimensional intensity profile of long-exposure particle streak images for (a)–(c). f) Width of 

particle streak in the channel expansion at positions WC1, WC2 and WC3. g) Percent of 

channel area occupied by particles for each geometry shown in (e). Particle solutions with a 

concentration of 2×106 beads/mL were flowed through channels at a constant Rep=1.5.
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Figure 2. 
Focusing position biasing efficiency. a) Schematic representation of effects of focusing 

curve width on lateral particle displacement for increasing focusing curve widths. b) 

Fluorescent intensity profiles in curved channels with focusing curves of increasing widths. 

c) Schematic overview of staging curved and tall channels to aligning particles to a uniform 

lateral streamline position. d) Concentration efficiency of particles in expansion sections 

WC1, WC2 and WC3 from Fig. 1d for each staged geometry considered. Particle solutions 

with a concentration of 2×106 beads/mL flowed through 35 μm deep channels at a constant 

Rep=1.5. Pre-focusing was performed in horizontally-oriented straight channels with widths, 

w=80 μm.
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Figure 3. 
Effects of channel geometry on particle concentration performance: a) Schematic 

representation of final microfluidic concentrator device design. b) Collection yield for 

device configurations considered. c) Fold increase in collection yield data illustrated in (b). 

Particle solutions with a concentration of 2×106 beads/mL flowed through 35 μm deep 

channels at a constant Rep=1.5 for all data shown. Pre-focusing horizontally-oriented 

straight channel width w=80 μm. Focusing curve channel width w=120 μm. Post-focusing 

vertically-oriented straight channel width w=30 μm.
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Figure 4. 
Particle collection yield from a four stage inertial focusing device. a) Visualization of 

concentrated stream outlet in expansion section (left). Initial solution and fractions collected 

after each pass (right). b) Particle concentration of concentrated and bulk fractions from the 

initial suspension and concentrated fractions after each pass. c) Particle concentration fold 

increase per pass. Particle solutions with a concentration of 2×106 beads/mL flowed through 

35 μm deep channels at a constant Rep=1.5 for all data shown. Pre-focusing horizontally-

oriented straight channel width w=80 μm. Focusing curve channel width w=120 μm. Post-

focusing vertically-oriented straight channel width w=30 μm.
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Figure 5. 
Concentrator device performance with biological suspensions. a) Percent reduction in eosin 

concentration. b) Cell density in concentrated and bulk fractions collected in passes 1–4. c) 

Concentration fold increase per pass. Cell solutions with a concentration of 2×106 cells/mL 

flowed through 35 μm deep channels at a constant Rep=1.5 for all data shown. Pre-focusing 

horizontally-oriented straight channel width w=80 μm. Focusing curve channel width w=120 

μm. Post-focusing vertically-oriented straight channel width w=30 μm.
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