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Abstract

Genetic aberrations linked to tumorigenesis have been identified in both canine and human 

hematopoietic malignancies. While the response of human patients to cancer treatments is often 

evaluated using cytogenetic techniques, this approach has not been used for dogs with comparable 

neoplasias. The aim of this study was to demonstrate the applicability of cytogenetic techniques to 

evaluate the cytogenetic response of canine leukemia to chemotherapy. Cytology and flow 

cytometric techniques were used to diagnose chronic myelomonocytic leukemia in a dog. High-

resolution oligonucleotide array comparative genomic hybridization (oaCGH) and multicolor 

fluorescence in situ hybridization (FISH) were performed to identify and characterize DNA copy 

number aberrations (CNAs) and targeted structural chromosome aberrations in peripheral blood 

WBC at the time of diagnosis and following one week of chemotherapy. At the time of diagnosis, 

oaCGH indicated the presence of 22 distinct CNAs, of which trisomy of dog chromosome 7 (CFA 

7) was the most evident. FISH analysis revealed that this CNA was present in 42% of leukemic 

cells; in addition, a breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 
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(BCR-ABL) translocation was evident in 17.3% of cells. After one week of treatment, the 

percentage of cells affected by trisomy of CFA7 and BCR-ABL translocation was reduced to 2% 

and 3.3%, respectively. Chromosome aberrations in canine leukemic cells may be monitored by 

molecular cytogenetic techniques to demonstrate cytogenetic remission following treatment. 

Further understanding of the genetic aberrations involved in canine leukemia may be crucial to 

improve treatment protocols.
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Case Presentation

A 12-year-old neutered mixed-breed male dog was presented with stiffness, right forelimb 

lameness, and neck pain to Freshwater Veterinary Hospital, Enfield, CT. Tests for Lyme 

disease, anaplasmosis, ehrlichiosis, and heartworm disease were all negative (SNAP 4Dx 

Plus Test; IDEXX Laboratories, Inc., Westbrook, ME, USA). At presentation, the 

submandibular lymph nodes were slightly enlarged and firm. Initial empirical treatment 

included a nonsteroidal anti-inflammatory drug (Rimadyl 50 mg, 2 mg/kg twice a day) and 

antimicrobial therapy (Doxycycline 150 mg, 6 mg/kg twice a day), with minimal 

improvement of the right forelimb lameness.

Three weeks later, the dog had a decreased appetite and showed intermittent vomiting. All 

lymph nodes were still slightly enlarged and firm, no cytologic examination was performed. 

Radiographic examination of the thorax and all affected limbs revealed no abnormalities. A 

CBC (Antech Diagnostics, Lake Success, NY, USA) indicated a normocytic, normochromic 

anemia (HCT 25%, Reference Interval [RI] 36–60%; Hemoglobin = 15.8, RI 12.1–20.3 

g/dL; RBC = 3.46, RI 4.8–9.3 106/μL; MCV = 72, RI 58–79 fL; MCH = 25.1, RI 19–28 pg; 

MCHC = 34.8, RI 30–38 g/dL) and an absolute leukocytosis (69,700/μL, RI 6000–

17,000/μL) due moderate neutrophilia (20,213/μL, RI 3000–11,400/μL) with a marked left 

shift (2788/μL RI 0–300/μL) and severe monocytosis (41,820/μL, RI 150–1350/μL; Table 

1). Blood smears revealed moderate anisocytosis and anisokaryosis and confirmed the 

presence of large numbers of round cells that resembled immature monocytes (Figure 1). 

These cells had elongated oval, reniform, or irregularly lobulated nuclei that were 

approximately 2–3 red cells in diameter and had abundant, finely granulated basophilic 

cytoplasm, which occasionally contained small clear vacuoles. These cells exhibited several 

criteria of malignancy, including multiple prominent nucleoli, and anisocytosis and 

anisokaryosis. In addition, dysplastic features in the neutrophil series were observed, such as 

donut-shaped nuclei, and giant metamyelocytes and bands. The morphologic characteristics 

together with the marked monocytosis (Table 1) were consistent with the presumptive 

hematologic diagnosis of chronic myelomonocytic leukemia (CMML).1 Bone marrow was 

not assessed.

Leukemic cells (ie, peripheral blood mononuclear cells, PBMCs) were isolated from a blood 

sample using Ficoll and stained for flow cytometric analysis as described elsewhere 

(Appendix S1).2 Flow cytometric analysis (Becton Dickinson LSR II flow cytometer; BD 
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Biosciences, San Jose, CA, USA) showed a relatively uniform population of cells with 

regard to size (forward angle light scatter) and granularity (right angle or side scatter), 

consistent with monocytes (Figure 2A). The cells expressed the panleukocyte antigen CD45 

and > 97% of them were negative for CD34, suggesting a monomorphic neoplastic 

population (Figure 2B). This was further supported by the expression of the myeloid 

differentiation antigen CD11b (Figure 2C), with approximately 60% at low levels 

(CD11bdim population) and another 15% at higher levels (CD11bintermediate and 

CD11bbright). Approximately 25% of the cells coexpressed CD11b and CD4, which is 

characteristic of mature canine neutrophils (Figure 2C). About 50% of the cells also showed 

robust expression of the monocytic differentiation antigen CD14 (Figure 2D). Only a few 

lymphocytes (< 5%) that expressed lymphoid differentiation antigens, such as CD4 (without 

CD11b and CD14), CD5, CD8, and CD21, were observed. Altogether, the 

immunophenotyping data showed that the affected dog's PBMCs expressed a mixture of 

granulocytic and monocytic cell markers at various stages of differentiation with a 

negligible population of CD34+ blast cells, consistent with a diagnosis of CMML. 

Treatment was initiated with 0.6 mg Vincristine IV (0.7 mg/m2), and 50 mg (2 mg/kg) oral 

prednisone once a day.

One week later, the dog was eating well and no longer vomiting. A CBC revealed 

nonregenerative anemia (hematocrit 25.3%, RI 36–60%; 0.4% reticulocytes) moderate 

leukopenia (3770/μL, RI 6000–17,000/μL) due to marked neutropenia (720/μL, RI 3000–

11,400/μL), mild monocytosis (1780/μL, RI 150–1350/μL), and mild thrombocytopenia 

(148,000/μL, RI 170,000–400,000, Table 1).

Oligonucleotide array comparative genomic hybridization (oaCGH) was performed using 

Sure Print G3 Canine Genome 180K microarrays (Agilent Technologies, Santa Clara, CA, 

USA), which contain 171,534 coding and noncoding 60-mer oligonucleotide sequences 

spaced at approximately 13 kb intervals. DNA from cryopreserved PBMCs sampled before 

treatment was isolated using a DNeasy Blood & Tissue Kit (QIAGEN, Inc., Valencia, CA, 

USA). A sex-matched equimolar pool of genomic DNA from 16 healthy dogs (8 different 

breeds, 2 of each breed) was used as the reference to prevent detection of natural 

constitutional copy number variations. Oligonucleotide array CGH (Appendices S2, S3) of 

the leukemic cell DNA sample revealed 22 regions of copy number aberrations (CNAs) on 

13 chromosomes, including 7 gains ranging in size from 49 kb to 80 Mb, and 15 losses 

ranging in size from 31 kb to 1.9 Mb (Figure 3A). The most apparent aberration in the whole 

genome profile was a gain of 5951 contiguous probes covering the entire length of dog 

chromosome 7 (Canis familiaris [CFA] 7; Figure 3A). The average log2 ratio across these 

probes was 0.31.

To verify key aberrations indicated by oaCGH and identify targeted structural changes, 

multicolor fluorescence in situ hybridization (FISH) was performed as described previously 

(Appendix S4)3 using PBMCs from heparinized peripheral blood drawn from the dog prior 

to the first dose of vincristine and 7 days after chemotherapy. In addition, cell nuclei from 

clinically healthy dogs (n = 10) were assessed in each reaction to verify the precise 

chromosomal location of each clone (Figure 3H) and to confirm that each had a copy 

number of 2. To verify and quantify gain of CFA 7, 9 bacterial artificial chromosome (BAC) 
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probes were tiled along CFA 7 at ∼10 Mb intervals in 2 separate multicolor FISH reactions; 

group 1 comprised the most proximal 5 probes and group 2 comprised the 5 most distal 

probes, with the middle probe overlapping between the 2 reactions (Figure 3D). Trisomy of 

CFA 7 was identified in 42–44% of cells. Of the 21 other CNAs in the pretreatment data, 

only 7 were large enough (> 200 kb) to contain an entire BAC clone. Four of these regions 

were selected for assessment by FISH; 3 copy number losses located at CFA 6: 48.2–50 Mb 

(log2 ratio –0.30), CFA 20: 59.9–60.1 Mb (log2 ratio –0.22), and CFA 24: 49.2–49.9 Mb 

(log2 ratio –0.25), and one copy number gain located at CFA 20: 19.2–19.4 Mb (log2 ratio 

0.54, Figure 3A) were found. The copy number status obtained from FISH analysis of each 

of the regions verified array results (Figure 3J,K). The probe representing the region at 19.2 

Mb on CFA 20 (colored yellow in Figures 3H–K) resulted in a signal of more intensity than 

normal in normal canine DNA (Figures 3J,K), suggesting a tandem duplication of the 

respective sequence in the leukemic cells. Likewise, the other 3 regions were found to have 

hemizygous deletions.

The presence of the Raleigh chromosome, ie, colocalization of the breakpoint cluster region 

and Abelson murine leukemia viral oncogene homolog (BCR-ABL) and other targeted 

aberrations were simultaneously assessed with 2 5-color FISH reactions on PBMCs 

collected prior to chemotherapy and cells from control dogs. The first probe set comprised 

differentially labeled BAC clones representing breast cancer 1 (BRCA1) and ABL on CFA 9 

and BCR, phosphatase and tensin homolog (PTEN), and a telomeric single locus probe 

(SLP) on CFA 26 (Figure 4). The second probe set comprised 5 probes that tile the proximal 

half of CFA 22, including a BAC representing retinoblastoma 1 (RB1) (Figure 5). When 

hybridized to interphase nuclei of cells from healthy dogs (n = 10), all probes used revealed 

a copy number of 2 and mapped uniquely to the correct chromosomal location (Figures 

4A,B,C and 5A,B,C). Examples of the hybridization patterns of these 2 probe sets in 

interphase nuclei of leukemic cells of the dog presented in this report are shown in Figures 

4D–H and 5D–H. The number of cells containing aberrations involving these probes is 

presented in Table 2. Essentially, 39.3% (59/150) of scored cells had one or more 

aberrations involving the BACs used. Colocalization of BCR and ABL (indicating the 

presence of the Raleigh chromosome) was evident in 17.3% (26/150) of the cells. Deletions 

of BRCA1 and PTEN were also present (Figure 4D–H), as was a heterozygous deletion of 

RB1 (Figure 5D–H).

Oligonucleotide array CGH analysis of DNA isolated from PBMCs sampled one week 

following chemotherapy identified 14 aberrant regions on 11 chromosomes comprised of 5 

gains (range 49–757 kb) and 9 losses (range 45 kb–1.9 Mb), including 12 regions 

maintained from before treatment (Figure 3B). A subtle increase in copy number of CFA 7 

was evident on the whole genome profile (Figure 3B), but was not statistically significant 

(Figures 3B,C). Two regions were identified that were not determined to be aberrant prior to 

treatment, a 757 kb gain at CFA 9q14 and a 1.2 Mb loss at CFA 26q24. FISH was 

performed on interphase nuclei from PBMCs obtained one week following chemotherapy to 

evaluate all regions assessed in pretreatment cells. Differences in the frequency of 

aberrations in pretreatment and posttreatment cells were analyzed using Fisher's exact test. 

FISH analysis revealed a decrease of 10–20 fold in the percentage of cells with trisomy 7, 
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which was statistically significant when compared with day one results (Table 2). Of the 

other 4 oaCGH regions targeted by FISH, only the gain on CFA 20 showed a significant 

difference compared with the pretreatment status. Overall, cells at 7 days treatment 

presented with significant decreases in the proportion of targeted aberrations, including 

BCR-ABL translocation, and PTEN and RB1 deletions (Table 2). While the other 4 probes on 

CFA22 were deleted in 1–3 cells each, these losses did not deviate significantly from 

controls, indicating that the deletion of CFA22 was focused on the region containingRB1.

The prednisone dose was lowered to 40 mg (1.6 mg/kg) once a day for the second treatment 

week, at the end of which the CBC was characterized by an inefficient regenerative 

erythropoietic response with a stable hematocrit at 25.4% and 33 nucleated red blood 

cells/lL (Table 1). WBC counts were within the RI, but marked monocytosis (4485/μL, RI 

150–1350) persisted. The lymph nodes appeared a little softer and less prominent. The 

prednisone dose was reduced to 25 mg (1 mg/kg) orally once a day for the third treatment 

week. At the end of the third treatment week (ie, 2 weeks following initial treatment with 

vincristine), hydroxyurea therapy was initiated at 1200 mg (50 mg/kg) 3 times a week. The 

dog continued to improve clinically, although it remained mildly anemic (Hematocrit 

27.4%). At 4 weeks after initial presentation, the WBC count slowly increased to 22,200/μL 

due to a persistent moderate monocytosis (2530/μL, RI150–1350). Aweek later, the dog 

suffered a relapse of leukemia (WBC count of 106,700/μL) characterized by severe 

monocytosis (59,752/μL) and a large number (34,144/μL) of intermediate-to-large atypical 

mononuclear cells as per the hematology instrument classification and confirmed in a 

differential count by a board-certified clinical pathologist. The dog received another dose of 

0.63 mg vincristine (0.71 mg/m2) intravenously, prednisoneat 50 mg (2 mg/kg) once a day, 

500 mg (19 mg/kg) amoxicillin twice a day, and 112.5 mg (4.2 mg/kg) marbofloxacin once 

a day, while the hydroxyurea was discontinued. Despite treatment efforts, the dog continued 

to deteriorate and was humanely euthanized 6 days later. At that time, a full CBC was not 

performed, but a manual hematocrit was 10%, and there was an impressive buffy coat 

comprising 15% of the microhematocrit tube (usually < 1%). Additional samples for 

cytogenetic analysis were not available.

Discussion

Since 2005, a high-quality genome sequence of the domestic dog is available.4 Tools 

accompanying the genome assembly have become helpful genomic resources and allow the 

definition of genetic abnormalities in a variety of canine diseases, including hematopoietic 

neoplasias; it is hoped that this would lead to the identification of new therapeutic 

approaches in veterinary medicine.5,6 Chromosome aberrations associated with human 

neoplasias have also been identified in dogs using FISH and oaCGH.7,8 The BCR-ABL 

fusion gene is evolutionarily conserved in canine chronic myeloid leukemia (CML). Termed 

the “Raleigh” chromosome, it has been identified using multicolor FISH, not only in several 

cases of canine CML,8 but also in one case of canine chronic monocytic leukemia (CMoL)9 

and in one case of canine acute myeloid leukemia.10 In people, CML is a myeloproliferative 

disease characterized by uncontrolled proliferation of granulocytes and the presence of the 

Philadelphia chromosome. The latter results from a reciprocal translocation between human 

chromosomes 9 and 22, designated t (9;22)(q34;q11). This aberration juxtaposes the BCR 
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gene to the gene encoding the nonreceptor tyrosine kinase ABL,11,12 resulting in the 

generation of a 210-kD chimeric BCR-ABL fusion protein (p210) with constitutive tyrosine 

kinase activity. Treatment of CML with the tyrosine kinase inhibitor (TKI) imatinib 

mesylate (Gleevec), results in significant improvement of outcomes of CML patients (some 

response in 96% of CML patients in the chronic phase, complete cytogenetic response in 

57% at a median time of 8.3 months).13,14 In long-term studies, 41% of patients show a 

complete cytogenetic response (0% BCR-ABL–positive cells assessed via conventional 

cytogenetics) after 5 years with continuous imatinib treatment. The progression to 

accelerated phase was delayed in 61% of patients, and progression to blast phase was 

delayed in 76% of patients.15 In contrast, the BCR-ABL fusion is rarely seen in human 

CMML and when present, the disease pattern seems to be intermediate between CML and 

CMML.16 The disease is marked by monocytosis and some left-shifting of granulocytes in 

the peripheral blood, which can progress to blast phase quickly and generally has a poor 

prognosis.17

While conventional cytogenetics is still considered a reliable method for detecting and 

monitoring the presence of BCR-ABL, FISH allows for analysis of a much greater cell count 

than the 20 metaphases evaluated in conventional practices and can be performed using 

samples of peripheral blood as well as bone marrow. Traditionally, only 2 single locus 

probes were used, one for BCR and one for ABL, which resulted in up to 10% false 

positives.18 Using multiple probes and counting a larger number of cells has reduced the 

number of false positives to < 5%.18 Recently, FISH has been incorporated into the 

monitoring standard procedures of human studies on the effectiveness of TKIs in addition to 

conventional cytogenetics.19 Reverse-transcriptase PCR (RT-PCR), and more specifically 

real-time RT-PCR, has recently been developed to quantitatively determine the BCR-ABL 

transformation. The high sensitivity allows the detection of very low levels of residual 

disease.18

In this case, a dog was diagnosed with CMML, a rarely reported canine myeloproliferative 

disease,20 based on conventional hematologic and cytologic techniques, and flow cytometric 

analysis. A genome-wide assessment of DNA copy number aberrations was performed on 

the leukemic cells by cytogenetic techniques prior to and after one week of chemotherapy, 

documenting the treatment-related elimination of neoplastic cells with cytogenetic 

mutations, including the Raleigh chromosome. This provides evidence that cytogenetic 

techniques can assist clinical assessment in the evaluation of a therapeutic response.

High-resolution oaCGH of DNA isolated from cells at the time of diagnosis revealed the 

presence of trisomy CFA 7, which was verified by FISH analysis. CFA 7 (∼84 Mb) is 

evolutionarily conserved with segments of human chromosome (HSA) 1q and various 

sections of HSA 18.21 We have observed gain of CFA 7 also in ∼10% of dogs with 

leukemia (Culver, unpublished data), which is orthologous to reported recurrent gain of 

HSA 1q25-q32 in human CML.22 This region of CFA 7 is also conserved with regions of 

mouse chromosomes (MMU) 1 and 3, both of which have been reported to be trisomic in 

murine models of induced myeloid leukemia.23,24 Data from all 3 species suggest that there 

may be a conserved pathogenic mechanism linked with genome organization in these shared 

regions. The 31 Mb region of CFA 7 that is evolutionarily conserved with HSA 1q25-q32 
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contains hundreds of genes. Candidate genes for this region have been previously listed,25 

but it is beyond the scope of this report to speculate on their involvement in this dog's 

leukemia.

RB1 deletion is present in approximately 50% of human chronic lymphocytic leukemias.1 

Loss of RB1 has also been linked to neoplastic transformation in human retinoblastoma, 

osteogenic sarcoma, breast carcinoma, and small-cell lung cancer. It is associated with cell 

cycle control and has been suggested to play a role in the oncogenesis of certain hematologic 

malignancies.26 Deletion of RB1 has been documented previously in human patients with 

CMML.26,27

In this case of canine CMML, we assessed colocalization of fluorescently labeled BAC 

clones containing BCR and ABL as well as copy number status of RB. BCR-ABL 

colocalization was recorded in 17.3% of pretreatment cells and deletion of RB1 was evident 

in 10.6% of pretreated cells. Posttreatment, the proportion of cells with these 2 cytogenetic 

aberrations had decreased significantly, BCR-ABL to 3.3% of cells, and RB1 deletion to 0%. 

As these 2 aberrations were assessed independently, it is not possible from this study to 

determine if the aberrations were present simultaneously in the same cells. Interestingly, the 

presence of the BCR-ABL translocation would suggest a CML according to the most recent 

WHO classifications in people.1 Human CML treated with vincristine and prednisone results 

in complete or partial hematologic remission in only 30% of patients, with the Philadelphia 

chromosome remaining present throughout the course of disease.28 Human CMML treated 

with vincristine and prednisone results in a rapid decrease in circulating WBC counts 

followed by remission to a normal leukogram lasting for 2–5 months.29 The dog presented 

here showed a partial hematologic response with Raleigh chromosome-positive cells 

remaining after treatment.

To our knowledge, this is the first time that a treatment response has been documented by 

molecular cytogenetic techniques in a domestic animal with spontaneous cancer. This case 

report shows that molecular techniques, including flow cytometry, high-resolution oaCGH, 

and FISH can be of additional value in characterizing, diagnosing, and potentially 

monitoring canine CMML and treatment effects.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported in part by funds from the AKC Canine Health Foundation awarded to MB/JM. SC was 
supported by an NCSU Comparative Biomedical Sciences DVM-PhD Training Fellowship. Additional funds were 
provided by the NCSU Cancer Genomics Fund (MB). The authors thank the dog's owners for the donation of 
samples for this research effort.

References

1. Swerdlow, SH.; Campo, E.; Harris, NL., et al. WHO classification of tumours of haematopoietic and 
lymphoid tissues. 4th. Vol. 2. Lyon, France: IARC Press; 2008. 

Culver et al. Page 7

Vet Clin Pathol. Author manuscript; available in PMC 2015 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Ito D, Endicott M, Jubala C, et al. A tumor-related lymphoid progenitor population supports 
hierarchical tumor organization in canine B-cell lymphoma. J Vet Intern Med. 2011; 25:890–896. 
[PubMed: 21777289] 

3. Thomas R, Duke S, Bloom S, et al. A cytogenetically characterized, genome-anchored 10-MbBAC 
set and CGH array for the domestic dog. J Hered. 2007; 98:474–484. [PubMed: 17702974] 

4. Lindblad-Toh K, Wade CM, Mikkelsen TS, et al. Genome sequence, comparative analysis and 
haplotype structure of the domestic dog. Nature. 2005; 438:803–819. [PubMed: 16341006] 

5. Chen WK, Swartz JD, Rush LJ, Alvarez CE. Mapping DNA structural variation in dogs. Genome 
Res. 2009; 19:500–509. [PubMed: 19015322] 

6. Olson PN. Using the canine genome to cure cancer and other diseases. Theriogenology. 2007; 
68:378–381. [PubMed: 17498794] 

7. Thomas R, Seiser EL, Motsinger-Reif A, et al. Refining tumor-associated aneuploidy through 
“genomic recoding” of recurrent DNA copy number aberrations in 150 canine non-Hodgkin's 
lymphomas. Leukemia and Lymphoma. 2011; 52:1321–1335. [PubMed: 21375435] 

8. Breen M, Modiano JF. Evolutionarily conserved cytogenetic changes in hematological malignancies 
of dogs and humans – man and his best friend share more than companionship. Chromosome Res. 
2008; 16:145–154. [PubMed: 18293109] 

9. Cruz C, Milner R, Alleman A, et al. BCR-ABL translocation in a dog with chronic monocytic 
leukemia. Veterinary Clinical Pathology. 2011; 40:40–47. [PubMed: 21143615] 

10. Figueiredo JF, Culver S, Behling-Kelly E, Breen M, Friedrichs K. Acute myeloblastic leukemia 
with associated BCR-ABL translocation in a dog. Veterinary Clinical Pathology. 2012; 41:362–
368. [PubMed: 22747755] 

11. Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia 
identified by quinacrine fluorescence and Giemsa staining. Nature. 1973; 243:290–293. [PubMed: 
4126434] 

12. Juopperi T, Bienzle D, Bernreuter D, Vernau W, Thrall M, McManus P. Prognostic markers for 
myeloid neoplasms. Veterinary Pathology Online. 2011; 48:182–197.

13. Faderl S, Talpaz M, Estrov Z, O'Brien S, Kurzrock R, Kantarjian HM. The biology of chronic 
myeloid leukemia. The New England Journal of Medicine. 1999; 341:164–172. [PubMed: 
10403855] 

14. Melo J, Hughes T, Apperley J. Chronic myeloid leukemia. Hematology. 2003; 2003:132–152. 
[PubMed: 14633780] 

15. Hochhaus A, Druker B, Sawyers C, et al. Favorable long-term follow-up results over 6 years for 
response, survival, and safety with imatinib mesylate therapy in chronic-phase chronic myeloid 
leukemia after failure of interferon-{alpha} treatment. Blood. 2008; 111:1039–1043. [PubMed: 
17932248] 

16. Melo JV. The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype 
[editorial; comment]. Blood. 1996; 88:2375–2384. [PubMed: 8839828] 

17. McManus PM. Classification of myeloid neoplasms: a comparative review. Veterinary Clinical 
Pathology. 2008; 34:189–212. [PubMed: 16134066] 

18. Kantarjian H, Schiffer C, Jones D, Cortes J. Monitoring the response and course of chronic 
myeloid leukemia in the modern era of BCR-ABL tyrosine kinase inhibitors: practical advice on 
the use and interpretation of monitoring methods. Blood. 2008; 111:1774–1780. [PubMed: 
18055868] 

19. Kantarjian HM, Giles F, Gattermann N, et al. Nilotinib (formerly AMN107), a highly selective 
BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-
positive chronic myelogenous leukemia in chronic phase following imatinib resistance and 
intolerance. Blood. 2007; 110:3540–3546. [PubMed: 17715389] 

20. Hiraoka H, Hisasue M, Nagashima N, et al. A dog with myelodysplastic syndrome: chronic 
myelomonocytic leukemia. The Journal of veterinary medical science/the Japanese Society of 
Veterinary Science. 2007; 69:665–668. [PubMed: 17611368] 

21. Derrien T, André C, Galibert F, Hitte C. AutoGRAPH: an interactive web server for automating 
and visualizing comparative genome maps. Bioinformatics. 2007; 23:498–499. [PubMed: 
17145741] 

Culver et al. Page 8

Vet Clin Pathol. Author manuscript; available in PMC 2015 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



22. Brazma D, Grace C, Howard J, et al. Genomic profile of chronic myelogenous leukemia: 
imbalances associated with disease progression. Genes Chromosom Cancer. 2007; 46:1039–1050. 
[PubMed: 17696194] 

23. Hayata I, Seki M, Yoshida K, et al. Chromosomal aberrations observed in 52 mouse myeloid 
leukemias. Cancer Res. 1983; 43:367–373. [PubMed: 6571708] 

24. Bouffler SD, Meijne EIM, Huiskamp R, Cox R. Chromosomal abnormalities in neutron-induced 
acute myeloid leukemias in CBA/H mice. Radiat Res. 1996; 146:349–352. [PubMed: 8752315] 

25. Makishima H, Jankowska A, McDevitt M, et al. CBL, CBLB, TET2, ASXL1, and IDH1/2 
mutations and additional chromosomal aberrations constitute molecular events in chronic 
myelogenous leukemia. Blood. 2011; 117:e198–e206. [PubMed: 21346257] 

26. Chen YC, Chen PJ, Yeh SH, et al. Deletion of the human retinoblastoma gene in primary 
leukemias. Blood. 1990; 76:2060–2064. [PubMed: 2242427] 

27. Gelsi-Boyer V, Trouplin V, Adélaïde J, et al. Genome profiling of chronic myelomonocytic 
leukemia: frequent alterations of RAS and RUNX1 genes. BMC Cancer. 2008; 8:299–313. 
[PubMed: 18925961] 

28. Canellos GP, Devita VT, Whang-Peng J, Carbone PP. Hematologic and cytogenetic remission of 
blastic transformation in chronic granulocytic leukemia. Blood. 1971; 38:671–679. [PubMed: 
5288508] 

29. Taetle R, Haerr R. Treatment of chronic myelomonocytic leukemia. Vincristine and prednisone 
therapy during symptomatic phase or after transformation to acute leukemia. West J Med. 1985; 
143:524–527. [PubMed: 3867198] 

Culver et al. Page 9

Vet Clin Pathol. Author manuscript; available in PMC 2015 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Peripheral blood smears from a dog with chronic myelomonocytic leukemia. Wright–

Giemsa stain, ×100 objective. (A) Blood sampled prior to treatment. Note the increased 

numbers of atypical monocytoid cells (arrow heads), the nuclei of which have atypical 

nuclear contour and chromatin patterns, and prominent nucleoli. Note immature cells in the 

neutrophil series (large metamyelocyte and band neutrophil, arrows). (B) Blood sampled one 

week after chemotherapy. Note the presence of large atypical monocytoid cells as well as 

smaller mature monocytes. (C) Faint magenta granules can be observed in the cytoplasm of 

the central large atypical monocytoid cell.
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Figure 2. 
Flow cytometric analysis of peripheral blood mononuclear cells (PBMCs) from a dog with 

chronic myelomonocytic leukemia prior to treatment. 7-AAD–positive dead cells were 

excluded from the analysis. PBMCs were gated based on forward and side scatter 

characteristics. Labels on the x- and y-axis indicate the respective anti-CD antibodies used 

for staining of the cells.
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Figure 3. 
Oligo array comparative genomic hybridization (oaCGH) and fluorescence in situ 

hybridization (FISH) verification of peripheral blood mononuclear cells from a dog with 

chronic myelomonocytic leukemia. (A) Genomic profile of oaCGH of pretreatment DNA 

viewed at 100 kb window. Dash marks above and below the profile indicate regions of copy 

number aberration as determined by the ADM-2 algorithm. Arrowheads indicate regions 

further verified by FISH analysis. (B) Genomic profile of oaCGH of posttreatment DNA 

viewed at 100 kb window. Dash marks above and below the profile indicate regions of copy 

number aberration as determined by the ADM-2 algorithm. (C) Aberration summary of 

Canis familiaris (CFA) 7 from oaCGH corresponding to pretreatment (A) and posttreatment 

(B) DNA. Light red shading indicates copy number gain and light green shading indicates 

copy number loss (not evident). (D) Tiling of CFA 7 with bacterial artificial chromosome 

(BAC) clones at a 10-Mb interval (362E04,126M10, 182C02, 335A22, 326O12, 029J03, 

334P01, 332H21, and 122I21). (E) Interphase nuclei from control dog showing BAC clones 

for proximal end of CFA 7 with normal copy number of two. (F) and (G) Trisomy of CFA 7 

in interphase nuclei from a leukemic cell. (H) Localization of BAC clones to verify other 

oaCGH copy number changes; red (307I06) at 49 Mb on CFA 6, yellow (215F17) and aqua 

(136N17) at 19 Mb and 60 Mb, respectively, on CFA 20, and green (182B05) at 49 Mb on 

CFA 24. (I) Interphase nuclei from a control dog showing array verification BAC clones 

with normal copy number of 2. (J) Interphase nuclei from a leukemic cell showing 
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hemizygous deletion of aqua and green, and gain of yellow. (K) Interphase nuclei from a 

leukemic cell showing hemizygous deletion of red, aqua, and gain of yellow.
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Figure 4. 
Fluorescence in situ hybridization of Canis familiaris (CFA) 9 and CFA 26. A–C Control 

dog (A) Metaphase spread showing localization of fluorescently labeled bacterial artificial 

chromosome (BACs) clones. (B) Ideogram showing accurate location of BAC clones. (C) 

Interphase nuclei. D–H Dog with chronic myelomonocytic leukemia, peripheral blood 

mononuclear cells collected prior to treatment, note breakpoint cluster region (BCR; labeled 

green; 486K17) and Abelson murine leukemia (ABL; labeled yellow; 326F17) 

colocalization (D, F) and deletions of breast cancer 1 (BRCA1; labeled pink; 074A02) (D, F, 
G), phosphatase and tensin homolog (PTEN; labeled red; 521G14) (D, E, H), ABL (yellow) 

(E, F), BCR (green) (E, G), and telomeric single locus probe (light blue; 191C19) (D, E, F, 
G, H).
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Figure 5. 
Fluorescence in situ hybridization (FISH) of Canis familiaris (CFA) 22. A–C Control dog 

CFA (A) Interphase nuclei. (B) Metaphase spread. (C) Zoomed view showing probe 

placement and order. D–H Dog with chronic myelomonocytic leukemia, peripheral blood 

mononuclear cells prior to treatment. Note retinoblastoma 1 (RB1; yellow; 521E11) deletion 

in addition to other deletions.
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Table 2

Fluorescence in situ hybridization verification of oligonucleotide array comparative genomic hybridization 

(oaCGH) and targeted structural aberrations in interphase nuclei of peripheral blood mononuclear cells from a 

dog with chronic myelomonocytic leukemia prior to (day 1) and one week after vincristine and prednisone 

therapy (day 7).

Affected Cells

Day 1 (Pretreatment) Day 7 (Posttreatment) P-Value

Locus in Array Verification

 CFA 7 – Gain of Proximal Five BACs 42% (21/50) 2% (1/50) 9.4 × 10−7***

 CFA7 – Gain of Distal Five BACs 44% (22/50) 4% (2/50) 2.8 × 10−6***

 CFA 6 (48.2 Mb) Deletion 16% (8/50) 10% (5/50) 0.55

 CFA 20 (19.2 Mb) Gain 44% (22/50) 12% (6/50) 6.7 × 10−4**

 CFA 20 (59.9 Mb) Deletion 12% (6/50) 8% (4/50) 0.74

 CFA 24 (49.2 Mb) Deletion 10% (5/50) 18% (9/50) 0.38

Targeted Aberrations

 Total 39.3% (59/150) 14.6% (22/150) 2.1 × 10−6***

 BCR-ABL Translocation 17.3% (26/150) 3.3% (5/150) 8.6 × 10−5***

 PTEN Deletion 9.3% (14/150) 2% (3/150) 1.0 × 10−2*

 BRCA1 Deletion 8.7% (13/150) 5.3% (8/150) 0.37

 RB1 Deletion 10.6% (16/150) 0% (0/0) 2.0 × 10−5***

Data are percentages (absolute number per total number investigated).

*
P < .01,

**
P < .001,

***
P < .0001.

CFA indicates Canis familiaris; BAC, bacterial artificial chromosome; BCR-ABL, breakpoint cluster region and Abelson murine leukemia viral 
oncogene homolog; PTEN, phosphatase and tensin homolog; BRCA1, breast cancer 1; RB1, retinoblastoma 1.
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