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Abstract

The pregnane X receptor (PXR), a member of the nuclear receptor superfamily, regulates the 

expression of drug-metabolizing enzymes in a ligand-dependent manner. The conventional view 

of nuclear receptor action is that ligand binding enhances the receptor’s affinity for coactivator 

proteins, while decreasing its affinity for corepressors. To date, however, no known rigorous 

biophysical studies have been conducted to investigate the interaction among PXR, its 

coregulators, and ligands. In this work, steady-state total internal reflection fluorescence 

microscopy (TIRFM) and total internal reflection with fluorescence recovery after photobleaching 

were used to measure the thermodynamics and kinetics of the interaction between the PXR ligand 

binding domain and a peptide fragment of the steroid receptor coactivator-1 (SRC-1) in the 

presence and absence of the established PXR agonist, rifampicin. Equilibrium dissociation and 
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dissociation rate constants of ~5 μM and ~2 s−1, respectively, were obtained in the presence and 

absence of rifampicin, indicating that the ligand does not enhance the affinity of the PXR and 

SRC-1 fragments. Additionally, TIRFM was used to examine the interaction between PXR and a 

peptide fragment of the corepressor protein, the silencing mediator for retinoid and thyroid 

receptors (SMRT). An equilibrium dissociation constant of ~70 μM was obtained for SMRT in the 

presence and absence of rifampicin. These results strongly suggest that the mechanism of ligand-

dependent activation in PXR differs significantly from that seen in many other nuclear receptors.

The nuclear receptor superfamily consists of structurally related proteins that regulate the 

transcription of target genes in a ligand-dependent manner. Nuclear receptors, which include 

the estrogen, androgen, thyroid, and vitamin D receptors, regulate a variety of biological 

processes, including reproduction, development, metabolism, and energy homeostasis, in 

response to various hydrophobic ligands. The pregnane X receptor (PXR), a member of the 

nuclear receptor superfamily, protects the body from potentially toxic compounds by 

regulating the expression of proteins that metabolize and excrete these compounds from 

cells.1

PXR binds promiscuously to a wide variety of compounds, including naturally occurring 

steroids, hormones, and bile acids, as well as exogenous ligands like insecticides, herbal 

extracts, and pharmaceutical products.1 PXR has been implicated in adverse drug–drug 

interactions, whereupon being activated by a drug, PXR promotes the expression of 

enzymes that metabolize the activating drug, as well as other co-administered therapeutics. 

Such adverse effects have been observed with hyperforin, a constituent in the herbal product 

St. John’s Wort, and rifampicin, an antibiotic, both of which have been shown to bind and 

activate PXR.2–7

PXR works in concert with its heterodimerization partner, the retinoid X receptor (RXR), to 

bind promoter regions of target genes and coactivators like the steroid receptor coactivator-1 

(SRC-1). The PXR–RXR–coactivator–DNA complex then recruits and directs downstream 

members of the transcription machinery.5,6 Crystal structures of several nuclear receptor 

ligand binding domains (LBDs) in the apo and ligand-bound states indicate that in the 

presence of an agonist, an α-helix at the C-terminus called activation function-2 (AF-2) 

undergoes a conformational change that allows nuclear receptors to bind coactivators.8–11 

Specifically, in the active conformation, nuclear receptors form a critical charge clamp with 

conserved LXXLL motifs (where X is any amino acid) found in coactivators.11,12

In the absence of ligand, the transcriptional activity of nuclear receptors is, in part, 

downregulated by the action of corepressor proteins. The nuclear receptor corepressor 

known as the silencing mediator of retinoid and thyroid receptors (SMRT) has been shown 

to repress both the basal and ligand-induced transcriptional activity of PXR.13–15 

Corepressors bind nuclear receptors via receptor interaction domains containing conserved 

LXXXIXXXL motifs and recruit proteins, including histone deacetylases, that suppress 

transcription. A crystal structure of a nuclear receptor (peroxisome proliferator-activated 

receptor-α) LBD in complex with a peptide fragment of SMRT shows that AF-2 is displaced 

from its active conformation upon corepressor binding.16 Corepressors thereby inhibit the 

transcriptional activity of nuclear receptors by preventing the recruitment of coactivators.
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This paper provides a biophysical assessment of the interaction between PXR-LBD and 

peptides derived from the coactivator, SRC-1, and the corepressor, SMRT, in the presence 

and absence of the well-established PXR agonist, rifampicin. For the first time, we report 

equilibrium constants for PXR-LBD–coregulator interactions and dissociation rate constants 

for the PXR-LBD–SRC-1 interaction measured by steady-state total internal reflection 

fluorescence microscopy (TIRFM)17–20 and total internal reflection with fluorescence 

recovery after photobleaching (TIR-FRAP),21–23 respectively. This quantitative information 

strongly suggests that the mode of ligand-dependent activation of PXR differs from that of 

most other nuclear receptors studied to date.

MATERIALS AND METHODS

PXR-LBD Cloning, Expression, Purification, and Labeling

The LBD of human PXR (residues 130–434) was expressed as a fusion protein with an 

amino-terminal AviTag and His6 tag (for purification). The AviTag allows for the specific 

biotinylation of the tagged protein by the Escherichia coli enzyme BirA. A codon-optimized 

version of the PXR-LBD gene (GenScript USA, Piscataway, NJ) was cloned into pET21c(+) 

between NdeI and HindIII, along with an N-terminal AviTag sequence (Avidity, Denver, 

CO) followed by a His6 sequence. With this insert, two stop codons were introduced 

upstream of the C-terminal His6 tag normally found in pET21c(+). PXR-LBD was 

coexpressed with an 88-amino acid fragment of SRC-1 to enhance PXR stability. The 

SRC-1 fragment (residues 623–710), along with the T7 promoter, had been previously 

inserted into the pACYC184 vector at the HindIII and BamHI sites.24,25 The pET21c-

AviTag-His6-PXR-LBD and pACYC184-SRC-1 plasmids were cotransformed into the 

BL21 DE3 Gold E. coli strain.

Terrific Broth (3 L) supplemented with ampicillin (100 μg/mL) and chloramphenicol (35 

μg/mL) was inoculated with an overnight culture (0.5% innoculant). Cells were grown at 37 

°C to an OD600 of ~2.7 and induced with 0.1 mM isopropyl β-D-thiogalactopyranoside at 18 

°C for ~16 h. Cells were harvested by centrifugation (30 min at 3500g and 4 °C) and stored 

at −80 °C. Cell pellets (~25 g) were resuspended in 125 mL of buffer A [20 mM Tris (pH 

7.9), 250 mM NaCl, 5% glycerol, 20 mM imidazole, and 0.1 mM tris(2-

carboxyethyl)phosphine (TCEP) (Soltec Ventures, Beverly, MA)] supplemented with three 

protease inhibitor tablets (complete, EDTA-free; Roche Diagnostics, Mannheim, Germany) 

and DNase (50 μg/mL; Worthington Biochemical Corp., Lakewood, NJ) and then subjected 

to Dounce homogenization. Cell homogenates were tip sonicated on ice, and the cell lysates 

were then clarified by centrifugation (45 min at 27000g and 4 °C). The clarified cell lysates 

were incubated with 750 μL of His-Select Ni resin (Sigma-Aldrich, St. Louis, MO) 

equilibrated in buffer A for 1 h at 4 °C. The resin was subsequently washed with 125 mL of 

buffer B [20 mM Tris (pH 7.9), 500 mM NaCl, 5% glycerol, and 20 mM imidazole]. PXR-

LBD was eluted using six aliquots of 1 mL each of buffer C [20 mM Tris (pH 7.9), 250 mM 

NaCl, 5% glycerol, 2 mM TCEP, and 300 mM imidazole]. Protein fractions were combined 

and dialyzed against buffer D [20 mM Tris (pH 7.9), 250 mM NaCl, 5% glycerol, and 2 mM 

TCEP] at 4 °C. Thereafter, PXR-LBD was quickly frozen in liquid N2 and stored at −80 °C 

in 1 mL aliquots at a concentration of 0.1 mg/mL.
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The AviTag-His6-PXR-LBD fusion protein, henceforth termed PXR-LBD, has a molecular 

mass of 38750 Da with an extinction coefficient at 280 nm of 34080 M−1 cm−1.26 Protein 

concentrations were measured by using both the absorbance at 280 nm and the Bradford 

assay (Bio-Rad Laboratories, Hercules, CA). Sodium dodecyl sulfate–polyacrylamide gel 

electrophoresis with Coomassie Brilliant Blue and silver stains indicated that the primary 

band was at the molecular mass expected for PXR-LBD and impurities were negligible. 

Silver-stained gels showed no bands close to or at 10 kDa, suggesting that the coexpressed, 

9.8 kDa SRC-1 fragment was removed during PXR purification. Western blots with anti-

biotin antibodies conjugated to horseradish peroxidase (Cell Signaling Technology, Beverly, 

MA) were used to confirm in vivo biotinylation. The molar ratio of biotin to PXR-LBD, as 

estimated by using Pierce Biotin Quantitation Kit (Thermo Scientific, Rockford, IL), ranged 

from 0.7 to 1.3, indicating that a majority of the protein was biotinylated.

For some control measurements, PXR-LBD was fluorescently labeled with an amine 

reactive dye, Alexa Fluor 488 5-TFP (Invitrogen, Carlsbad, CA). Briefly, PXR-LBD that 

eluted from the Ni affinity column during purification was concentrated to ~1.5 mg/mL and 

incubated with a 10–15-fold molar excess of the dye for 2 h at 4 °C with continuous, gentle 

stirring. Free dye was removed by passing the solution through an anion exchange column 

(4 mL) constructed from Dowex 1X8 resin (Acros Organics, Morris Plains, NJ) and 

equilibrated in 10 mM sodium phosphate and 5% glycerol (pH 5.3). Protein was 

immediately dialyzed against buffer D. The molar ratio of dye to protein, as determined by 

the relative absorptivities at 280 and 494 nm, was approximately 0.3. As before, protein 

aliquots were frozen in liquid N2 and stored at −80 °C.

A ligand-bound mimic of PXR-LBD was made by mutating two residues in the ligand 

binding pocket to tryptophans: S247W and C284W.27 The mutations were made 

sequentially using the QuikChange-II Site-Directed Mutagenesis Kit (Stratagene, La Jolla, 

CA) according to the manufacturer’s protocol. The following primers (with mutated 

nucleotides underlined) were used for the S247W mutation: forward, 5′-

gcacatggcagatatgTGGacctatatgttcaaaggc-3′; and reverse, 5′-

gcctttgaacatataggtCCAcatatctgccatgtgc-3′. For the C284W mutation, the following primers 

were used: forward, 5′-gcagcgtttgaactgTTGcagctgcgtttcaac-3′; and reverse, 5′-

gttgaaacgcagctgCCAcagttcaaacgctgc-3′. Mutations were generated using the pET21c-

AviTag-His6-PXR-LBD plasmid as a template and confirmed by sequencing. PXR-LBD 

(S247W/C284W) was expressed and purified as described above for wild-type (WT) PXR-

LBD.

Coregulator Peptide Synthesis and Fluorescence Labeling

A 25-amino acid fragment of SRC-1 (676-CPSSWSSLTERHKILHRLLQEGSPS-700) was 

synthesized at the University of North Carolina Microprotein Sequencing and Peptide 

Synthesis Facility. Residue 680 was mutated from histidine to tryptophan (H680W) to 

facilitate peptide quantification. The average and monoisotopic molecular masses of the 

peptide are 2849.18 and 2847.44 Da, respectively. The molar absorptivity of the peptide at 

280 nm is 5810 M−1 cm−1. The N-terminal cysteine residue was fluorescently labeled with a 

thiol reactive dye, fluorescein C5 maleimide (AnaSpec, Fremont, CA). Briefly, peptide (5 
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mg, 1.8 μM), a 2-fold molar excess of TCEP, and a 4-fold molar excess of dye were 

combined in 50 mM sodium phosphate (pH 7.6). The reaction mixture was stirred under 

argon for ~5 h at room temperature and for an additional ~19 h at 4 °C. Free dye was 

removed by passing the mixture through an anion exchange column (4 mL) constructed 

from Dowex 1X8 resin, both equilibrated and washed with 50 mM sodium acetate (pH 5.0). 

The peptide was further purified using high-performance liquid chromatography (HPLC) to 

remove salts. Briefly, a 0 to 40% gradient of solvent B (95% acetonitrile, 5% water, and 

0.1% trifluoroacetic acid) in solvent A (95% water, 5% acetonitrile, and 0.1% trifluoroacetic 

acid) was generated on an Atlantis dC18 (10 mm × 100 mm) column and Waters HPLC with 

Delta 600 pumps (Waters Corp., Milford, MA) at a flow rate of 4 mL/min. Peptide fractions 

were combined, lyophilized, and stored at −20 °C. Peptide labeling was confirmed by mass 

spectrometry. The molar ratio of fluorescein to peptide was determined by using the 

absorptivities at 280 and 494 nm. Labeling ratios ranged from 0.35 to 0.50. The 

fluorescently labeled SRC-1 peptide is henceforth denoted as F-SRC-1. Labeled and 

unlabeled peptides were mixed to yield an overall F-SRC-1 labeling ratio of 0.10, unless 

otherwise indicated.

Peptide fragments of SMRT (2337-TNMGLEAIIRKALMGKYDQWEE-2358) and of a 

second corepressor protein, called the nuclear receptor corepressor (NCoR, 2251-

GHSFADPASNLGLEDIIRKALMGSF-2275), were synthesized at the University of North 

Carolina Microprotein Sequencing and Peptide Synthesis Facility. The concentration of 

SMRT was determined spectrophotometrically using the peptide’s extinction coefficient at 

280 nm, 6970 M−1 cm−1. The concentration of NCoR was determined by measuring the 

mass of the lyophilized peptide.

Other Reagents

D-Biotin (Acros Organics, Morris Plains, NJ), unreactive fluorescein reference standard 

(Invitrogen, Eugene, OR), NeutrAvidin (Thermo Scientific, Rockford, IL), ovalbumin 

(Sigma-Aldrich), and rifampicin (Fisher Scientific, Fairlawn, NJ) were obtained 

commercially. Concentrations for the last four reagents were determined 

spectrophotometrically by using the following extinction coefficients: fluorescein, 68000 

M−1 cm−1 at 494 nm; NeutrAvidin, 99600 M−1 cm−1 at 280 nm; ovalbumin, 31500 M−1 

cm−1 at 280 nm; and rifampicin, 26400 M−1 cm−1 at 334 nm. For some control 

measurements, NeutrAvidin was fluorescently labeled with Alexa Fluor 488 5-TFP 

(Invitrogen). NeutrAvidin (2 mg/mL) and a 5-fold molar excess of dye were dissolved in 

100 mM sodium phosphate (pH 8.0). The mixture was incubated at 25 °C for 1 h with 

continuous, gentle stirring. Thereafter, free dye was removed by passing the mixture through 

an anion exchange column (4 mL) constructed from Dowex 1X8 resin and equilibrated in 

100 mM sodium acetate with 500 mM NaCl (pH 4.0). Labeled protein was dialyzed against 

buffer D. The molar ratio of dye to protein, determined spectrophotometrically, was 

approximately 0.7.

Sample Preparation

Immediately before use, all protein samples were centrifuged (~100000g for 30 min; 

Airfuge; Beckman-Coulter, Fullerton, CA) to remove possible aggregates. NeutrAvidin and 
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ovalbumin were filtered (0.1 μm, 13 mm, Anatop; Whatman, GE Healthcare, Piscataway, 

NJ) following centrifugation. Microscope (3 in. × 1 in. × 1 mm; Gold Seal Products, 

Porstmouth, NH) and fused silica (0.25 in. × 1 in. × 1 mm; Quartz Scientific, Fairport 

Harbor, OH) slides were cleaned by being boiled in ICN detergent (MP Biomedicals, Solon, 

OH) diluted in water, sonicated in a bath, rinsed extensively in deionized water, and dried at 

120 °C. Immediately prior to the collection of data, the substrates were further cleaned in an 

argon ion plasma cleaner (PDC-3XG, Harrick Scientific, Ossining, NY) for 15 min at room 

temperature. Fused silica slides were mounted on microscope slides using double-sided, 

0.13 mm thick, tape (part no. 021200-64988, 3M Corp., St. Paul, MN). A NeutrAvidin/

ovalbumin mixture (0.5 and 0.1 mg/mL, respectively, in buffer D, 60 μL) was applied to the 

space between the fused silica and microscope slides. Slides were incubated at room 

temperature for 1 h, allowing the NeutrAvidin and ovalbumin to coat the surfaces of the 

substrates. Excess protein was removed by washing the inner sample chambers with buffer 

D (10 × 200 μL). NeutrAvidin- and ovalbumin-coated sample chambers were treated with 

PXR-LBD (0.1 mg/mL in buffer D, 200 μL) for 5 min at room temperature and washed with 

buffer D (10 × 200 μL) to remove excess PXR. For steady-state TIRFM and TIR-FRAP 

measurements to yield F-SRC-1–PXR-LBD equilibrium and dissociation rate constants, 

solutions (200 μL) containing F-SRC-1 and ligand in buffer D at the indicated 

concentrations were applied to the sample chambers. Immediately thereafter, samples were 

mounted onto the microscope for data collection. For competition curves to yield SMRT–

PXR-LBD equilibrium constants, solutions (200 μL) containing 5 μM F-SRC-1, rifampicin, 

and SMRT in buffer D at the indicated concentrations were applied to the sample chambers. 

SMRT was replaced with a peptide fragment of the corepressor, NCoR, in some 

measurements.

Fluorescence Microscopy

Steady-state TIRFM and TIR-FRAP were conducted using the equipment described below. 

A through-prism TIRFM apparatus was used to generate evanescent illumination with an 

elliptically Gaussian spatial profile having the following 1/e2 radii: wx = 22.4 ± 0.5 μm, and 

wy = 65.0 ± 0.4 μm, respectively.28 Measurements were conducted using an argon ion laser 

(Innova 90-3, Coherent, Palo Alto, CA), an inverted microscope (Zeiss Axiovert 35, Carl 

Zeiss Inc., Thornwood, NY) with a 40×, 0.55 numerical aperture, long working distance 

objective (Nikon Instruments Inc., Nelville, NY), and an avalanche photodiode (SPCM-

AQ-151, EG&G Optoelectronics, Quebec City, QC) detector. An in-house LabVIEW 

program and DAQ board (PCI-MIO-16XE-50, National Instruments, Austin, TX) were used 

to control the instruments. Fluorescence was excited at 488 nm and detected through a 

dichroic mirror and barrier filter, at room temperature. All data were fitted in SigmaPlot 11.0 

(Systat Software Inc., San Jose, CA).

Steady-State Total Internal Reflection Fluorescence Microscopy

Steady-state TIRFM17–19 was used to measure equilibrium dissociation constants for the 

interaction between the F-SRC-1–PXR-LBD complex and the SMRT–PXR-LBD complex 

under different conditions, including different rifampicin concentrations. All samples were 

evanescently illuminated, and the surface-associated fluorescence was measured using a 

personal computer-based correlator board (ALV-5000/E, ALV, Langen, Germany). 
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Fluorescence intensities, averaged over 10 s, were measured at eight distinct sites on a given 

sample.

To characterize the F-SRC-1–PXR-LBD interaction, the surface-associated fluorescence of 

samples was measured as a function of the F-SRC-1 concentration in solution. The 

measured surface-associated fluorescence was assumed to be proportional to the average 

density of fluorescent molecules bound to surface binding sites (PXR-LBD), as well as the 

average density of such molecules diffusing in the evanescent wave. To obtain the 

fluorescence associated with F-SRC-1–PXR-LBD complexes alone, fluorescence measured 

in the absence of PXR-LBD was subtracted from the total fluorescence. This background-

corrected fluorescence was plotted as a function of the F-SRC-1 concentration and fit to a 

model of single-site binding to yield an apparent equilibrium dissociation constant.

Competition curves were used to determine the equilibrium dissociation constant for the 

interaction between PXR-LBD and corepressor peptides. TIRFM was used to measure the 

surface-associated fluorescence arising from 5 μM F-SRC-1 reversibly interacting with 

surface-immobilized PXR-LBD in the presence of an increasing concentration of the 

corepressor peptide. The corepressor competed with F-SRC-1 to bind PXR-LBD, and a 

corresponding decrease in the surface-associated fluorescence was observed. The 

background, arising from fluorescence due to the diffusion of free F-SRC-1 in the 

evanescent wave, was subtracted, and the data were fit to an appropriate model (see Results) 

to obtain the equilibrium dissociation constant for the interaction between the PXR and 

corepressor fragments.

Total Internal Reflection with Fluorescence Recovery after Photobleaching

TIR-FRAP21,22,29,30 was used to measure the apparent dissociation rate constant for the F-

SRC-1–PXR-LBD interaction. In this technique, an evanescently illuminated area is 

photobleached, and the subsequent fluorescence recovery is observed as a function of time. 

Fluorescence recovery, which occurs when photobleached molecules on the surface are 

replaced by unbleached molecules from solution, is proportional to the intrinsic rate at 

which photobleached molecules dissociate from surface binding sites, in the absence of 

surface rebinding. Recovery curves were fit to an appropriate exponential model to obtain 

the off rate for the F-SRC-1–PXR-LBD interaction (see Results for more detail). TIR-FRAP 

measurements were taken using bleach pulses with intensities of 100–300 mW and 

associated bleach times of 50–100 ms. Fluorescence recovery was monitored for 30 s after 

photobleaching.

RESULTS

Overview

TIRFM and related techniques specifically allow one to probe the behavior of fluorescent 

species close to or at interfaces. Therefore, we immobilized biotinylated PXR-LBD on 

NeutrAvidin-coated microscope slides via the biotin–avidin linkage. TIRFM-based 

techniques were used to examine coactivator and corepressor peptides in solution reversibly 

interacting with surface-bound PXR-LBD, in the presence and absence of rifampicin.
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Control Measurements

It was necessary, first, to confirm that NeutrAvidin and PXR-LBD were irreversibly bound 

to the surface. To probe the surface lifetime of NeutrAvidin, fluorescently labeled 

NeutrAvidin (0.5 mg/mL) along with ovalbumin (0.1 mg/mL) was immobilized on 

microscope slides; the slides were then washed, and the surface-associated fluorescence was 

monitored for 90 min at 30 min intervals using TIRFM (data not shown). Although the 

fluorescence decreased 13 ± 3% over the first 30 min period, no further decrease was 

observed. To probe the surface lifetime of PXR-LBD, slides were coated with a mixture of 

NeutrAvidin (0.5 mg/mL) and ovalbumin (0.1 mg/mL), washed, treated with fluorescently 

labeled PXR-LBD (0.1 mg/mL), and washed, and then the surface-associated fluorescence 

was monitored for 90 min at 30 min intervals using TIRFM (data not shown). Although the 

fluorescence decreased 13 ± 3% over the 90 min period, the decrease was only 3 ± 3% after 

30 min. As all TIRFM equilibrium and TIR-FRAP kinetic measurements, for individual 

samples, were obtained within at least 30 min of the final wash, the calibrated surface 

residency times for NeutrAvidin and PXR were judged to be sufficient.

PXR-LBD was biotinylated at its N-terminus, away from the ligand binding pocket, the 

SRC-1 peptide binding site, the SMRT binding site, and AF-2,7,25 to minimize the 

possibility that biotinylation and subsequent immobilization would affect the interaction 

with ligands and coregulators. To determine whether PXR-LBD specifically bound 

NeutrAvidin during surface immobilization, fluorescently labeled PXR-LBD (F-PXR-LBD) 

was applied to NeutrAvidin-coated substrates in the presence and absence of excess (100 

μM) D-biotin. Figure 1 shows that in the presence of excess D-biotin the surface-associated 

fluorescence decreased markedly, indicating that F-PXR-LBD specifically bound 

NeutrAvidin. All subsequent measurements were conducted at a PXR-LBD concentration of 

0.1 mg/mL.

PXR has the ability to bind many types of ligands, and in the measurements reported here, 

the SRC-1 peptide was labeled with fluorescein maleimide. To ensure that fluorescein is not 

a PXR ligand, the surface-associated fluorescence as a function of the concentration of the 

unreactive fluorescein reference standard in solution was examined in the presence and 

absence of surface-bound PXR-LBD (data not shown). Data were obtained for fluorescein 

concentrations ranging up to 9 μM, above the maximum concentration of labeled F-SRC-1 

used in subsequent measurements (usually 3.5 μM). The evanescently excited fluorescence 

intensities measured in the presence and absence of PXR-LBD were identical and linear 

with the fluorescein concentration, indicating that the fluorescence arose solely from 

fluorescein in solution and that, therefore, fluorescein is not a PXR ligand.

F-SRC-1–PXR-LBD Equilibrium Dissociation Constants Measured by Steady-State TIRFM

Steady-state TIRFM was used to examine the thermodynamics of the interaction between F-

SRC-1 and PXR-LBD at different rifampicin concentrations. The surface-associated 

fluorescence arising from both F-SRC-1 bound to immobilized PXR-LBD and free F-SRC-1 

in solution that were close enough to the surface to be excited by the evanescent field, 

denoted by F(+), was measured as a function of the F-SRC-1 concentration in solution. Also 

measured was the fluorescence solely from F-SRC-1 in solution, denoted by F(−), obtained 
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from samples not treated with PXR-LBD. The difference, which gives a measure of the 

density of specifically bound F-SRC-1, is denoted by F(+)–F(−). These three quantities are, 

in the simplest case, given by

(1)

where Q is a proportionality constant, S is the surface density of PXR-LBD, A is the solution 

concentration of F-SRC-1 (only 10 or 30% of which is actually labeled), Kd is the 

equilibrium dissociation constant describing the reversible association of F-SRC-1 with 

PXR-LBD, d is the depth of the evanescent field, and b is a constant background signal.

For a given, matched set of measured F(+) and F(−) intensities (see Figure 2A), the 

following procedure was used to find the best-fit value of the equilibrium dissociation 

constant, Kd. The experimentally determined values of F(−) were fit to the second 

expression in eq 1 with A as the abscissa and Qd and b as free parameters. The best-fit 

values of Qd and b were used to calculate theoretical values for F(−) for the values of A at 

which F(+) intensities had been obtained. The theoretical values of F(−) were subtracted 

from the experimental values of F(+) (see Figure 2B). The fluorescence differences were 

then fit to the third expression in eq 1 with QS and Kd as free parameters. A representative 

binding curve from a single trial is shown in Figure 2.

Equilibrium dissociation constants pertaining to the F-SRC-1–PXR-LBD interaction, 

obtained at rifampicin concentrations that ranged from 0 to 100 μM, are listed in Table 1. As 

the reported equilibrium dissociation constants for rifampicin and PXR-LBD are ≤10 

μM,31,32 at 100 μM rifampicin one would expect most (≥91%) of the surface-immobilized 

PXR-LBD to be in the ligand-bound state. The measured dissociation constants are within 

error of each other, indicating that rifampicin does not affect the affinity of the receptor for 

F-SRC-1. To verify these results, binding curves for which the surface-associated 

fluorescence was measured as a function of the rifampicin concentration, ranging from 0 to 

100 μM, were obtained (data not shown). In these measurements, the F-SRC-1 concentration 

was kept constant at 2.5 μM. The surface-associated fluorescence did not change, within 

experimental uncertainty, with rifampicin concentration, supporting our previous finding 

that rifampicin does not affect the interaction between PXR-LBD and the SRC-1 fragment. 

A PXR-LBD mutant (S247W/C284W), which was made to mimic a ligand-bound state of 

the receptor via the introduction of bulky tryptophan residues into the ligand binding 

pocket,27 served as a control. Many such mutants have been shown to constitutively recruit 

the coactivator and promote the transcription of reporter genes in a ligand-independent 

manner.7,27 These measurements indicate that the F-SRC-1 peptide interacts with PXR-LBD 

as though it is ligand-bound, even in the absence of rifampicin (Table 1). Additional 

measurements were taken with 5 mM TCEP or F-SRC-1 with 30% labeling, as opposed to 2 

mM TCEP and 10% labeling for all other curves (Table 1). Equilibrium constants obtained 

at 5 mM TCEP were within error of the Kd values obtained at 2 mM TCEP (10% labeling). 

This result indicates that 2 mM TCEP was sufficient to prevent significant dimerization of 
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unlabeled SRC-1 molecules via the formation of disulfide bonds and to maintain cysteine 

residues in PXR-LBD in their reduced state, as they would be in vivo. Equilibrium constants 

obtained using F-SRC-1 with 30% labeling were within error of those obtained using 

coactivator with 10% labeling (2 mM TCEP), indicating that the fluorescein tag does not 

significantly interfere with PXR-LBD–SRC-1 binding.

The density, S, of PXR-LBD at the surface was experimentally determined by using the 

best-fit values of QS (the saturating fluorescence in the binding isotherm) and Qd (the slope 

of the background), and an estimated d value of ≈85 nm for our system.33 The density of 

PXR-LBD at the surface served as an internal control, as the values of S should be on the 

same order of magnitude for all binding curves and within error of each other for 

measurements conducted with a single batch of PXR. The densities ranged from 1 to 7 × 103 

molecules/μm2, with an average of (4 ± 2) × 103 molecules/μm2. For measurements taken 

using the same batch of PXR, the S values, as returned by the fitting program, were always 

within error of each other.

F-SRC-1–PXR-LBD Dissociation Rate Constants Measured by TIR-FRAP

TIR-FRAP was employed to examine the kinetics of the interaction between F-SRC-1 and 

PXR-LBD at 0, 10, and 100 μM rifampicin. In conducting these measurements, we 

monitored the surface-associated fluorescence generated by TIR illumination before and 

after a short, intense bleach pulse. Once an evanescently illuminated area is photobleached, 

the fluorescence recovers as surface-bound, photobleached molecules dissociate and are 

replaced by unbleached molecules in solution. The rate of this recovery reflects the rate at 

which photobleached molecules dissociate from surface binding sites.22,29 In the absence of 

surface rebinding, the temporal shape of the recovery curve is predicted to be a single 

exponential with a rate equal to the intrinsic off rate.34

Figure 3 shows two representative fluorescence recovery curves for 1.25 μM (Figure 3A) 

and 20 μM (Figure 3B) F-SRC-1 interacting with PXR-LBD in the absence of rifampicin. 

The curves were obtained using a 300 mW, 50 ms bleach pulse, and fluorescence was 

measured for 30 s after photobleaching. As shown, fluorescence recovery was rapid and 

essentially complete after 30 s.

To confirm that F-SRC-1 was indeed highly reversibly interacting with immobilized PXR-

LBD, we measured the surface-associated fluorescence following the application of F-

SRC-1 and immediately after washing with 2 mL of buffer D. The surface-associated 

fluorescence was at background levels after washing, indicating that F-SRC-1 was 

completely washed away and interacts only reversibly with PXR-LBD. This observation 

also informs one that the larger fragment of SRC-1, with which PXR-LBD is co-expressed, 

is most likely removed during the washing step following the application of PXR-LBD to 

the substrate, if not before during PXR-LBD purification [as indicated by gel electrophoresis 

(see Materials and Methods)].

In a system such as ours where F-SRC-1 reversibly interacts with surface-bound PXR-LBD, 

one would at first expect a single intrinsic dissociation rate constant. Hence, fluorescence 

recovery curves were expected to be monoexponential, with the single exponent reflecting 
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the one rate constant. However, as illustrated in Figure 3 and as previously observed for a 

variety of other systems,19,22,29 the curves are not monoexponential but are in fact better 

described by the sum of two exponentials

(2)

where f0 is the fluorescence at time zero, defined as the center of the bleach pulse. The 

weighted average of the two exponential factors, k1 and k2, can be used to determine an 

average off rate, as follows:

(3)

The fractions of the prebleach fluorescence, fp, that were bleached (β) and then recovered (μ) 

were calculated as follows:

(4)

In the TIR-FRAP measurements, the monitoring excitation intensity was sufficiently low 

that in the absence of a bleach pulse, the evanescently excited fluorescence was constant 

with no measurable decrease during the typical postbleach monitoring time of 30 s. Potential 

photoinduced artifacts arising from the intense photobleaching pulse were ruled out by three 

different types of control measurements. Here, quantitative analysis of recovery curves 

indicated no significant difference in the best-fit values of koff for (a) a 3-fold increase in the 

bleaching intensity, (b) a 2-fold increase in the bleaching time, or (c) recovery curves 

obtained following sequential bleaching of identical regions after previous fluorescence 

recovery.

TIR-FRAP recovery curves were obtained for a range of F-SRC-1 concentrations, at three 

different rifampicin concentrations. As shown in Figure 4, fluorescence recovery was 

significantly slower at lower F-SRC-1 concentrations. This observation is almost certainly 

due to the fact that at lower F-SRC-1 concentrations there is an increased density of free 

PXR-LBD on the surface. Consequently, bleached molecules that dissociate from surface 

binding sites rebind free PXR-LBD at a higher frequency, reducing the overall rate of 

fluorescence recovery and thereby the observed rate constants. The intrinsic dissociation rate 

constant was taken to be the value at which the weight-averaged off rate, koff, was 

maximized and independent of the F-SRC-1 concentration. Toward this end, average off 

rates were plotted as a function of the F-SRC-1 concentration and fit to the model shown in 

eq 529 to determine the limit of the off rate as the F-SRC-1 concentration approached 

infinity, given by :

(5)
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where koff(A) is the measured average off rate for a given value of A and C is an arbitrary 

constant. The free parameters were  and C. Intrinsic, average dissociation rate constants, 

, were obtained for the F-SRC-1–PXR-LBD interaction at 0, 10, and 100 μM rifampicin 

and found to be 2.0 ± 0.1, 2.4 ± 0.3, and 2.4 ± 0.1 s−1, respectively (Figure 4A). As with the 

thermodynamics, rifampicin does not affect the kinetics of the interaction between F-SRC-1 

and PXR-LBD.

As previously shown,35 the probability that a bleached molecule that dissociates from the 

origin at time zero has rebound at least once within the illuminated and observed area after 

the duration of the postbleach observation is

(6)

where tf is the duration of the observation time after photobleaching, wx and wy are the 1/e2 

radii of the elliptically Gaussian illuminated area, D is the diffusion coefficient of F-SRC-1 

in solution, and η describes the propensity for rebinding. The parameter η is given by

(7)

where kon is the association rate constant, obtained by computing the quotient of the 

measured dissociation rate constant and equilibrium dissociation constant. Figure 4B shows 

the values of eq 6 numerically evaluated for the following values: tf = 30 s, Kd = 4 μM, koff 

= 2 s−1, S = 3000 molecules/μm2, D = 100 μm2/s, wx = 22.4 μm, and wy = 65.0 μm. As 

shown, P is significant at the lower F-SRC-1 concentrations but becomes negligibly small 

for the higher F-SRC-1 concentrations. This information is consistent with the interpretation 

that the measured fluorescence recovery curves are significantly affected by surface 

rebinding at low F-SRC-1 concentrations but that, at the higher F-SRC-1 concentrations, the 

effects of surface rebinding are negligible and the recovery curves accurately report the 

intrinsic surface dissociation kinetics.

SMRT–PXR-LBD Equilibrium Dissociation Constants Measured by Steady-State TIRFM

SMRT–PXR-LBD equilibrium constants were obtained from competition curves in which 

SMRT was titrated against a fixed concentration of F-SRC-1 (5 μM). Steady-state TIRFM 

was used to measure the decrease in surface-associated fluorescence as increasing amounts 

of SMRT competed with a fixed concentration of F-SRC-1 to bind surface-bound PXR-

LBD. Competition curves were obtained at rifampicin concentrations of 0, 10, and 100 μM. 

Background-subtracted data were fit to eq 8 to obtain the equilibrium dissociation constant, 

Kd′, for the interaction between the corepressor and PXR-LBD.

(8)
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where Q is a proportionality constant, S is the surface density of PXR-LBD, Kd is the F-

SRC-1–PXR-LBD dissociation constant, A is the concentration of F-SRC-1, and B is the 

concentration of the corepressor. QS and Kd′ were free parameters, while Kd and A were 

fixed at 5 μM. Figure 5 shows the background-subtracted, SMRT competition curve 

obtained in the absence of ligand. Fitting the data in Figure 5 to eq 8 yielded an equilibrium 

dissociation constant of 65 ± 13 μM for the interaction between SMRT and PXR-LBD. An 

equilibrium dissociation constant of 51 ± 14 μM was obtained at 100 μM rifampicin (see 

Table 2). The fact that these values are within error of each other indicates that rifampicin 

does not alter the affinity of SMRT and PXR fragments. Competition curves were also 

obtained using a peptide fragment of another corepressor called the nuclear receptor 

corepressor (NCoR). NCoR, which has been reported not to interact with PXR,13 competed 

even more weakly with F-SRC-1 to bind surface-bound PXR-LBD [see Figure 5]. Fitting 

these data to eq 8 yielded an equilibrium constant of 200 ± 50 μM for the NCoR–PXR-LBD 

interaction in the absence of ligand. This value was within error of those obtained at 10 and 

100 μM rifampicin as shown in Table 2.

DISCUSSION

The nuclear receptor PXR plays an important role in the metabolism of endobiotic and 

xenobiotic compounds, including many pharmaceutical products, by regulating the 

expression of drug-metabolizing enzymes. The conventional view of nuclear receptor action 

is that upon binding agonists, nuclear receptors preferentially associate with coactivators, 

which in turn recruit downstream members of the transcription machinery.36 In this study, 

we investigated the interaction between the ligand binding domain of PXR and a relevant 

peptide derived from the coactivator, SRC-1, in the presence and absence of the PXR 

agonist, rifampicin. Specifically, TIRFM and TIR-FRAP were employed to examine the 

thermodynamics and kinetics of PXR-LBD interacting with a fluorescently labeled SRC-1 

peptide at different rifampicin concentrations. The equilibrium and dissociation rate 

constants for the PXR-LBD–F-SRC-1 interaction were unchanged in the presence of 

rifampicin. In the absence of ligand, the basal transcriptional activity of PXR was reported 

to be significantly reduced by the corepressor SMRT.13 Thus, the thermodynamics of the 

interaction between PXR-LBD and a peptide fragment of SMRT was also measured using 

TIRFM. Again, rifampicin had no effect on the PXR-LBD–SMRT interaction. These results 

indicate that the agonist rifampicin does not affect PXR’s affinity for (at least these two) 

coregulators.

While no known rigorous biophysical studies have been previously conducted to 

quantitatively characterize the interaction among PXR, coactivators, and ligands, the 

thermodynamics and kinetics of other nuclear receptors, particularly the steroid hormone 

receptors, interacting with coregulators and ligands have been measured. As reported above, 

apparent equilibrium and dissociation rate constants of 5 μM and 2 s−1, respectively, were 

obtained for the interaction between PXR-LBD and SRC-1 (676–700) in the presence and 

absence of rifampicin. This measured apparent equilibrium dissociation constant is at the 

weak end of the spectrum of affinities measured for nuclear receptors, many of which fall in 

the nanomolar range. Fluorescence polarization assays of full-length SRC-1 interacting with 

the full-length estrogen receptor (ER) and ER-LBD in the presence of estrogen yielded a Kd 
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of ~30 nM on both occasions.37 In the absence of ligand, no interaction was observed. 

Equilibrium constants of full-length ER and another member of the steroid receptor 

coactivator family, SRC-2, interacting in live cells have been estimated using fluorescence 

cross-correlation spectroscopy. Estimated Kd values of ~200 nM, <6 nM, and >3 μM were 

obtained for ER/SRC-2 in the apo, agonist-bound, and antagonist-bound states, 

respectively.38 Equilibrium constants of ~160 nM were obtained for the thyroid receptor 

LBD interacting with a SRC-2 fragment in the presence of thyroxin.39,40 Surface plasmon 

resonance yielded an apparent dissociation rate constant on the order of 1 × 10−2 s−1 for this 

interaction.40 However, a recent study showed that the glucocorticoid receptor (GR), like 

PXR, binds many coregulator peptides with micromolar affinity in the presence of the GR 

agonist, dexamethasone.41 Further studies have shown that another receptor, the peroxisome 

proliferator-activated receptor-γ (PPARγ), is able to bind SRC-1 in the absence of ligand 

with an equilibrium dissociation constant of 34.2 μM.42 Addition of a ligand did increase the 

affinity of PPARγ and SRC-1, and a Kd of 0.96 μM was obtained. The ability of both PXR 

and PPARγ to bind coactivators in the absence of ligand may account for their relatively 

high level of basal activity. FRET measurements have been used to examine the interaction 

between full-length, human PXR and the same 25-amino acid fragment of SRC-1 used in 

this study, as a function of the rifampicin concentration.43 While the assay did not yield 

equilibrium dissociation constants for PXR and SRC-1, it did show, contrary to our findings, 

that rifampicin slightly, but within experimental uncertainty, increased the extent of 

coactivator recruitment. We cannot yet account for this discrepancy.

The structures of LBDs are conserved among the various members of the nuclear receptor 

superfamily.44,45 Briefly, nuclear receptor LBDs consist of approximately 12 α-helices 

arranged into three layers and two to five β-strands that line a side of the ligand binding 

pocket. The ligand binding pocket exists as a cavity on one side of the LBD and is lined 

primarily by hydrophobic residues from several α-helices and β-strands. The coactivator 

binding site consists of a hydrophobic groove on the surface of the LBD, created by α-

helices 3, 4, and 12 in PXR.

Crystal structures of nuclear receptors in the apo and agonist-bound states have contributed 

to an existing molecular model of ligand-mediated interaction between nuclear receptors and 

coactivators. A crystal structure of the retinoid acid receptor in the apo state showed helix 12 

(H12), or activation function-2 (AF-2), extended away from the main body of the LBD,9 

whereas subsequent structures of ligand-bound nuclear receptor LBDs showed H12 folded 

against the body of the LBD.10,11 In this folded conformation, LBDs can bind conserved 

LXXLL motifs in coactivators via a charge clamp.11 Therefore, it is thought that H12 serves 

as the molecular switch that is modulated by ligands to promote interaction of the nuclear 

receptor with coactivators. PXR-LBD was cocrystallized with the same 25-amino acid 

fragment of SRC-1 (residues 676–700) used in this study, and the agonist SR12813.12 The 

SRC-1 fragment formed a kinked α-helix and bound to a groove on the surface of PXR-

LBD created by helices 3 (H3), 4 (H4) and 12. Two polar contacts between PXR-LBD and 

SRC-1 [K259 (H3), carbonyl oxygen of L694; E427 (H12), amine nitrogen of I689] 

constituted the charge clamp that has also been observed in other nuclear receptor–

coactivator complexes. In addition, a hydrogen bond was formed between K227 (H4) and 
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H687. This lysine residue is also conserved in other nuclear receptors, including the 

constitutive androstane, liver X, farnesoid X, and vitamin D receptors.

Crystal structures of ligand-bound nuclear receptors have helped elucidate the manner in 

which many endogenous ligands stabilize H12 in the folded or active conformation. It 

appears that a canonical π–cation interaction stabilizes H12 in the folded state in the steroid 

hormone receptors,46 which encompass the glucocorticoid, mineralcorticoid, progesterone, 

androgen, and estrogen receptors, as well as in other nuclear receptors, including the vitamin 

D, thyroid hormone, farnesoid X, and liver X receptors.47 In the non-steroid hormone 

receptors, an oxygen atom from each receptor’s endogenous ligand forms an electrostatic 

interaction with a conserved histidine in H10 or H11, which in turn makes π–cation 

interactions with a conserved tryptophan or phenylalanine in H12. In this way, ligands of 

many nuclear receptors indirectly stabilize H12 in the active conformation. However, it is 

not immediately clear from crystal structures of ligand-bound PXR-LBD how agonists 

might stabilize PXR’s H12 in the folded state. PXR ligands are structurally diverse and 

appear to lack a common chemical feature that could stabilize the active conformation. 

Furthermore, attempts to design an antagonist directed at the PXR ligand binding pocket 

have thus far failed, with many of the proposed compounds instead serving as agonists.48 It 

appears that any compound that binds PXR’s ligand binding pocket serves to activate the 

receptor. (Compounds that antagonize PXR by competing with coactivators to bind the 

receptor have been described previously.27,31) Therefore, it is likely that PXR ligands do not 

directly stabilize the active conformation and increase the receptors’s affinity for 

coactivators but instead work through an alternate mechanism to upregulate PXR activity.

A crystal structure of apo-PXR-LBD shows H12 in the active conformation, indicating that 

the folded state may be favored even in the absence of ligand.25 If the active conformation is 

energetically favored in the apo state, that fact could explain our observation that PXR-LBD 

interacts with the SRC-1 fragment in a ligand-independent manner. Furthermore, PXR has a 

high level of basal activity relative to other nuclear receptors,49 indicating that the receptor 

may be able to adopt a stable active conformation in the absence of ligand. Supporting this 

conclusion, molecular dynamics simulations on PXR have shown that the AF-2 region of the 

receptor moves as a correlated unit in the absence of ligands.50

PXR is somewhat unique because it binds promiscuously to structurally diverse ligands. In 

fact, ligands that range in molecular weight from 232 (phenobarbitol) to 823 (rifampicin) 

have been shown to activate PXR. A 60-amino acid insert found in PXR-LBD that serves to 

create a five-stranded β-sheet lining one side of the ligand binding pocket, as opposed to the 

two- or three-stranded β sheet seen in other NRs, is thought to contribute to a large, flexible 

ligand binding pocket that allows PXR to accommodate diverse ligands.25 The ligand 

binding pocket can range in volume from 1150 Å3 in the apo state25 to ~1900 Å3 with 

rifampicin bound.7 Such a large cavity in the body of this globular protein may serve to 

destabilize apo-PXR. Ligand binding may increase the stability of PXR and thereby its 

lifetime in vivo. Ligand-dependent activation of PXR might then be a consequence of the 

increased stability of the ligand-bound receptor.
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Nonetheless, studies of the interaction between PXR and SRC-1 in cells suggest that the 

interaction is enhanced in the presence of ligands. In vitro coprecipitation assays of 

bacterially expressed GST-tagged PXR-LBD and a 35S-labeled SRC-1 fragment, containing 

the coactivator’s receptor interaction domain (RID), showed a weakly enhanced interaction 

in the presence of various agonists, including rifampicin.5,51 It is worth noting that the 

corresponding interaction between a GST-tagged LBD of the estrogen receptor (ER) and 

radiolabeled SRC-1-RID was much more greatly enhanced in the presence of estradiol.51 

Mammalian two-hybrid assays have also demonstrated a ligand-dependent interaction for 

SRC-1-RID and PXR, with similar results being obtained for both full-length PXR and 

PXR-LBD.31,52 Indeed, these studies were conducted with SRC-1-RID, which contains 

three LXXLL motifs, as opposed to the 25-amino acid fragment used in this study, which 

has only one LXXLL motif, albeit the most strongly interacting one.53 However, yeast two-

hybrid assays have shown that coactivator fragments as small as eight amino acids, 

containing a single LXXLL motif, are able to interact with ER-LBD in a ligand-dependent 

manner.54 Therefore, it is unlikely that our observation that the interaction between PXR-

LBD and the SRC-1 fragment is rifampicin-independent is due to the use of a 25-amino acid 

fragment of SRC-1, as opposed to the use of a larger fragment or the full-length protein that 

is 1441 residues long. It is possible that the observed ligand dependence in the in vivo 

biochemical assays is due to an increased stability of ligand-bound PXR.

Thermal denaturation studies using circular dichroism spectropolarimetry have shown that 

ligands do stabilize PXR-LBD. Melting temperatures of 43.0 ± 0.08,12 48.4 ± 0.05,12 and 

46.5 ± 0.0555 °C were obtained for apo, SR12813-bound, and rifampicin-bound PXR-LBD, 

respectively. A complex of SRC-1 and PXR-LBD had a melting temperature of 48.2 ± 0.08 

°C.12 These results show that agonists and the coactivator each serve to stabilize PXR-LBD. 

Ternary complexes of PXR-LBD and SRC-1 with either SR12813 or rifampicin were even 

more stable with melting temperatures of 52.5 ± 0.0512 and 52.6 ± 0.0355 °C, respectively. 

One might expect that this increase in stability upon addition of the third component would 

mean that the agonist and coactivator bind cooperatively, resulting in a ligand-dependent 

increase in affinity for the coactivator and vice versa. However, if the increased thermal 

stability is due to rifampicin and SRC-1 independently stabilizing different regions of PXR-

LBD, binding of one may not increase the receptor’s affinity for the other.

Another possibility is that ligand-dependent activation of PXR occurs through a novel 

pathway that is as yet uncharacterized. A recent study demonstrated that the nuclear receptor 

peroxisome proliferator-activated receptor-γ (PPARγ) is activated by structurally diverse 

serotonin and fatty acid metabolites.42 PPARγ, like PXR, has a flexible ligand binding 

pocket that can accommodate many different endogenous and exogenous ligands. Crystal 

structures of PPARγ in complex with a mimic of serotonin metabolites, indomethacin 

(IDM), showed that it bound in a distinct region of the ligand binding pocket and made 

direct contact with H12, securing the helix in the active conformation. However, fatty acid 

metabolites bound away from H12 and failed to make any contact with the helix. Surface 

plasmon resonance studies showed IDM induced PPARγ to recruit SRC-1. In fact, 

equilibrium dissociation constants of 34.2 and 0.96 μM were obtained for PPARγ and 

SRC-1 in the absence and presence of IDM, respectively. While IDM precipitated a 30-fold 
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increase in the affinity of PPARγ for SRC-1, the fatty acid metabolite, nitro-233, failed to 

enhance the interaction between the receptor and coactivator. Instead, it was proposed that 

nitro-233 may modulate heterodimerization with the retinoid X receptor. Given the 

structural diversity of PXR ligands, agonists like rifampicin may very well use different 

pathways to activate PXR.

Another aspect related to nuclear receptor function is the previous observation that many 

receptors have the capability of forming homodimers or heterodimers with other nuclear 

receptors. In the case of PXR, the physiologically relevant receptor dimer is thought to be 

one with RXR. Nonetheless, a previous work has shown that PXR-LBD homodimerizes in 

vitro with an equilibrium dissociation constant of 4.5 μM.26 A dimerization-null mutant was 

found to be incapable of binding the SRC-1 peptide either in the presence or in the absence 

of ligand. However, this result is not completely consistent with a separate report in which 

ligand-dependent interaction of the SRC-1 peptide with PXR-LBD was observed in vitro for 

a receptor concentration of 20 nM,43 well below the Kd for dimerization where one would 

predict that the PXR-LBD was present almost exclusively in monomeric form. One 

possibility is that the discrepancy arises in an indirect manner as a consequence of the 

mutations introduced to form the dimerization-null PXR-LBD. Regardless of these results, it 

is important to address the question of the state of dimerization of the PXR-LBD used in the 

work reported here. The solution concentration before application to the surface was 0.1 

mg/mL (2.6 μM); thus, the previously measured dimerization Kd would imply that the 

solutions contained primarily monomeric PXR-LBD with a non-negligible fraction of 

dimeric PXR-LBD. It is not possible to determine, after application to the surfaces and 

washing, what fraction of the immobilized PXR-LBD was in the monomeric or dimeric 

form. Nonetheless, the results show clearly that the SRC-1 peptide does specifically and 

reversibly interact with at least a fraction of the immobilized PXR-LBD. Definitive 

conclusions about the interaction of SRC-1 peptides with monomeric and dimeric forms of 

PXR-LBD await further measurements.

The interaction between corepressors and nuclear receptors, particularly PXR, has not been 

as extensively studied as that between coactivators and nuclear receptors. Cell-based assays 

have been used to show that the SMRT-RID specifically interacts with PXR while that of 

NCoR does not.13 Hence, our finding that the peptide derived from SMRT binds PXR-LBD 

with greater affinity (Kd′ ~70 μM) than the NCoR fragment (Kd′ ~170 μM) is consistent with 

what has been reported in the literature. Only one of two interaction domains 

(LXXXIXXXL; ID1 and ID2), ID2, in the SMRT-RID was shown to actually bind PXR.14 

In addition, of the two major SMRT splicing isoforms, α and τ, ID2 derived from SMRTα 

was found to bind preferentially to PXR.15 Compared to SMRTτ, SMRTα contains a 46-

amino acid insert immediately downstream of ID2. For the purposes of this study, a peptide 

containing ID2 from SMRTα was used. Reporter assays showed that SMRT (α and τ) 

reduces both the basal and rifampicin-induced transcriptional activity of PXR on the 

CYP3A4 promoter.13,14 These results indicate that SMRT is able to compete with 

coactivators to bind PXR in the absence and presence of ligand and thereby reduce the 

receptor’s transcriptional activity.
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In addition to the fact that SMRTα binds preferentially to PXR, it has been shown that 

SMRTα resists rifampicin-induced dissociation from PXR15 while SMRTτ does not.14 

These results are consistent with our observation that the corepressor peptide derived from 

SMRTα binds PXR-LBD with equal affinity in the presence and absence of rifampicin. 

However, the measured equilibrium dissociation constant of SMRTα (2337–2358) and 

PXR-LBD, which averages to ~70 μM over the three rifampicin concentrations (see Table 

2), is quite weak. In comparison, fluorescence polarization measurements of the thyroid 

hormone receptor-β LBD and SMRTα (2329–2358) yielded equilibrium dissociation 

constants of ~1 μM.16 It is unclear whether a larger fragment of SMRTα would have 

interacted with PXR-LBD with greater affinity. However, if the measured equilibrium 

constant is accurate, the interaction between SMRTα and PXR-LBD may not be 

physiologically relevant. It is possible that there are other corepressors that interact with 

PXR with a higher affinity and in a ligand-dependent manner.

Crystal structures of nuclear receptor LBDs and peptide fragments of SMRT have revealed 

the mode of corepressor binding and thereby elucidated the reason for the competition 

between corepressors and coactivators to bind nuclear receptors. A crystal structure of a 

PPAR isoform, PPARα, LBD in complex with an antagonist, GW490544, and the same 

peptide fragment of SMRTα (2337–2358) that was used in this work showed that the 

corepressor bound to a hydrophobic groove on the surface of the LBD that overlapped with 

the coactivator binding site.16 GW490544, like many nuclear receptor antagonists, had a 

portion that protruded out from the ligand binding pocket and prevented H12 (AF-2) from 

assuming its active conformation. This repositioning of H12 allowed the corepressor peptide 

to bind a groove formed by H3, H3′, H4, and H5. In the ternary complex, SMRT adopted a 

three-turn α-helix, unlike the two-turn α-helix formed by SRC-1. The additional helical turn 

in SMRT extended into the space that is normally occupied by H12 in the active 

conformation. The corepressor–PPARα complex was stabilized by polar contacts between 

the backbone carbonyls of A2348 and L2349 and the amine nitrogen of the same, conserved 

lysine residue in H3 that helps form the charge clamp with coactivators. Because the 

coactivator and corepressor binding sites overlap so greatly, one of these coregulators 

binding a nuclear receptor would necessarily prevent the other from binding. In the apo 

state, when H12 is allowed to freely sample active and inactive conformations, one would 

expect coactivators and corepressors to compete with each other to bind nuclear receptors. If 

in fact rifampicin fails to secure H12 in the active conformation, as is implied by existing 

structural data and our thermodynamic and kinetic data for SRC-1–PXR-LBD interactions, 

one would expect, as observed, that rifampicin does not affect the ability of corepressors to 

bind PXR-LBD.

Our thermodynamic and kinetic measurements indicate that rifampicin does not increase the 

affinity of PXR-LBD for the SRC-1 fragment or decrease the receptor’s affinity for SMRT. 

The vast structural diversity of PXR ligands makes it unlikely that all agonists would be able 

to form direct or indirect interactions with residues in H12, as seen with the π– cation 

interactions, to stabilize the active conformation. It is possible that the different PXR ligands 

work through an alternate mechanism, or even several mechanisms like in the case with 

PPARγ, to activate the receptor. One such possibility is that ligands, by filling the large 
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cavity that is the ligand binding pocket, confer stability to PXR and increase the receptor’s 

in vivo lifetime. Other plausible ligand-dependent regulatory mechanisms include an 

interplay between (physiologically relevant) corepressors and coactivators, 

homodimerization or heterodimerization with RXR, phosphorylation, and the differential 

affinity of PXR for various chaperone proteins in the ligand-bound versus apo states. These 

possible mechanisms of action are all avenues for future study.
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PXR pregnane X receptor

TIRFM total internal reflection fluorescence microscopy
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LBD ligand binding domain

TIR-FRAP total internal reflection combined with fluorescence recovery after 
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Figure 1. 
Specificity of PXR-LBD immobilization. The surface-associated fluorescence of F-PXR-

LBD bound to immobilized NeutrAvidin was measured, after surfaces had been treated in 

the presence (▼) and absence (●) of 100 μM D-biotin. The molar ratios of D-biotin to PXR-

LBD ranged from approximately 400 (0.01 mg/mL PXR-LBD) to 40 (0.1 mg/mL PXR-

LBD). Fluorescence was measured after incubation of F-PXR-LBD with surface-bound 

NeutrAvidin for 5 min and washing with 2 mL of buffer D. Mean values from three separate 

samples (obtained from eight points per sample) were averaged to generate the curves. 

Uncertainties are standard deviations associated with the 3-fold averages. All subsequent 

measurements were taken with 0.1 mg/mL PXR-LBD.
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Figure 2. 
Representative F-SRC-1–PXR-LBD binding isotherm. These plots, obtained from a single 

trial, show the surface-associated fluorescence of F-SRC-1 interacting with PXR-LBD in the 

presence of 1 μM rifampicin. (A) Representative values of F(+) (●) and F(−) (○). (B) 

Background-subtracted data, F(+) – F(−), curve-fit to the third expression in eq 1, which 

yields a Kd of 4.5 ± 1.4 μM, where the error is that associated with the fit. The PXR-LBD 

surface site density is (2.0 ± 0.2) × 103 molecules/μm2.
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Figure 3. 
Representative fluorescence recovery curves. These plots show typical fluorescence 

recovery curves for (A) 1.25 μM and (B) 20 μM F-SRC-1 interacting with PXR-LBD in the 

absence of ligand, obtained using a 300 mW, 50 ms bleach pulse. Fluorescence values have 

been normalized to average prebleach fluorescence values and then fit to one-exponential 

(green curves; f2 = 0 in eq 2) and two-exponential (red curves; f2 ≠ 0 in eq 2) models. It is 

evident, especially at the early recovery times, that the two-exponential model is a better fit 

for the data. All reported values are derived from two-exponential fits. For the curves shown 

here, the values of f1, k1, f2, k2, and μ were (A) 8.0 ± 0.4 kHz, 0.76 ± 0.08 s−1, 4.3 ± 0.4 kHz, 

0.126 ± 0.012 s−1, and 0.88, respectively, and (B) 15.0 ± 0.8 kHz, 1.56 ± 0.13 s−1, 2.5 ± 0.3 

kHz, 0.15 ± 0.02 s−1, and 0.83, respectively. The weighted average of the two rate constants, 

koff, was (A) 0.54 or (B) 1.36 s−1.
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Figure 4. 
F-SRC-1–PXR-LBD dissociation rate constants measured by TIR-FRAP and theoretical 

probabilities of rebinding. (A) Four to six recovery curves were measured for each of four (0 

μM rifampicin) or three (10 and 100 μM rifampicin) independently prepared samples, for 

each F-SRC-1 concentration. These measurements were taken using 300 mW, 50 ms; 200 

mW, 50 ms; and 100 mW, 100 ms bleach pulses. Each recovery curve was fit to eq 2, and 

the best-fit values of f1, k1, f2, and k2 were used to calculate koff according to eq 3. The off 

rates (koff) obtained from the recovery curves pertaining to a single sample were averaged. 

The points shown in the plot are the averages of three or four of these mean koff values for 

each F-SRC-1 and rifampicin concentration, with the associated standard deviation. These 

values of koff as a function of F-SRC-1 concentration, in the absence (○) and presence [10 

μM (●) or 100 μM (▼)] of rifampicin, were fit to the model in eq 5. The best-fit values of 

the intrinsic dissociation rates, , were 2.0 ± 0.1, 2.4 ± 0.3, and 2.4 ± 0.1 s−1 at 0, 10, and 

100 μM rifampicin, respectively. (B) Probabilities of rebinding computed by numerically 

integrating eq 6 from time zero (the center of the bleach pulse) to 30 s (after 
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photobleaching), using the following values: Kd = 4 μM, koff = 2 s−1, S = 3000 

molecules/μm2, D = 100 μm2/s, wx = 22.4 μm, and wy = 65.0 μm.
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Figure 5. 
Representative corepressor competition data. This plot shows the background-subtracted and 

normalized fluorescence as a function of SMRT (●) and NCoR (○) concentrations obtained 

at 5 μM F-SRC-1, in the absence of ligand. Background fluorescence, measured in the 

absence of surface-immobilized PXR-LBD, was subtracted, and the data were fit to eq 8 

with QS and Kd′ as free parameters and using the following fixed parameters: A = 5 μM, and 

Kd = 5 μM. Equilibrium dissociation constants of 65 ± 13 and 200 ± 50 μM were obtained 

for the SMRT–PXR-LBD (●) and NCoR–PXR-LBD (○) interactions, respectively. These 

data were normalized to fluorescence counts determined using the value of the fit parameter 

QS, A = 5 μM, Kd = 5 μM, and B = 0 μM (no corepressor). The data are averages of two 

trials, and the errors are the corresponding standard deviations.
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Table 1

F-SRC-1–PXR-LBD Equilibrium Dissociation Constants Measured by Steady-State TIRFMa

PXR-LBD [rifampicin] (μM) Kd (μM)

WT 0 4 ± 2

WT 0.1 5 ± 3

WT 1 4 ± 2

WT 10 5 ± 3

WT 100 4 ± 3

S247W/C284W 0 4 ± 2

WT & S247W/C284W (5 mM TCEP) 0 4 ± 2

WT (30% labeled F-SRC-1) 0 5 ± 2

a
Reported Kd values are averages of values obtained from two binding isotherms. Controls were conducted with a ligand-bound mimic of the 

receptor, PXR-LBD (S247W/C284W); 5 mM TCEP, as opposed to 2 mM; and F-SRC-1 with 30% labeling, instead of 10%. For the 5 mM TCEP 
control, one curve was measured for WT PXR-LBD and the other for the double tryptophan mutant. Uncertainties are propagated from the errors 
associated with each of the two fits. WT PXR-LBD refers to the AviTag-His6-PXR-LBD (130–434) fusion protein, with no other modifications.
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Table 2

Corepressor–PXR-LBD Equilibrium Dissociation Constants Measured by Steady-State TIRFMa

[rifampicin] (μM)

Kd′ (μM

SMRT NCoR

0 65 ± 13 200 ± 50

10 82 ± 11 160 ± 40

100 51 ± 14 160 ± 40

a
Reported Kd′ values are averages obtained from two competition curves. Uncertainties are propagated from the errors associated with each of the 

two fits.
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