Abstract
A covalent stoichiometric complex between photosystem I (PSI) and ferredoxin from the cyanobacterium Synechocystis sp. PCC 6803 was generated by chemical cross-linking. The photoreduction of ferredoxin, studied by laser flash absorption spectroscopy between 460 and 600 nm, is a fast process in 60% of the covalent complexes, which exhibit spectral and kinetic properties very similar to those observed with the free partners. Two major phases with t(1/2) <1 micros and approximately 10-14 micros are observed at two different pH values (5.8 and 8.0). The remaining complexes do not undergo fast ferredoxin reduction and 20-25% of the complexes are still able to reduce free ferredoxin or flavodoxin efficiently, thus indicating that ferredoxin is not bound properly in this proportion of covalent complexes. The docking site of ferredoxin on PSI was determined by electron microscopy in combination with image analysis. Ferredoxin binds to the cytoplasmic side of PSI, with its mass center 77 angstroms distant from the center of the trimer and in close contact with a ridge formed by the subunits PsaC, PsaD and PsaE. This docking site corresponds to a close proximity between the [2Fe- 2S] center of ferredoxin and the terminal [4Fe-4S] acceptor FII of PSI and is very similar in position to the docking site of flavodoxin, an alternative electron acceptor of PSI.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aliverti A., Corrado M. E., Zanetti G. Involvement of lysine-88 of spinach ferredoxin-NADP+ reductase in the interaction with ferredoxin. FEBS Lett. 1994 May 2;343(3):247–250. doi: 10.1016/0014-5793(94)80565-2. [DOI] [PubMed] [Google Scholar]
- Batie C. J., Kamin H. Electron transfer by ferredoxin:NADP+ reductase. Rapid-reaction evidence for participation of a ternary complex. J Biol Chem. 1984 Oct 10;259(19):11976–11985. [PubMed] [Google Scholar]
- Batie C. J., Kamin H. Ferredoxin:NADP+ oxidoreductase. Equilibria in binary and ternary complexes with NADP+ and ferredoxin. J Biol Chem. 1984 Jul 25;259(14):8832–8839. [PubMed] [Google Scholar]
- Beechem J. M. Global analysis of biochemical and biophysical data. Methods Enzymol. 1992;210:37–54. doi: 10.1016/0076-6879(92)10004-w. [DOI] [PubMed] [Google Scholar]
- Bhattachryya A. K., Meyer T. E., Tollin G. Reduction kinetics of the ferredoxin-ferredoxin-NADP+ reductase complex: a laser flash photolysis study. Biochemistry. 1986 Aug 12;25(16):4655–4661. doi: 10.1021/bi00364a030. [DOI] [PubMed] [Google Scholar]
- Boekema E. J., Boonstra A. F., Dekker J. P., Rögner M. Electron microscopic structural analysis of Photosystem I, Photosystem II, and the cytochrome b6/f complex from green plants and cyanobacteria. J Bioenerg Biomembr. 1994 Feb;26(1):17–29. doi: 10.1007/BF00763217. [DOI] [PubMed] [Google Scholar]
- Bottin H., Lagoutte B. Ferredoxin and flavodoxin from the cyanobacterium Synechocystis sp PCC 6803. Biochim Biophys Acta. 1992 Jul 6;1101(1):48–56. doi: 10.1016/0167-4838(92)90465-p. [DOI] [PubMed] [Google Scholar]
- Correll C. C., Batie C. J., Ballou D. P., Ludwig M. L. Phthalate dioxygenase reductase: a modular structure for electron transfer from pyridine nucleotides to [2Fe-2S]. Science. 1992 Dec 4;258(5088):1604–1610. doi: 10.1126/science.1280857. [DOI] [PubMed] [Google Scholar]
- De Pascalis A. R., Jelesarov I., Ackermann F., Koppenol W. H., Hirasawa M., Knaff D. B., Bosshard H. R. Binding of ferredoxin to ferredoxin:NADP+ oxidoreductase: the role of carboxyl groups, electrostatic surface potential, and molecular dipole moment. Protein Sci. 1993 Jul;2(7):1126–1135. doi: 10.1002/pro.5560020707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Pascalis A. R., Schürmann P., Bosshard H. R. Comparison of the binding sites of plant ferredoxin for two ferredoxin-dependent enzymes. FEBS Lett. 1994 Jan 17;337(3):217–220. doi: 10.1016/0014-5793(94)80194-0. [DOI] [PubMed] [Google Scholar]
- Fukuyama K., Matsubara H., Rogers L. J. Crystal structure of oxidized flavodoxin from a red alga Chondrus crispus refined at 1.8 A resolution. Description of the flavin mononucleotide binding site. J Mol Biol. 1992 Jun 5;225(3):775–789. doi: 10.1016/0022-2836(92)90400-e. [DOI] [PubMed] [Google Scholar]
- Harauz G., Boekema E., van Heel M. Statistical image analysis of electron micrographs of ribosomal subunits. Methods Enzymol. 1988;164:35–49. doi: 10.1016/s0076-6879(88)64033-x. [DOI] [PubMed] [Google Scholar]
- Hirasawa M., Chang K. T., Knaff D. B. The interaction of ferredoxin and glutamate synthase: cross-linking and immunological studies. Arch Biochem Biophys. 1991 Apr;286(1):171–177. doi: 10.1016/0003-9861(91)90024-d. [DOI] [PubMed] [Google Scholar]
- Hirasawa M., Tollin G., Salamon Z., Knaff D. B. Transient kinetic and oxidation-reduction studies of spinach ferredoxin:nitrite oxidoreductase. Biochim Biophys Acta. 1994 May 18;1185(3):336–345. doi: 10.1016/0005-2728(94)90249-6. [DOI] [PubMed] [Google Scholar]
- Hurley J. K., Medina M., Gomez-Moreno C., Tollin G. Further characterization by site-directed mutagenesis of the protein-protein interface in the ferredoxin/ferredoxin:NADP+ reductase system from Anabaena: requirement of a negative charge at position 94 in ferredoxin for rapid electron transfer. Arch Biochem Biophys. 1994 Aug 1;312(2):480–486. doi: 10.1006/abbi.1994.1335. [DOI] [PubMed] [Google Scholar]
- Hurley J. K., Salamon Z., Meyer T. E., Fitch J. C., Cusanovich M. A., Markley J. L., Cheng H., Xia B., Chae Y. K., Medina M. Amino acid residues in Anabaena ferredoxin crucial to interaction with ferredoxin-NADP+ reductase: site-directed mutagenesis and laser flash photolysis. Biochemistry. 1993 Sep 14;32(36):9346–9354. doi: 10.1021/bi00087a013. [DOI] [PubMed] [Google Scholar]
- Ikemizu S., Bando M., Sato T., Morimoto Y., Tsukihara T., Fukuyama K. Structure of [2Fe-2S] ferredoxin I from Equisetum arvense at 1.8 A resolution. Acta Crystallogr D Biol Crystallogr. 1994 Mar 1;50(Pt 2):167–174. doi: 10.1107/S0907444993009588. [DOI] [PubMed] [Google Scholar]
- Jelesarov I., De Pascalis A. R., Koppenol W. H., Hirasawa M., Knaff D. B., Bosshard H. R. Ferredoxin binding site on ferredoxin: NADP+ reductase. Differential chemical modification of free and ferredoxin-bound enzyme. Eur J Biochem. 1993 Aug 15;216(1):57–66. doi: 10.1111/j.1432-1033.1993.tb18116.x. [DOI] [PubMed] [Google Scholar]
- Karplus P. A., Bruns C. M. Structure-function relations for ferredoxin reductase. J Bioenerg Biomembr. 1994 Feb;26(1):89–99. doi: 10.1007/BF00763221. [DOI] [PubMed] [Google Scholar]
- Knaff D. B., Hirasawa M. Ferredoxin-dependent chloroplast enzymes. Biochim Biophys Acta. 1991 Jan 22;1056(2):93–125. doi: 10.1016/s0005-2728(05)80277-4. [DOI] [PubMed] [Google Scholar]
- Kruip J., Boekema E. J., Bald D., Boonstra A. F., Rögner M. Isolation and structural characterization of monomeric and trimeric photosystem I complexes (P700.FA/FB and P700.FX) from the cyanobacterium Synechocystis PCC 6803. J Biol Chem. 1993 Nov 5;268(31):23353–23360. [PubMed] [Google Scholar]
- Leibl W., Toupance B., Breton J. Photoelectric characterization of forward electron transfer to iron-sulfur centers in photosystem I. Biochemistry. 1995 Aug 15;34(32):10237–10244. doi: 10.1021/bi00032a018. [DOI] [PubMed] [Google Scholar]
- Lelong C., Sétif P., Lagoutte B., Bottin H. Identification of the amino acids involved in the functional interaction between photosystem I and ferredoxin from Synechocystis sp. PCC 6803 by chemical cross-linking. J Biol Chem. 1994 Apr 1;269(13):10034–10039. [PubMed] [Google Scholar]
- Medina M., Mendez E., Gomez-Moreno C. Identification of arginyl residues involved in the binding of ferredoxin-NADP+ reductase from Anabaena sp. PCC 7119 to its substrates. Arch Biochem Biophys. 1992 Dec;299(2):281–286. doi: 10.1016/0003-9861(92)90276-3. [DOI] [PubMed] [Google Scholar]
- Moser C. C., Keske J. M., Warncke K., Farid R. S., Dutton P. L. Nature of biological electron transfer. Nature. 1992 Feb 27;355(6363):796–802. doi: 10.1038/355796a0. [DOI] [PubMed] [Google Scholar]
- Mühlenhoff U., Kruip J., Bryant D. A., Rögner M., Sétif P., Boekema E. Characterization of a redox-active cross-linked complex between cyanobacterial photosystem I and its physiological acceptor flavodoxin. EMBO J. 1996 Feb 1;15(3):488–497. [PMC free article] [PubMed] [Google Scholar]
- Rao S. T., Shaffie F., Yu C., Satyshur K. A., Stockman B. J., Markley J. L., Sundarlingam M. Structure of the oxidized long-chain flavodoxin from Anabaena 7120 at 2 A resolution. Protein Sci. 1992 Nov;1(11):1413–1427. doi: 10.1002/pro.5560011103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rousseau F., Sétif P., Lagoutte B. Evidence for the involvement of PSI-E subunit in the reduction of ferredoxin by photosystem I. EMBO J. 1993 May;12(5):1755–1765. doi: 10.1002/j.1460-2075.1993.tb05823.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rypniewski W. R., Breiter D. R., Benning M. M., Wesenberg G., Oh B. H., Markley J. L., Rayment I., Holden H. M. Crystallization and structure determination to 2.5-A resolution of the oxidized [2Fe-2S] ferredoxin isolated from Anabaena 7120. Biochemistry. 1991 Apr 30;30(17):4126–4131. doi: 10.1021/bi00231a003. [DOI] [PubMed] [Google Scholar]
- Rögner M., Nixon P. J., Diner B. A. Purification and characterization of photosystem I and photosystem II core complexes from wild-type and phycocyanin-deficient strains of the cyanobacterium Synechocystis PCC 6803. J Biol Chem. 1990 Apr 15;265(11):6189–6196. [PubMed] [Google Scholar]
- Sigfridsson K., Hansson O., Brzezinski P. Electrogenic light reactions in photosystem I: resolution of electron-transfer rates between the iron-sulfur centers. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3458–3462. doi: 10.1073/pnas.92.8.3458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sonoike K., Hatanaka H., Katoh S. Small subunits of Photosystem I reaction center complexes from Synechococcus elongatus. II. The psaE gene product has a role to promote interaction between the terminal electron acceptor and ferredoxin. Biochim Biophys Acta. 1993 Feb 8;1141(1):52–57. doi: 10.1016/0005-2728(93)90188-l. [DOI] [PubMed] [Google Scholar]
- Sétif P. Q., Bottin H. Laser flash absorption spectroscopy study of ferredoxin reduction by photosystem I: spectral and kinetic evidence for the existence of several photosystem I-ferredoxin complexes. Biochemistry. 1995 Jul 18;34(28):9059–9070. doi: 10.1021/bi00028a015. [DOI] [PubMed] [Google Scholar]
- Tsukihara T., Fukuyama K., Mizushima M., Harioka T., Kusunoki M., Katsube Y., Hase T., Matsubara H. Structure of the [2Fe-2S] ferredoxin I from the blue-green alga Aphanothece sacrum at 2.2 A resolution. J Mol Biol. 1990 Nov 20;216(2):399–410. doi: 10.1016/S0022-2836(05)80330-4. [DOI] [PubMed] [Google Scholar]
- Tsukihira T., Fukuyama K., Nakamura M., Katsube Y., Tanaka N., Kakudo M., Wada K., Hase T., Matsubara H. X-ray analysis of a [2Fe-2S] ferrodoxin from Spirulina platensis. Main chain fold and location of side chains at 2.5 A resolution. J Biochem. 1981 Dec;90(6):1763–1773. doi: 10.1093/oxfordjournals.jbchem.a133654. [DOI] [PubMed] [Google Scholar]
- Walker M. C., Pueyo J. J., Navarro J. A., Gómez-Moreno C., Tollin G. Laser flash photolysis studies of the kinetics of reduction of ferredoxins and ferredoxin-NADP+ reductases from Anabaena PCC 7119 and spinach: electrostatic effects on intracomplex electron transfer. Arch Biochem Biophys. 1991 Jun;287(2):351–358. doi: 10.1016/0003-9861(91)90489-6. [DOI] [PubMed] [Google Scholar]
- Zanetti G., Merati G. Interaction between photosystem I and ferredoxin. Identification by chemical cross-linking of the polypeptide which binds ferredoxin. Eur J Biochem. 1987 Nov 16;169(1):143–146. doi: 10.1111/j.1432-1033.1987.tb13591.x. [DOI] [PubMed] [Google Scholar]
- Zilber A. L., Malkin R. Ferredoxin Cross-Links to a 22 kD Subunit of Photosystem I. Plant Physiol. 1988 Nov;88(3):810–814. doi: 10.1104/pp.88.3.810. [DOI] [PMC free article] [PubMed] [Google Scholar]




