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Abstract

Restoring dexterous motor function equivalent to that of the human hand after amputation is one 

of the major goals in rehabilitation engineering. To achieve this requires the implementation of a 

effortless human–machine interface that bridges the artificial hand to the sources of volition. 

Attempts to tap into the neural signals and to use them as control inputs for neuroprostheses range 

in invasiveness and hierarchical location in the neuromuscular system. Nevertheless today, the 

primary clinically viable control technique is the electromyogram measured peripherally by 

surface electrodes. This approach is neither physiologically appropriate nor dexterous because 

arbitrary finger movements or hand postures cannot be obtained. Here we demonstrate the 

feasibility of achieving real-time, continuous and simultaneous control of a multi-digit prosthesis 

directly from forearm muscles signals using intramuscular electrodes on healthy subjects. Subjects 

contracted physiologically appropriate muscles to control four degrees of freedom of the fingers of 

a physical robotic hand independently. Subjects described the control as intuitive and showed the 

ability to drive the hand into 12 postures without explicit training. This is the first study in which 

peripheral neural correlates were processed in real-time and used to control multiple digits of a 

physical hand simultaneously in an intuitive and direct way.

Index Terms

Artificial limbs; fine-wire electrodes; myoelectric control; neuroprosthetics

I. Introduction

The restoration, following amputation, of dexterous control equivalent to that of the human 

hand is one of the major goals in applied neuroscience and bioengineering [1]–[5]. To 

accomplish this requires achieving two important subgoals: the development of a multi-

degree of freedom (DoF) artificial hand [6], [7] and the implementation of an intuitive and 
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effortless human–machine interface (HMI) that maps the sources of volition to the DoFs of 

the artificial hand. The HMI is of interest for this work.

Many attempts to tap into the neural signals underlying voluntary control have been made, 

ranging in invasiveness (from neural implants to surface sensors) and hierarchical location 

(CNS, PNS, skeletal muscles). Although significant research efforts have been made with 

other approaches (see Micera et al. for review [8]) the most reliable and clinically viable 

technique today remains the use of the electromyogram [(EMG), i.e., the electrical activity 

produced by skeletal muscles as a by-product of normal muscle contraction], picked up by 

surface electrodes to control the movements of an electromechanical prosthesis. This type of 

control can be slow and unintuitive especially in the case of multi-DoF prosthetic arms and 

hands. For multi-DoF arms the different DoFs are controlled in a sequential fashion, using 

locking mechanisms and/or special switch signals to change control from one DoF to the 

next. Prosthetic hands are typically controlled by a single agonist/antagonist EMG pair that 

controls hand opening and closing and thus the fingers cannot be controlled individually.

Depending on the level of amputation, individuals with a below-elbow (i.e., transradial) 

amputation maintain a number of the 18 extrinsic muscles that originally articulated the 

fingers and wrist. Hence, EMGs from selected extrinsic muscles could be used to control 

physiologically appropriate DoFs in a multi-digit hand prosthesis. EMGs from specific 

muscles can be collected using intramuscular techniques, such as chronically implanted 

myoelectric sensors (IMESs) [5] or by needle or fine-wire electrodes inserted into target 

muscles [9] for acute recordings. The pickup volume of these electrodes is localized to the 

targeted muscle and the recorded signal is free from crosstalk from neighboring muscles 

[10]. Thus each electrode signal could be used as a direct and independent control input for 

one DoF (e.g., one finger) of a prosthesis. We hypothesized that multiple muscles targeted 

by intramuscular electrodes could be used to achieve independent and simultaneous control 

of multiple fingers of a myoelectric prosthesis. However this is a complicated, and still not 

fully understood, problem. In the neuromuscular system when individual finger movements 

are attempted there is unintended activity of other muscles that can cause movements of the 

other fingers and/or the wrist to occur [11]–[15]. In addition to neural interactions, there are 

mechanical connections and interactions between muscles that cause unwanted motions. 

Therefore, it is still unknown whether multiple intramuscular EMGs from extrinsic muscles 

could be used to directly control a multi-fingered prosthesis. The recent work by Birdwell et 

al. [16], [17] suggested that this is possible. They implemented a three digit control 

paradigm (i.e., flexion/extension of thumb, index and middle) and tested both proportional 

speed control and a pattern recognition controller in a virtual posture-matching task, using 

intramuscular recordings.

In the present work we assessed for the first time whether intramuscular recordings from the 

extrinsic flexor muscles could be used to simultaneously and independently control, in real-

time, four DoFs of a physical robotic hand (i.e., abduction/adduction of the thumb and 

flexion/extension of thumb, index and middle fingers). Based on the work by Birdwell et al. 

[16], [17], the Flexor Pollicis Longus (FPL), FDP1, FDP2 (i.e., the first two compartments 

of the Flexor Digitorum Profundis) and Abductor Pollicis Longus (APL) were targeted with 

intramuscular electrodes and their EMG proportionally mapped to the flexion of thumb, 
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index, and middle digits and to the abduction of the thumb in the multi-DoF prosthetic hand, 

respectively. We hypothesized that if the correct muscles were targeted then physiologically 

appropriate, simultaneous multi-DoF control could be achieved, without explicit training. 

Four healthy individuals participated in the experiments. The first experiment was aimed to 

assess simultaneous multi-DoF controllability and subjects were asked to perform 12 hand 

postures by directly controlling the prosthetic hand. The second experiment was a sinusoid-

tracking task and was aimed at addressing the viability of the present HMI under dynamic 

conditions. Unfortunately, actual grasps with the robot hand could not be assessed as the 

percutaneous wires impeded our subjects from comfortably performing reaching 

movements.

Our results demonstrate the feasibility of achieving simultaneous, independent and 

continuous control of individual digits on a prostheses directly using extrinsic muscle EMG 

signals. These results open up promising possibilities for individuals with transradial 

amputations since there are a number of multi-digit prosthetic hands commercially available 

(like the Bebionic v2 by RSL Steeper or the iLIMB by Touch Bionics) and chronically 

implanted IMES [5] are becoming the reality [18], [19].

II. Materials and Methods

A. Participants

Four right-handed able-bodied subjects participated in this study. They were free of any 

neurological or motor disorders. Two males aged 23 and 27 volunteered in preliminary 

experiments (experiment 2B, subject S1 and S2); two other males aged 29 and 35 

participated in the core experiments (experiment 1 and 2A, subjects S3 and S4). The study 

was approved by the University of Colorado at Boulder Institutional Review Board and 

informed consent was obtained from each subject.

B. Fine-Wire Electrodes and Target Muscles

Fine-wire intramuscular EMG recordings [9], [20] permit the local measurement of EMG 

activity from within target muscles for a limited time without the need for a surgical 

procedure. Bipolar percutaneous electrodes are inserted into the belly of the muscle of 

interest using Basmajian’s single needle technique [20]. This technique enables isolated 

measurements from individual muscles despite the depth of the muscle and surrounding 

musculature. The detection volume of a bipolar electrode approximates a sphere with 

diameter equal to the spacing between the leads [21]. Our electrodes (~ 0.05 mm diameter) 

had exposed leads placed a few millimeters apart (<2 mm bipolar electrode spacing); thus 

the pickup volume was smaller than 5 mm3.

In the present work, four muscles were selected as the control sites: the first and second 

compartments of the FDP (i.e., FDP1 and FDP2) for the fingers, and the FPL and APL for 

the thumb. These muscles were chosen so they could control corresponding DoFs in our 

robotic prosthesis; the DoFs were selected because they could drive the hand to form hand 

postures useful in daily living [6], [7], [22]. FDP is a compartmental muscle that is 

comprised of four tendons that insert in each of the fingers. Although it is a single muscle, 

its four compartments (FDP1 … FDP4) can be activated relatively autonomously to flex 
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each of the four fingertips [13]. FPL primarily causes flexion of the thumb’s inter-

phalangeal joint and is situated in the same deep layer as FDP and inserts in the distal 

phalanx of the thumb. The APL lies deep in the posterior compartment of the forearm 

inserting into the radial side of the base of the first metacarpal bone and causes thumb 

abduction at the carpometacarpal joint. All four muscles lie in the proximal third of the 

forearm and can potentially be targeted after a transradial amputation.

C. Myoelectric Controller

Raw fine-wire EMGs were collected using a Noraxon TeleMyo 2400R (Noraxon, 

Scottsdale, AZ, USA) through a wireless unit (TeleMyo 2400T). A reference electrode was 

placed on the lateral epicondyle. Raw data were hardware filtered (high pass: 10 Hz–1st 

order; low pass: 1000 Hz–8th order; gain: 5000), acquired via a data acquisition board 

(PCI-6221 National Instruments) on a PC (sampling frequency: 3 kHz; resolution: 12 bits) 

and processed in real time by a custom LabView software application (National Instruments, 

Austin, TX, USA). Signals were filtered using a 6th-order Butterworth band-pass filter (10–

500 Hz) and a notch filter (60 Hz). The mean absolute value (MAV) was then computed by 

a moving average filter (nonoverlapping windows) which produced a new sample every 100 

ms. The MAV from each channel was linearly mapped to a set-point for the corresponding 

DoF of the prosthetic hand, such that ~70% maximum voluntary contraction (MVC) 

corresponded to full flexion (or abduction) of the DoF and no contraction corresponded to 

full extension (or adduction). Hence every 100 ms the software application sent a new hand-

posture Pt to the robotic hand over a serial bus [Fig. 1(a)]. The output rate of 10 Hz and the 

time response of the controller (measured <100 ms) were fast enough that the subjects could 

not perceive the delay, in agreement with the literature [23]. In addition to controlling the 

hand during the experiments, the software also presented visual guidance and cues to the 

subjects using a computer screen as well as recorded all data for offline analysis.

D. Artificial Hand

The robotic hand was a right-handed, commercial version of the SmartHand [6] (Prensilia 

S.r.l., Pisa, Italy, cf. Fig. 1). It consisted of four fingers and a thumb actuated by five 

electrical motors. Allowed motions were flexion/extension of the thumb, index, and middle 

and rotation of the thumb opposition space (hereafter abduction/adduction) and were 

controlled by EMG activity from FPL, FDP1, FDP2 and APL, respectively. The hand 

includes encoders on each motor and an electronic controller that implemented position 

control, by receiving commands sent over a serial bus from the PC. The hand is able to close 

in less than 2.0 s at full speed and its time response is negligible with respect to the time 

response of the myoelectric controller used in this work.

E. Experimental Protocol

Subjects were instructed to make appropriate test contractions during electrode insertion and 

the EMG signal was played through a speaker to help locate the desired muscle or 

compartment. The hypodermic needle was removed after the muscle was located, leaving 

the fine-wires residing in the target muscle belly. A constant current stimulator (Digitimer 

Ltd. Model DS7A, Hertfordshire, U.K.) was then attached to the fine-wire electrodes and 
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was used to elicit a short muscle contraction. The resultant motion of the digit was used to 

confirm the proper electrode placement. The wires were then shortened so only a small 

length of wire remained to connect to the wireless data acquisition system. These were taped 

to the skin to minimize motion artifacts.

After the electrodes were correctly inserted, the subject donned an orthopedic hand splint to 

enable him to generate isometric muscle contractions (strong EMG activity can be more 

comfortably produced when contracting against a physical restraint) and to standardize the 

test posture across subjects. The MVC was recorded from each muscle/compartment (while 

the other muscles were kept relaxed). Each channel was thus independently adjusted so that 

~70% MVC mapped to full flexion (100% flexion) of the corresponding DoF in the 

prosthesis and relax activity mapped to no-flexion (0% flexion). Two experiments were then 

performed with the subject seated in front of the robotic hand and the computer screen [cf., 

Fig. 1(b)].

Experiment 1—Subjects were asked to form and hold 12 hand postures that involved the 

four DoFs selected [cf., Fig. 1(c)]. The 12 postures tested the full range of motion (RoM) of 

the selected four DoFs in the prosthetic hand and more importantly, resembled functional 

postures and grasps used in activities of daily living [22]. The hand was controlled in real-

time during this experiment using the position control scheme described previously. Pictures 

showing the target posture were presented to the subject on the computer screen. After each 

picture was presented, a light on the screen turned green to prompt the subject to form the 

posture. The delay between picture presentation and “green-light” was randomized between 

two and four seconds; this unknown delay insured that subjects started to form the posture 

only when prompted. Subjects were given 10 seconds from the time of the “green-light” cue 

to form and hold for 0.5 seconds the prompted posture. Postures were considered to be 

successfully formed if all of the four DoFs were simultaneously positioned within a ±15% 

envelope of the target posture Pt (where 100% corresponded to the whole RoM) and held for 

0.5 seconds. If a posture was successfully formed or if the 10 seconds elapsed the next 

picture/posture was presented. To aid with target posture acquisition visual feedback in the 

form of yellow and green lights (on the screen) turned “on” if the corresponding DoF was 

within the ±10% or ±5% of the target posture envelope, respectively. The 12 postures were 

repeated in five consecutive blocks. Subjects were given a five-minute break between 

consecutive blocks to rest and limit fatigue.

Four metrics were used to quantify performance. The completion time (Tc) was the time 

taken to successfully reach and hold a posture for 0.5 seconds. This quantity represented 

how quickly EMG command information could produce accurate hand postures. The 

completion rate (CR) was defined as the percentage of successfully completed postures. This 

metric was a measure of real-time performance reliability. The Tc and CR were valid if the 

posture was successfully completed within 10 s. The minimum posture error (MPE) was the 

minimum difference between controlled (actual) posture and target (desired) posture, 

calculated over the trial as a percentage of the full span of the four DoFs. The End-of-trial 

mean Posture Error (EPE) was the mean posture error calculated in the last third of the trial 

(from t = 6.6 to t = 10 s). Both MPE and EPE were computed for the unsuccessful trials; 
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successful trials ended early. The MPE and the EPE were of interest because they provided 

information on how far the unsuccessful trials were from the target.

Experiment 2A—The second experiment was a real-time tracking task aimed to assess 

dynamic performance of the HMI and quantify the effective independence of the four EMG 

channels. Subjects had EMG-modulated position control of the Y-axis coordinate of a cursor 

on the screen and were instructed to trace scrolling sinusoidal waveforms. Subjects tested 

one of the four muscles (FDP1, FDP2, FPL or APL) at a time while keeping the other 

(nontest) muscles relaxed. The cursor was controlled using the same calibration used in 

experiment 1 and all EMGs and outputs (i.e., the position of the DoFs) were recorded for 

offline analysis. Four sinusoids with different features (mean value, amplitude, period, and 

speed) were used, as described in Table I [Fig. 1(d)]. These sinusoids were chosen as we had 

found in pilot tests, that they were very challenging to track even when using a data-glove as 

the input. Each participant tracked the four sinusoids using each of the four muscles/

compartments for a total of 16 trials. The duration of each trial was 40 seconds with a two-

minute break after each trial.

Experiment 2B—In preliminary exploratory experiments two subjects (S1 and S2) 

performed the tracking task following the same procedure but with another set of sinusoids 

[Fig. 1(e)]. These sinusoids were slower compared to those used later in experiment 2A by 

subjects S3 and S4 and therefore easier to track accurately. Amplitude and frequency of the 

position sinusoids were fixed: the amplitude (i.e., the RoM the DoF had to cover) was 40% 

of total RoM; the frequency was 0.13 Hz (period: 7.7 seconds). The mean value of the 

sinusoids was varied among 25% (LB), 50% (MB), 75% (HB) of full RoM as described in 

Table I. Each participant tracked the three sinusoids using each muscle or compartment 

(FDP1, FDP2, FPL or APL), for a total of 12 trials.

For both experiments 2A and B the mean absolute error (MAE) between the target position, 

Pt, and the controlled position of the intentionally driven DoF, Pi, was used as the 

performance metric; the MAE was normalized to the full span of the DoF (PMAX)

(1)

The spurious activity from the nontest muscles or compartments that yielded to 

unintentional movements of the other DoFs was also accounted for by computing the 

relative mean activity (RMA) and the relative variance activity (RVA) for each trial [16]. 

The RMA of a nontest DoF was defined as the average ratio between the unintentionally 

controlled position of the DoF, Pu and Pi, normalized to the full span of the DoF
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(2)

The RVA was defined as the ratio between variances about the mean of Pu and Pi

(3)

The RMA and RVA quantified the mean independency and dynamic independency of the 

intentionally driven DoF with respect to the nontest DoFs, respectively. All the metrics were 

calculated in a time-window from ten seconds after the beginning of the trial (t0 = 10 s) to 

the end of the trial (tF = 40s). The first ten seconds were considered as a transient period: 

during this time the position signal (Pi) had to catch up with the target (Pt) after starting 

from a position equal to 0% flexion.

III. Results

A cross-correlation analysis performed on the data verified that the EMG measurements of 

each electrode were representative of individual muscle compartments and were not 

corrupted by muscle crosstalk. This analysis determined that the correlation coefficient 

between any pair of muscle activity signals was <0.1. Previous work has shown that values 

lower than 0.3 represent signals that are not contaminated with muscle cross talk [21], [24]. 

This was an important distinction to make because electrodes were in adjacent muscle 

compartments separated by only a few millimeters. Consequently, any simultaneous 

activities measured during the experiments were believed to be neurological coactivations of 

muscle/compartments or muscle simultaneous contractions and not muscle crosstalk 

between EMG sensors [9], [16].

To illustrate the experiments, we provided two video clips as supplementary material, 

showing the experimental setup while subject S3 controls the robotic hand, along with EMG 

signals.

Experiment 1—The graphs in Fig. 2 show the raw EMG signals for each DoF associated 

with acquiring a representative target posture (i.e., P3—a palmar grasp). The graphs also 

show the actual position taken by the controlled DoFs, the target posture with the ±15% 
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envelope and the completion time (Tc). The hand was controlled in real-time during this 

experiment. It is interesting to note that different DoFs were volitionally controlled in 

different times even though the controller allowed for simultaneous and coordinated control 

of all four DoFs. For this representative trial, the thumb abduction was moved and held in its 

target position first and then the flexion DoFs were activated and controlled simultaneously 

until the end of the trial. This behavior, together with the presence of “bursts” in the EMG 

traces, denotes voluntary modulation of the different DoFs. The histograms in Fig. 3(a) 

show the individual performance metrics for subjects S3 and S4 in carrying out the 

experimental task. Subjects’ completion rates (CR) were different and in general subject S3 

(53±11%, mean ± standard error of mean) achieved better results compared to S4(35±7%). 

In particular S3 was able to perform at least seven target postures with CR = 60% whereas 

S4 could not complete more than five postures with CR = 40%. In addition, each subject 

was not able to achieve specific postures: P7 and P8 for S3 and P4, P7, P11 for S4. The time 

metric, Tc demonstrated little variability within postures and the aggregate result was 

consistent between subjects (58 ± 0.8 s for S3 and 60 ± 1.6 s for S4). This result suggests 

that when they could be achieved postures were completed in a posture-specific time that 

was independent of the trials.

The MPE and EPE combined graph [lower panel in Fig. 3(a)] provides interesting insights 

on the performance of the subjects as well as enlightening the differences between S3 and 

S4 in CR. Although S4 could successfully complete only a fraction of the trials, his MPE 

ranged between 1 ± 1.2% and 21 ± 3% with very small variability across postures. This 

indicates that S4 was close to the spatial requirements of the target envelope (i.e., within 

15% RoM) but never satisfied the temporal requirements of having all four DoFs within the 

envelope for 0.5 s. In unsuccessful trials the EPE was low and ranged between 22 ± 3.5% 

and 45 ± 0%. In short, S4 was unable to perfectly master but formed postures that were 

qualitatively close to the targets. Subject S3 showed a different behavior: the MPE was on 

average lower than S4 but with greater variability across postures and this was mainly due to 

the postures that were not successfully achieved (cf., Fig. 3(a), bottom panel). In the two 

worse cases (posture P8 and P9) the MPE was 34 ± 3% for posture P8 and 19 ± 3% for P9. 

In fact, S3 was able to form many of the target postures but was absolutely unable to reach 

some others (P8 and P9).

The graph in Fig. 3(b) displays CR and Tc as a function of the number of controlled DoFs 

(i.e., input channels) for each subject. This graph was computed by removing the lowest 

performing DoF at each step, for each subject. While the overall accuracy in controlling four 

DoFs into 12 arbitrary postures was 53 ± 11% for S3 and 28 ± 7% for S4, the performance 

increased to 65 ± 10% and 42 ± 8% with three controlled DoFs and to 76 ± 8% and 67 ± 7% 

for two controlled DoFs. Similarly, the time to completion decreased from TcS3 = 5.8 ± 0.6 

s, TcS4 = 5.4 ± 0.9 s with 4 DoFs, to TcS3 = 5.1 ± 0.5 s, TcS4 = 5.2 ± 0.6 s with 3 DoFs and 

TcS3 = 3.7 ± 0.4 s, TcS4 = 3.8 ± 0.5 s with 2 DoFs.

Experiment 2A–B—The temporal graph in Fig. 4(a) shows data from subject S1 depicting 

the relative controlled DoF positions and the EMG traces for the four muscles, for a 

representative sinusoid (with frequency 0.13 Hz, mean value of 75% of total span, and range 

of movement 40%). Subjects S1 and S2 demonstrated significantly improved performance 
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compared to subjects S3 and S4 as assessed by the Wilcoxon rank sum test on the MAE(p 

≪ 0.01), RMA (p = 0.0035) and RVA (p = 0.0095) [see Fig. 4(b)].

The MAE was 6.6 ± 0.25 % (mean ± standard error of mean) for subjects S1 and S2 

(average over 12 trials) and 16.4 ± 1.9% for subjects S3 and S4 (16 trials). These results 

demonstrate good tracking abilities when the target sinusoid was slow (<8.3%RoM/s) and 

fair performance when fast (≥ 8.3%RoM/s) using the present interface.

The confusion matrices [Fig. 4(c) and (d)] show the degree of independence of the four 

DoFs during each sinusoid tracking task in terms of relative mean activity (RMA) or relative 

variance activity (RVA) averaged across the trials and subjects. The average RMA (depicted 

by the color of the nondiagonal elements of the confusion matrices) across all sinusoids was 

26 ± 3.8% for subjects S1 and S2 and 45 ± 4.4% for subjects S3 and S4. The average RVA 

was 25 ± 3.7% for subjects S1 and S2 and 36 ± 3.4% for subjects S3 and S4.

The RMA and RVA demonstrate that the neural drive of the nontest muscles could be 

intentionally attenuated to some extent (on average, the mean value and variance of the 

nontest DoF was one quarter of the mean value and variance of the test DoF) by the subject 

when the speed of the target signal was slow, whereas it was not possible at faster signals.

IV. Discussion

The goal of these experiments was to assess whether independent, continuous and 

simultaneous real-time control of four intrinsic DoFs of the hand was possible by recording 

the physiologically appropriate extrinsic muscles using intramuscular electrodes. We believe 

that we have demonstrated that it is indeed possible to simultaneously control four DoFs in 

real-time using EMG signals from intramuscular electrodes.

In experiment 1 the subjects were asked to form the hand, in real time, into 12 target 

postures. This experiment was challenging because subjects were required to “undo” 

unintended movements and command DoF stopping, because all DoFs were needed to 

match the target posture. Strict performance as measured by the CR varied greatly between 

subjects and postures and on average subject S3 achieved significantly higher CR than 

subject S4. While the performance metrics (particularly CR) seem unremarkable, the 

experiment could be deemed a success when considered in the light of the following 

physical and biological considerations.

Some of the posture errors during experiment 1 were possibly due to the fact that subjects 

were not given quantitative visual feedback of the positions of the DoFs of the hand. Instead, 

subjects qualitatively judged the posture of the hand by looking at it from a limited 

perspective. Therefore, there were instances when postures of the physical hand looked, and 

so were judged by the subjects, to be correct (as in the video clip in the supplementary 

materials), when in fact had more error than was allowed and was considered incorrect when 

processed. We hypothesize that the posture errors increased due to the lack of full system 

observability.
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The orthopaedic splint that was worn by the normally limbed subjects also caused some 

confounding issues. This splint helped to produce comfortable muscle contractions, but it 

also induced subjects to produce small compensatory finger movements and contractions. 

Every force applied to the splint by one DoF caused slight deflections and movements of the 

splint itself which induced counterbalancing forces by the other fingers and the wrist. The 

muscle contractions due to the presence of the splint produced undesired movements of the 

other DoFs of the robotic hand. It is worth noting that this kind of compensatory contraction 

would not be induced in the case of an amputated hand, as the splint would not be needed.

The third issue related to muscle coactivation which is an intrinsic property of the motor 

control system [11]–[17]. In his work on intrinsic hand movements, Birdwell and colleagues 

showed that the activation of one muscle systematically resulted in coactivity of the 

neighboring muscles [17]. Although the EMG activity of the intentional contraction can be 

significantly greater than the unintentional ones, the ratio might vary from subject to subject 

and between different muscles. Neural coactivations are present that in turn generate 

significant EMG levels and hence unintended movements in the case of the present human 

machine interface (HMI). Birdwell showed that light activations of FDP2 resulted in 

coactivity of FDP1 that could be quantified as ~70% relative to the FDP2 activity. 

Conversely FDP1 contractions resulted in reduced coactivity of FDP2 (5%–10% of FDP1 

activity). Similarly, APL activations resulted in strong coactivity of FPL, (50%–110% of 

APL activity), whereas FPL contractions produced instead low APL contractions (15% of 

FPL activity). In Birdwell’s work contractions were limited to 10%–30% of MVC, whereas 

in this study some postures required ~70% MVC in order to fully close one DoF.

Muscle coactivations played a confounding role in the way the hand performed, especially 

with target postures that involved alternate full closure/full opening of one or more DoFs. In 

fact, most of the postures required unnaturally precise and sustained contractions (see 

position control discussion below) in order to be quantitatively matched (cf. Fig. 1).

Judgment of the correct posture, the presence of the splint and muscle coactivations played 

different roles in the subjects’ ability to control the hand and potentially explain the 

differences in performance by subjects S3 and S4, as follows. The low performance by 

subject S4 may have been a result of poor perspective and judgement of the hand position. 

Most of subject S4’s postures were close to correct (low MPE and EPE, consistent among 

postures) but only a few precise enough to be considered correct. The inability of subject S3 

to reach postures P8 and P9 could be mainly explained by muscle coactivations and the 

presence of the splint. In summary, the combined observation of CR, MPE and EPE metrics 

evidences the successful ability in controlling the hand towards the correct (or close to 

correct) posture demonstrated by both subjects.

The sinusoid tracking experiment was aimed to address dynamic control of the hand. Results 

were generally promising and the poor subject performance (high RMA and RVA for 

subjects S3 and S4) was probably due to the combination of muscle coactivations, the 

presence of the splint and the difficulty of the task. Coactivations were considerably lower 

for subjects S1 and S2 who tracked a different, slower, set of sinusoids. It is worth recalling 

that even in the sound hand single muscle activations do not always result in single DoF 
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movements as the tendons, biomechanical couplings, and neurological couplings affect other 

movements.

A weakness of the present work is that individuals with amputations did not participate in 

the study. However, we were constrained by a lack of access to such individuals in the time 

frame available to us. So we chose to conduct this exploratory study by enrolling intact 

limbed participants. Nevertheless the outcomes are promising and experiments with 

individuals with amputations are foreseen. We consider results from the present experiment 

a real breakthrough towards “natural” dexterous hand control for individuals with upper-

limb amputations. It should be noted that the possibility of implementing the present 

approach in a potential future practical system is bound to the availability of multi-digit 

hand prostheses [6], [7] and most of all to the technological development of implantable 

myoelectric sensors (IMES), along with telemetric data and power transfer, e.g., [5]. Indeed 

only intramuscular EMGs—i.e., free from crosstalk from neighboring muscles—recorded by 

an implant could be mapped one-by-one to corresponding DoFs in a hand prosthesis in order 

to replicate the present approach, because obviously, percutaneous fine wires could not be 

used in a chronic setup. The muscles/compartments targeted in this work were chosen 

because they articulate DoFs in the hand that are used to perform tasks of daily living. 

Interestingly, all four muscles/compartments lie in the proximal third of the forearm, so that 

they could potentially be targeted by IMES and mapped to the corresponding DoFs in a 

multi-digit hand prosthesis, in a person with transradial amputation. However, the present 

approach is quite general and different DoFs could be targeted by IMES depending on the 

needs of a specific person.

The use of position control implemented in the present HMI, as opposed to a velocity 

controller [25], posed unique challenges for the experimental tasks because it imposed the 

subjects to maintain the posture within the target envelope by contracting all four muscles. 

This proved to be a difficult task. We hypothesize that a velocity controller would reduce the 

difficulty since a constant contraction would not be necessary to hold the posture within the 

target envelope. While neural coactivations limited the performance obtained by the present 

HMI, it may be possible to achieve higher independence among DoFs by targeting the 

extensor and flexor muscles and implementing a differential velocity controller. In fact, 

most of the movements in the unimpaired hand are the result of a combination of 

contractions of flexor and extensor muscles and thus it is reasonable to expect greater 

controllability by targeting more muscles actually involved in the movements (not only the 

flexors). On the other hand, one could maintain a reduced number of control channels (i.e., 

implanted sensors) and simply accept the fact that postures and grasps cannot be exact in 

numbers but qualitatively correct as in the human nature. Qualitatively correct control 

combined with artificial devices endowed with mechanical intelligence could contribute to 

solving the challenging goal of restoring the human hand grasping function.

When making an analytic comparison between this and previous works on physiologic 

control of intrinsic hand movements using peripheral information [1]–[3], [26]–[28] 

significant differences can be found. Effortless control and continuous prehensile 

movements are two of the main features that characterize the unimpaired brain–hand 

connection. Thus it is a well-established argument that both of these features should be 
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provided by a prosthetic hand in order to successfully restore the motor function. However, 

previous studies either demonstrated proportional control of only one DoF [1], [2] or the 

control of multiple DoFs using pattern recognition which by definition allows for a finite 

number of postures/grasps [3], [26]–[28]. Among the works that investigated pattern 

recognition from surface EMGs, Tenore et al. [26] demonstrated significant classification 

accuracies (>90%) of ten different hand postures (offline processing) in a transradial 

amputee; Cipriani and colleagues [27] showed real-time control of seven postures with 

average accuracy of 79% across five transradial amputees. In the only study that 

investigated multi-DoF hand postures using pattern recognition of peripheral neural signals, 

Rossini et al. [3] demonstrated the possibility of classifying four postures (including relax/

neutral) by processing offline signals recorded from one amputee using intrafascicular 

peripheral electrodes in the ulnar and radial nerves. Pattern recognition controllers have 

demonstrated promising performance and usability but with the critical limitation that the 

person can only sequentially control a set of predefined postures and thus cannot control 

arbitrary movements in a continuous fashion. The present HMI potentially overcomes these 

limits. We argue that although it could demonstrate some limitations in the practical 

application with amputees, the present approach holds the potential of being superior to any 

existing finite-states machine, since it mimics the normal motor control. However, while 

having an HMI that allows for continuous control over multiple DoFs is desirable, it is also 

true that such continuous control could lead to unstable outputs (i.e., the fingers 

continuously move drawing current from the battery). For instance, especially in the case of 

a position control scheme (as the one adopted in this work) the individual would need to 

maintain a specific contraction in order to keep a specific posture/grip of the hand. This 

condition is not desirable especially with powerful contractions (>10%–20% MVC) but 

could be addressed and eventually solved by a velocity control scheme.

Although not strictly with reference to hand movements, other studies relevant to the present 

work were carried out. These include studies in which intramuscular techniques or the 

targeted muscle reinnervation (TMR) were deployed in order to control in parallel multiple 

DoFs of upper limb pros-theses. In particular, both Merrill et al. [18] and Kamavuako et al. 

[29] demonstrated simultaneous and direct control of hand open/close and wrist pronation/

supination (a two-DoF prosthesis) using fine-wire electrodes and physiologically appropriate 

muscles. TMR is a surgical technique where nerves originally serving the hand/wrist are 

rerouted and reinnervated to muscles in the chest; this makes available new, independent 

control sites for surface EMG recording [4]. TMR has proven to be a viable means to regain 

physiological control of three-DoF prostheses (simultaneous control of hand open/close, 

wrist pronation/supination and elbow flexion/extension) using pattern recognition [25].

Concluding, to our knowledge this is the first study in which peripheral neural correlates 

were processed in real-time and used to control four DoFs of a physical hand in a 

simultaneous and in a very natural way. This step forward was possible by using as control 

inputs myoelectric signals from those specific muscles that originally articulated the fingers. 

Besides allowing subjects to achieve continuous simultaneous and independent control over 

multiple DoFs, this technique enables the subject to perform potentially any arbitrary 

posture in a physiologically appropriate manner. Though further developments are still 
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required in order to make chronically implantable myoelectric sensors available, we believe 

that the present approach represents a concrete yet clinically viable alternative to the use of 

neural electrodes implanted in the peripheral nerves. Interestingly, implanted myoelectric 

sensors could be combined with the TMR technique in order to naturally restore several of 

the DoFs lost after a proximal or distal amputation.

Acknowledgments

This work was supported by the Fulbright Program, by the Italian Ministry of Education University and Research 
under the FIRB-2010 MY-HAND Project [RBFR10VCLD] and by the European Commission under the WAY 
project (FP7-ICT-288551). This work was also supported in part by funds from the Department of Veterans Affairs, 
Rehabilitation Research and Development Service administered through VA Eastern Colorado Healthcare System–
Denver VAMC.

Biographies

Christian Cipriani (S’06–M’09–SM’12) received the M.Sc. degree in electronic 

engineering from the University of Pisa, Pisa, Italy, in 2004, and the Ph.D. in biorobotics 

from the IMT Institute for Advanced Studies, Lucca, Italy, in 2008.

He is currently an Assistant Professor and Head of the Artificial Hands Laboratory at the 

BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa. He is the Coordinator and PI of the 

MY-HAND Project (RBFR10VCLD) funded by the Italian Ministry of Research and of the 

WAY Project (ICT #288551) funded by the European Commission. He was a Visiting 

Scientist at the University of Colorado, Denver, Anschutz Medical Campus, in 2012, and he 

founded a spin-off company, in 2009. His research interests cover mechatronics, 

controllability and sensory feedback issues of dexterous robotic hands to be used as thought-

controlled prostheses.

Dr. Cipriani won the d’Auria Award for prototypes of innovative robotic devices to aid the 

motor disabled from the Italian Robotics and Automation Association, in 2009. In 2011, he 

was awarded with an early career grant (FIRB program) by the Italian Ministry of Research 

and with a Fulbright Research Scholar fellowship.

Cipriani et al. Page 13

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2015 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Jacob L. Segil (M’11) received the B.S. degree in mechanical engineering from the 

University of Illinois, Urbana–Champaign, IL, USA, in 2008 and the M.S. degree in 

mechanical engineering from the University of Colorado, Boulder, CO, USA, in 2012. He is 

currently pursuing the Ph.D. degree in mechanical engineering at the University of Colorado 

at Boulder.

From 2008 to 2010, he was a Research Engineer in the Center for Bionic Medicine at the 

Rehabilitation Institute of Chicago (RIC). Currently, he is a Research Assistant in the 

Biomechatronics Development Laboratory at the University of Colorado, Denver, Anschutz 

Medical Campus. His interests include mechatronic design and brain machine interfaces, in 

particular myoelectric control of prosthetic limbs.

J. Alex Birdwell (S’11–M’12) received the B.S. degree in mechanical engineering from the 

Georgia Institute of Technology, Atlanta, GA, USA, in 2004, and the M.S. and Ph.D. 

degrees in mechanical engineering from Northwestern University, Evanston, IL, USA, in 

2006 and 2012, respectively.

He is currently a Lecturer of mechanical engineering at Northwestern University. His 

research interests lie in the intersection of robotics and biomechanics and mainly focus on 

prosthetics, human–machine interactions, and rehabilitation engineering. He was previously 

a graduate Research Assistant in the Center for Bionic Medicine at the Rehabilitation 

Institute of Chicago, Chicago, IL, USA. He currently enjoys teaching an array of 

manufacturing, design, thermodynamics, and experimental methods courses.

Cipriani et al. Page 14

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2015 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Richard F. ff Weir (S’92–M’95) received the B.A. degree in mathematics and a BAI degree 

in microelectronics and electrical engineering from Trinity College, Dublin, Ireland, in 

1983. After working as a control engineer in U.K., he moved to the USA and received the 

M.S. and Ph.D. degrees in biomedical engineering from Northwestern University, Evanston, 

IL, USA.

He is currently Director of the Biomechatronics Development Laboratory, University of 

Colorado Denver Anschutz Medical Campus. He is also a Research Healthcare Scientist for 

the VA Eastern Colorado Health Care System, Denver VA Medical Center, and holds 

Research Associate Professor appointments in the Departments of Bioengineering and 

Physical Medicine and Rehabilitation at the University of Colorado Denver, Anschutz 

Medical Campus. He specializes in the design and development of advanced artificial 

hand/arm replacements. His research covers all aspects of the problem ranging from 

development of neural control interfaces and clinical deployment of these systems, to 

mechatronic design and development of novel prosthetic components. Current projects 

involve the development of prosthetic hand/arm controller systems based on implantable 

myoelectric sensors (IMES) to create a neural interface for the user. He is also conducting 

research into novel ways to interface with peripheral nerves using optogenetic approaches as 

well as a number of straightforward mechanical hand and arm component design projects.

References

1. Dhillon GS, Horch KW. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans 
Neural Syst Rehab Eng. Dec; 2005 13(4):468–472.

2. Jia X, et al. Residual motor signal in long-term human severed peripheral nerves and feasibility of 
neural signal-controlled artificial limb. J Hand Surgery. 2007; 32:657–666.

3. Rossini PM, et al. Double nerve intraneural interface implant on a human amputee for robotic hand 
control. Clin Neurophysiol. 2010; 121:777–783. [PubMed: 20110193] 

4. Kuiken TA, et al. Targeted reinnervation for enhanced prosthetic arm function in a woman with a 
proximal amputation: A case study. Lancet. 2007; 369:371–380. [PubMed: 17276777] 

5. Weir RF, et al. Implantable myoelectric sensors (IMESs) for intramuscular electromyogram 
recording. IEEE Trans Biomed Eng. Jan; 2009 56(1):159–171. [PubMed: 19224729] 

6. Cipriani C, Controzzi M, Carrozza MC. The SmartHand transradial prosthesis. J Neuroeng Rehab. 
2011; 8(29)

7. Wiste TE, Dalley SA, Varol HA, Goldfarb MA. Design of a multigrasp transradial prosthesis. J 
Medical Devices. 2011; 5:1–7.

8. Micera S, Carpaneto J, Raspopovic S. Control of hand pros-theses using peripheral information. 
IEEE Rev Biomed Eng. 2010; 3:48–68. [PubMed: 22275201] 

9. Merletti, R.; Parker, P. Electromyography: Physiology, Engineering, and Noninvasive Applications. 
Hoboken, NJ, USA: Wiley; 2004. 

10. Lowery MM, Weir RF, Kuiken TA. Simulation of intramuscular EMG signals detected using 
implantable myoelectric sensors (IMES). IEEE Trans Biomed Eng. Nov; 2006 53(11):1926–1933. 
[PubMed: 17019856] 

11. Kilbreath SL, Gandevia SC. Limited independent flexion of the thumb and fingers in human 
subjects. J Physiol. 1994; 479:487–497. [PubMed: 7837104] 

12. Yu WS, van Duinen H, Gandevia SC. Limits to the control of the human thumb and fingers in 
flexion and extension. J Neurophysiol. 2009; 103:278–289. [PubMed: 19889847] 

13. Garland SJ, Miles TS. Control of motor units in human flexor digitorum profundus under different 
proprioceptive conditions. J Physiol. 2004; 502:693–701. [PubMed: 9279818] 

Cipriani et al. Page 15

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2015 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



14. Reilly KT. Incomplete functional subdivision of the human multi-tendoned finger muscle flexor 
digitorum profundus: An electromyographic study. J Neurophysiol. 2003; 90:2560–2570. 
[PubMed: 12815024] 

15. van Duinen H, Gandevia SC. Constraints for control of the human hand. J Physiol—London. 2011; 
589(23):5583–5593. [PubMed: 21986205] 

16. Birdwell, JA. PhD dissertation. Northwestern University; Evanston, IL, USA: 2011. Investigation 
of extrinsic finger and thumb muscles to command individual digits on a multi-functional artificial 
hand. 

17. Birdwell JA, Hargrove LJ, Kuiken TA, Weir RF. Isolated activation of the extrinsic thumb muscles 
and compartments of the extrinsic finger muscles. J Neurophysiol. 2013; 110:1385–1392. 
[PubMed: 23803329] 

18. Merrill DR, Lockhart J, Troyk PR, Weir RF, Hankin DL. Development of an implantable 
myoelectric sensor for advanced prosthesis control. Artificial Organs. 2011; 35:249–252. 
[PubMed: 21371058] 

19. Baker JJ, Scheme E, Englehart K, Hutchinson DT, Greger B. Continuous detection and decoding 
of dexterous finger flexions with implantable myoelectric sensors. IEEE Trans Neural Syst Rehab 
Eng. Dec; 2010 18(4):424–432.

20. Basmajian JV, Stecko GA. A new bipolar electrode for electromyography. J Appl Physiol. 1962; 
17:849–849.

21. Andreassen S, Rosenfalck A. Recording from a single motor unit during strong effort. IEEE Trans 
Biomed Eng. Apr; 1978 25(4):501–508. [PubMed: 744596] 

22. Keller A, Taylor C, Zahn V. Studies to determine the functional requirements for hand arm 
prosthesis. 1947

23. Farrell TR, Weir RF. The optimal controller delay for myoelectric prostheses. IEEE Trans Neural 
Syst Rehab Eng. Mar; 2007 15(1):111–118.

24. Overduin SA, d’Avella A, Roh J, Bizzi E. Modulation of muscle synergy recruitment in primate 
grasping. J Neurosci. 2008; 28:880–892. [PubMed: 18216196] 

25. Kuiken TA, et al. Targeted muscle reinnervation for real-time myoelectric control of multifunction 
artificial arms. JAMA: J Amer Med Assoc. 2009; 301:619–628.

26. Tenore FVG, et al. Decoding of individuated finger movements using surface electromyography. 
IEEE Trans Biomed Eng. Aug; 2009 56(8):1427–1434. [PubMed: 19473933] 

27. Cipriani C, et al. Online myoelectric control of a dexterous hand prosthesis by transradial 
amputees. IEEE Trans Neural Syst Rehab Eng. 2011; 19:260–270.

28. Al-Timemy AH, Bugmann G, Escudero J, Outram N. Classification of finger movements for the 
dexterous hand prosthesis control with surface electromyography. IEEE J Biomed Health Inform. 
Mar; 2013 17(3):608–618. [PubMed: 24592463] 

29. Kamavuako EN, Englehart KB, Jensen W, Farina D. Simultaneous and proportional force 
estimation in multiple degrees of freedom from intramuscular EMG. IEEE Trans Biomed Eng. 
Oct; 2012 59(10):1804–1807. [PubMed: 22562724] 

Cipriani et al. Page 16

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2015 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Experimental setup. (a) Block diagram of the myoelectric controller. FPL: flexor pollicis 

longus. FDP1, FDP2: first and second compartment of the flexor digitorum profundis. APL: 

abductor pollicis longus. ADC: analog to digital converter. MAV: mean absolute value. Pt: 

posture control command sent to the robotic hand. (b) Subject wearing an orthopedic splint 

on the experimental hand sat in front of a computer screen and the robotic hand. Computer 

screen presented desired posture cues while the hand was controlled in real-time. (c) 

Pictures of the 12 target postures P1..P12 used in experiment 1. Last two fingers of the hand 

are not shown for clarity (since these were not under direct control). It is worth noting that 

the target position of the fingers in postures P5 and P10 are similar but the two postures 

required activations with different timing in order to position the thumb properly (under the 

index and middle in posture P5; over the index and middle in P10). (d), (e) Representation 

of the sinusoids that subjects tracked in experiment 2A–B, respectively.
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Fig. 2. 
Posture matching experiment representative trial. Recorded EMG signals (in black—left Y 

axis) and actual position of the DoF in the robotic hand (in blue—right Y axis) for the four 

DoFs, in a representative posture (i.e., posture P3—a palmar grasp). Superimposed on the 

position trajectories is the desired target position (continuous horizontal line) within the 

±15% envelope (dotted horizontal lines). Gray time window (the same for all four graphs) 

denotes when the four DoFs were positioned within the ±15% envelope; thus time metric Tc 

is by definition at the end of such a gray window.
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Fig. 3. 
Posture matching experiment outcomes. Whiskers denote the standard error of the mean. (a) 

Performance metrics achieved by subjects S3 and S4. In the bottom panel, bars refer to the 

minimum posture error (MPE) whereas circles refer to the End-of-trial mean Posture Error 

(EPE) and were computed only for unsuccessful trials. (b) Completion rate (CR) and 

completion time (Tc) as a function of the number of controlled degrees of freedom.
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Fig. 4. 
Sinusoid tracking experiment outcomes. (a) EMG signals and relative controlled DoF 

positions for a representative sinusoid. (b) Differences in performance metrics between 

subjects S1 and S2 and subjects S3 and S4. Asterisks denote statistically significant 

differences as computed by Wilcoxon rank sum tests. (c) Confusion matrices of the relative 

mean activity (RMA) and relative variance activity (RVA) from subjects S1 and S2 

(experiment 2B). (d) Confusion matrices of the RMA and RVA from subjects S3 and S4 

(experiment 2A).
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TABLE I

Features of Sinusoids Used in Tracking Experiment

Type (acronym) Mean [% RoM] Amplitude [%RoM] Period [s] Speed [%RoM/S]

Fast, half range (FA) 50 50 2 s 25

Slow, full range (SA) 50 100 6 s 16.6

Lower half span (LA) 25 50 6 s 8.3

Higher half span (HA) 75 50 6 s 8.3

Lower half span (LB) 25 40 7.7 5.2

Middle half span (MB) 50 40 7.7 5.2

Higher half span (HB) 75 40 7.7 5.2
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