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Abstract

Understanding the deformation of the tongue during human speech is important for head and neck 

surgeons and speech and language scientists. Tagged magnetic resonance (MR) imaging can be 

used to image 2D motion, and data from multiple image planes can be combined via post-

processing to yield estimates of 3D motion. However, lacking boundary information, this 

approach su ers from inaccurate estimates near the tongue surface. This paper describes a method 

that combines two sources of information to yield improved estimation of 3D tongue motion. The 

method uses the harmonic phase (HARP) algorithm to extract motion from tags and diffeomorphic 

demons to provide surface deformation. It then uses an incompressible deformation estimation 

algorithm to incorporate both sources of displacement information to form an estimate of the 3D 

whole tongue motion. Experimental results show that use of combined information improves 

motion estimation near the tongue surface, a problem that has previously been reported as 

problematic in HARP analysis, while preserving accurate internal motion estimates. Results on 

both normal and abnormal tongue motions are shown.
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1 Introduction

The human tongue moves rapidly in complex and incompressible motions during speech [1]. 

In post-glossectomy patients, i.e., people who have had surgical resection of part of the 

tongue muscle for cancer or sleep apnea treatment, tongue moving ability and its speech 

functionality may be adversely affected. Therefore, understanding the tongue motion during 

speech in both normal and post-glossectomy subjects is of great interest to speech scientists, 

head and neck surgeons, and their patients.
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To capture the tongue's motion during speech, tagged magnetic resonance (MR) images can 

be acquired over a series of time frames spanning a speech utterance [2, 3]. The two-

dimensional (2D) motion information carried in these images can be extracted using the 

harmonic phase (HARP) algorithm [4]. With a collection of 2D motions from image slices 

covering the tongue, a high-resolution three-dimensional (3D) motion estimate can be 

achieved by interpolation with previously reported incompressible deformation estimation 

algorithm (IDEA) [5].

However, since HARP uses a bandpass filter to extract the harmonic images, object 

boundaries are blurred and motion estimates near the anatomical surfaces are inaccurate [6, 

7]. To make matters worse, HARP measurements near the boundaries are sparse because of 

the sparseness of image plane acquisition. These two problems severely affect 3D motion 

estimation near anatomical surfaces, as shown in Fig. 1. Zooming in on the back of the 

tongue (see Fig. 1(a)), 1(b) shows the sparse 2D motion components from HARP and 1(c) is 

the IDEA reconstruction of 3D motion that shows inaccurate large motion.

This paper presents a novel approach that combines data from tagged images with surface 

deformation information derived from cine MR images to dramatically improve 3D tongue 

motion estimation. At every time frame, the tongue is segmented to achieve a 3D mask, and 

the deformation between the reference mask at the resting position and the deformed mask is 

computed using deformable registration. The normal components of surface deformation are 

then used to augment the HARP measurements within the IDEA estimation framework. Fig. 

1(d) shows the additional input and Fig. 1(e) shows the result of proposed method. 

Comparing with Fig. 1(c), this result is more sensible from a qualitative point of view. 

Quantitative evaluations provided below also show that this method achieves a more 

accurate estimate of the whole tongue motion.

2 Methods

2.1 Data Acquisition and HARP Tracking

In this study, subjects repeatedly speak an utterance “a souk” during which tagged and cine 

MR image sequences are acquired at multiple parallel axial slice locations covering the 

tongue. The resolution scheme is 1.88 mm in-plane (dense) and 6.00 mm through-plane 

(sparse). For tagged images, both horizontal and vertical tags are applied on each slice, 

providing motion components in two in-plane directions (x and y components). To acquire 

motion components in the through-plane direction (z component), another set of parallel 

coronal slices orthogonal to axial is also acquired. HARP is then used on every tagged 

image at every time frame, resulting in a corresponding 2D motion field representing the 

projection of the 3D motion of every tissue point on the current slice plane. Fig. 1(b) shows 

such HARP slices for the utterance “a souk” at the moment when /s/ is sounded (current 

time frame), where the tongue is expected to have moved forward from the /a/ moment (time 

frame 1) when the tags are applied. Meanwhile, cine images revealing better anatomical 

structures are going to be used for segmentation and registration to be described in section 

2.3.
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2.2 IDEA Algorithm

Figs. 2(a) and 2(b) illustrate how HARP data are processed in IDEA [5]. The undeformed 

tissue at time frame 1 has undeformed reference tag planes. At current time frame, the tag 

planes have deformed along with the tissue. To each point (pixel location) xa on an axial 

image such as Fig. 2(a), HARP produces two vectors representing components of 

displacement:

(1)

where ex and ey are unit vectors in the x and y directions and qx and qy are the projections of 

the 3D motion u(xa) on the current axial plane. Similarly, for each point xc on a coronal 

image such as Fig. 2(b), HARP yields the displacement component vector

(2)

where ez is the unit vector in the z direction.

IDEA takes such data on all pixels {xa, qx(xa), xa, qy(xa), xc, qz(xc)} as in put, and estimates 

an incompressible deformation field u(x) on a high-resolution grid within the tongue mask. 

The details are omitted here for lack of space, but are given in [5]. We only note two 

important aspects. First, IDEA is carried out as a series of smoothing splines, each of which 

seeks a divergence-free velocity field yielding the deformation field only when integrated. 

Thus the final field u(x) is nearly incompressible and its reprojected components at all input 

points nearly agree with the input measurements. Second, the inputs are observed 

components of displacements that can arise at any physical position and in any sub-direction 

of motion. This is the key to utilization of surface deformation measurements within the 

IDEA framework. In particular, as shown in Fig. 2(c), the tongue surface may deform 

between time frames, and a point xs on the surface at current time frame can be associated 

with a point on the reference tongue surface. However, like the traditional aperture problem 

in optical flow, we should not assume to know any tangential information about the surface 

displacement. This leads to a perfect analogy with HARP data: observations about surface 

normal deformation, if available, can be used in 3D reconstruction.

2.3 Measuring Tongue Surface Deformation

IDEA requires segmentation of the tongue volume in order to limit the tissue region that is 

assumed to be incompressible [8]. Cine MR images are used to construct a super-resolution 

volume [9] at each time frame, which is then manually segmented for the tongue surface 

mask. We notice that these 3D masks can also be used for deformable registration in order to 

provide surface deformation information.

The diffeomorphic demons method [10] is applied to the pair of masks between the two time 

frames where motion is to be computed. Denoting the reference mask at time frame 1 as 

 and the current deformed mask as  defined on 

open and bounded domains Ω1 and Ωt, the deformation field is found and denoted by the 
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mapping . The estimated displacement field at a point xs on the surface of the 

tongue in current time frame can be denoted as

(3)

Although diffeomorphic demons generates a whole 3D displacement volume, we take only 

tongue surface normal components for the reason stated in the previous section. We 

represent the 3D tongue mask at current time frame by a levelset function ϕ(x) that is zero 

on the surface, positive outside the tongue, and negative inside the tongue. The normal 

directions of the surface are given by

(4)

The normal components of motion—serving as additional input to IDEA—are

(5)

An example of such a field is shown in Fig. 1(d).

2.4 Enhanced IDEA

With the enhanced input {xa, qx(xa), xa, qy(xa), xc, qz(xc), xs, qn(xs)}, our proposed method 

computes the 3D motion over the super-resolution grid points {xi} and all the surface points 

{xs}. The algorithm is summarized below.

3 Results

We evaluated E-IDEA on 50 tongue volumes (25 from a normal control and 25 from a 

patient) during the utterance “a souk”. Conventional IDEA was also computed for 

comparison. We computed motion fields relative to time frame 1 which was the /a/ sound, 

because the resting tongue serves as a good reference configuration, is the natural reference 

frame for the MR tags, and also fits into continuum mechanics framework for deforming 

bodies.

Firstly, we visually assessed the motion fields. The results of both subjects are shown in 

Figs. 1(c), 1(e) and Fig. 3 on two critical time frames: at the /s/, when forward motion is 

prominent, and at the /k/, when upward motion is prominent (Fig. 1 is for control at time 

frame /s/). Knowing that the internal muscular structure of tongue prevents its back from 

performing either too large or zero motion [1], at tongue's back, we see E-IDEA has reduced 

the erroneous large motions for the control, and has captured those small motions where 

IDEA mistakenly interpolates as zero for the patient. We also see E-IDEA can straighten up 

the motion at the top of the tongue to better estimate the displacement when the tongue hits 

the palate vertically (Figs. 3(a), 3(d)). In general, the boundary estimation agrees more with 

tongue physical mechanics [1].

Secondly, to obtain a numerical comparison, we manually tracked the motions of 15 surface 

points distributed 5 each on the front, top, and back parts of the tongue (labeled in Fig. 4(a)). 
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We then computed their trajectories with IDEA and E-IDEA motion fields. The tracks of 

three methods are shown in Fig. 4(a) and errors from manual tracking at each point are 

shown in Figs. 4(b) and 4(c), boxplotted across all time frames. The error magnitude has 

been reduced by E-IDEA, especially on the back part of the tongue. Also, the mean error 

(circles in boxes) is reduced by E-IDEA at all 15 points. The improvement is significant (p = 

0.00003).

Lastly, we took the estimated 3D motions at input sample locations and reprojected them 

onto input directions using Eqns. (1) and (5). We then computed a reprojection error that 

gives the error in distance in the input directions between the estimated sample components 

and the input sample components. This measure assumes input motion components (HARP 

and surface normal motions) are the truth. We compare four types of reprojection errors in 

histograms of Fig. 5: on IDEA internal points, on E-IDEA internal points, on E-IDEA 

boundary points, and on IDEA boundary points as indicated in the legend. For the control, 

on a total of 105455 internal points and 108853 boundary points, the mean of the four errors 

are: 0.32 mm, 0.35 mm, 0.65 mm, and 1.33 mm, respectively. The boundary error has been 

reduced by 0.68 mm and the internal error has been raised by 0.03 mm. For the patient, on 

133302 internal points and 100523 boundary points, the mean of the four errors are: 0.22 

mm, 0.24 mm, 0.96 mm and 3.11 mm. The boundary error has been reduced by 2.15 mm 

and the internal error has been raised by 0.02 mm.

4 Conclusion and Discussion

We have proposed a novel algorithm for estimating the tongue's motion field in 3D. The 

major innovation is in the incorporation of surface motion as additional information, which 

compensates for the well-known deficiencies of HARP in estimating boundary motions. 

Both qualitative and quantitative improvements are evident using two independent metrics. 

Especially, from reprojection error, we see that boundary error is substantially reduced while 

internal error is only minimally increased.

This method is still being improved. Aspects that will be addressed in the future include 

optimizing the segmentation and registration methods, studying intra-subject volume 

dependency, and adding data reliability terms to balance HARP and registration information. 

Also, choice of different reference frames can be explored. And fitting the “internal plus 

surface motion” idea into other motion estimation frameworks can be an interesting topic.
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Fig. 1. 
(a) Tongue mask of a normal control subject (sagittal view). (b) HARP field on axial and 

coronal slices as input for IDEA, zoomed in at the tongue back. (c) IDEA result at the 

tongue back. (d) Surface normal deformation component at tongue back surface. (e) 

Proposed method result. Note: In this paper cones are used to visualize motion fields, where 

cone size indicates motion magnitude and cone color follows conventional DTI scheme (see 

cone color diagram).
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Fig. 2. 
Relationship between 2D motion components and 3D motion on (a) an axial slice, (b) a 

coronal slice and (c) the tongue surface.
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Fig. 3. 
Visual comparison of conventional IDEA result and E-IDEA result.
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Fig. 4. 
Comparison of IDEA and E-IDEA with manually tracked surface points. (a) Tracks of the 

control surface points by manual (blue), IDEA (yellow), and E-IDEA (green). (b) Error 

magnitude for the control (bar is median and circle is mean). (c) Error magnitude for the 

patient.
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Fig. 5. 
Regularized histogram of IDEA and E-IDEA's reprojection error on internal and surface 

points. Dotted lines show the mean of four types of reprojection error.
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Algorithm

Enhanced Incompressible Deformation Estimation Algorithm

1. Set u(xi) = 0 and u(xs) = 0.

2. Set M time steps, for m = 1 to M do

3. Project currently computed displacement onto input directions by px(xa) = u(xa) · ex, py(xa) = u(xa) · ey, pz(xc) = u(xc) · ez, pn(xs) = u(xs) · 
n(xs).

4. Compute remaining motion projection by rx(xa) = qx(xa) – px(xa), ry(xa) = qy(xa) – py(xa), rz(xc) = qz(xc) – pz(xc), rn(xs) = qn(xs) – pn(xs).

5. Use part of the remaining motion to approximate velocity: vx(xa) = rx(xa)/(M – m + 1), vy(xa) = ry(xa)/(M – m + 1), vz(xc) = rz(xc)/(M – m + 1), 
vn(xs) = rn(xs)/(M – m + 1).

6. Update estimation: u(xi) = u(xi) + DFVS{vx(xa), vy(xa), vz(xc), vn(xs)}, u(xs) = u(xs) + DFVS{vx(xa), vy(xa), vz(xc), vn(xs)}.

7. end for

Here DFVS stands for divergence-free vector spline, which is also the key algorithm “workhorse” of IDEA [5]. M is typically set to 20 which 
provides a proper trade-off between accuracy and computation time. Enhanced IDEA, which we refer to as E-IDEA below, typically takes about 5 
hours on 26 time frames.
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