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Abstract

Fine-wire intramuscular electrodes were used to obtain EMG signals from six extrinsic hand 

muscles associated with the thumb, index, and middle fingers. Subjects’ EMG activity was used to 

control a virtual three-DOF hand as they conformed the hand to a sequence of hand postures 

testing two controllers: direct EMG control and pattern recognition control. Subjects tested two 

conditions using each controller: starting the hand from a pre-defined neutral posture before each 

new posture and starting the hand from the previous posture in the sequence. Subjects 

demonstrated their ability to simultaneously, yet individually, move all three DOFs during the 

direct EMG control trials, however results showed subjects did not often utilize this feature. 

Performance metrics such as failure rate and completion time showed no significant difference 

between the two controllers.
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I. INTRODUCTION

Traditional myoelectric prosthetic hands have a single-degree of freedom (DOF), which 

transradial amputee users control with electromyogram (EMG) signals from their residual 

forearm muscles [1, 2]. These hands are often comprised of rigid curved digits connected to 

a motor that moves the fingers and opposed thumb either towards or away from one another. 

Direct myoelectric control generally uses the difference in the magnitude of the two EMG 

signals to proportionally control the velocity of a device’s DOF. Despite having only 

velocity control, these hands have been used for decades and provide functionality that is 

otherwise lost due to amputation.

Several research groups have recently developed robotic hands that more closely mimic the 

form and function of human hands [3–6]. Commercial hands are now available that use 

multiple motors to individually move fingers, allowing for more complex motions and hand 

postures that could provide more functionality. However, novel control methods need to be 

developed in order to fully utilize these hands’ capabilities. Initial work is only just 

beginning that explores intuitive methods for controlling multi-DOF hands using 

physiologically realistic neural control signals [7].

Direct myoelectric control uses two individually controllable EMG sites to command each 

DOF, but obtaining more than two sites is very difficult because the extrinsic hand muscles 

in the forearm are small, close together, and vary in depth from the skin’s surface. This leads 

to difficulty in distinguishing individual muscle activation using surface EMG sensors. 

Many groups have devised pattern recognition controllers [8–14] and principal component 

analysis [15, 16] to map between user’s intent and prosthesis motion. While pattern 

recognition control has shown promising results, it is currently limited to controlling a single 

classified pattern (e.g. one hand posture) at a time.

Implantable wireless EMG sensors have been developed that can provide measurements of 

muscle activity from individual extrinsic hand muscles within the forearm [17–19]. This 

allows additional information to be acquired from the user and could potentially provide 

simultaneous control of multiple DOFs [20].

Additionally, Smith and Hargrove have demonstrated that intramuscular EMG 

measurements decreased classifier error, when compared to surface EMG signals, for 

parallel pattern recognition classifiers, but not for a single classifier conditions [21]. 

Kamavuako et al. have also shown that the inclusion of intramuscular and surface EMG 

measurements can improve performance metrics when controlling a four-function, two-DOF 

hand, compared to using surface EMG measurements alone [22]. They have also shown that 

intramuscular EMG signals could be mapped to grasping force, which can further aid in 

prosthesis control [23].

Single-digit motions in healthy individual has been demonstrated [24, 25], which is due in 

part to extrinsic finger muscles. Extensor digitorum communis (EDC), flexor digitorum 

profundus (FDP), and flexor digitorum superficialis (FDS) are extrinsic muscles that have 

individual finger and tendon compartments and have been shown to be physically and 

functionally distinct [26–31]. Regardless, these individual digit motions are the coordinated 
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effort of multiple muscles and usually result in both force being exerted by adjacent digits 

(force enslavement) [32, 33] and activity emitted from adjacent muscle compartments 

(spillover recruitment) [30, 34–36]. In controlling an artificial hand, the spillover 

recruitment, or co-activity, may cause an issue, however intramuscular electrodes used in 

these finger muscle compartments would provide more localized activity measurements [19, 

37] and have been demonstrated to measure from these muscles free of EMG crosstalk [38].

In addition, abductor pollicis longus (APB), extensor pollicis brevis (EPB), extensor pollicis 

longus (EPL), and flexor pollicis longus (FPL) are the four extrinsic thumb muscles and 

their activity could provide additional information to command a robotic thumb. The three 

multi-tendon extrinsic finger muscles and the four extrinsic thumb muscles have previously 

been studied for their ability to activate individually from one another [39, 40].

This work tests the feasibility of using the extrinsic thumb muscles and finger muscle 

compartments to command individual digits on a virtual hand to mimic grasping hand 

postures. Furthermore, subjects tested two controllers, direct myoelectric control and a 

pattern recognition classifier, and the results from each were compared.

II. Methods

Seven able-bodied subjects gave informed written consent before participating in this study, 

which was approved in advance by the Northwestern University Institutional Review Board. 

These subjects had no history of neurological or physical ailments and were right-hand 

dominant.

Intramuscular nickel-alloy bi-polar fine-wire electrodes (ϕ0.002” Stablohm 800A with HPN 

insulation, California Fine Wire Co., Grover Beach, CA) were inserted using 27 gage 

hypodermic needles and standard intramuscular electrode insertion techniques [37]. 

Electrodes were placed into the flexor pollicis longus (FPL) and extensor pollicis longus 

(EPL) muscles of the thumb, and the first two compartments of the extensor digitorum 

communis (EDC1, EDC2) and flexor digitorum profundus (FDP1, FDP2) muscles, which 

are associated with the index and middle fingers, respectively. Each muscle and muscle 

compartment was initially located by palpation and ultrasound. During electrode insertion, 

EMG activity was observed on a monitor and played through a loudspeaker to minimize 

signal detection from adjacent muscles and compartments. Once the desired muscle or 

compartment was located with the electrode, the needle was withdrawn and the wires 

shortened to the minimum length required for connection to the data acquisition system.

After insertion, each electrode’s location was verified by electrical stimulation using a 

constant-current stimulator (Digitimer Ltd. Model DS7A, Hertfordshire, England) and 

observing the resultant motion during the muscle’s stimulation. EMG signals were measured 

using a Delsys Bagnoli-16 system (Delsys Inc., Boston, MA) connected to a PC running 

custom software (described below) and sampling at 1,000 Hz. The Delsys system has 

hardware band-pass filters set at 20–450 Hz. Intramuscular electrodes were used to access 

EMG activity from individual muscle and muscle compartments, and not to measure higher 

frequency EMG content, which would not have improved the velocity controllers used in 
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this study. Subjects placed their hand and wrist in a standard ball splint, after electrodes 

were placed, to allow for isometric muscle contractions and to standardize hand position 

across subjects.

These six muscles provided EMG signals to command the three DOFs in a virtual hand. Our 

previous work demonstrated that intramuscular electrodes residing in these muscles and 

compartments were capable of measuring and quantifying individual EMG activities [38, 

40]. Those findings provided the foundation for this study.

A. CAPS and the TAC Test

CAPS is custom software developed by the Center for Bionic Medicine to acquire EMG 

signals, test prosthesis control systems, and send output commands to either a virtual or 

physical prosthesis [10]. CAPS was used in this experiment to measure EMG from extrinsic 

finger and thumb muscles, display a virtual hand, and move the hand according to one of 

two controllers: direct proportional EMG control or a pattern recognition classifier.

These experiments required subjects to conform a virtual hand into one of six randomly 

selected hand postures: cylindrical grasp, fine pinch, hook grasp, palmar grasp, thumb 

enclosed (in a fist), and lateral grasp (Fig. 1). These postures were chosen for three reasons: 

1) They represent functional grasping postures used in activities of daily living, except the 

thumb enclosed posture, 2) they span the range of motion (ROM) of the virtual hand’s three 

controllable DOFs from the fully open position, and 3) they require different combinations 

of the DOFs to be coordinated in order to conform to the posture.

A Target Achievement Control (TAC) test tasked subjects to conform the virtual hand into 

displayed target postures [9, 10]. An example is shown in Fig. 2A with the controllable 

avatar, which appears tan to the subjects, and the target pose in semi-transparent dark gray. 

Subjects had control over a single DOF thumb, index finger, and middle finger using the 

direct EMG controller. The ring and little fingers were slaved to follow the position of the 

middle finger. Using the pattern recognition classifier, the subjects had control over the 

hand’s end posture and the classifier coordinated the fingers’ movements to move the hand 

towards that posture. Subjects could not command individual fingers while using the pattern 

recognition classifier.

The avatar turned green while the hand was aligned within the target (Fig. 2B). If the hand 

remained in the target zone for two seconds the trial ended in success and the hand would 

turn from green to dark green to signal successful completion of that trial. Subjects had 15 

seconds to get the hand within the target and hold it there for the required two seconds 

before the end of the 17-second trial., Otherwise, the hand would turn yellow, the trial would 

end, and was counted as a failed attempt. This trial length was chosen based on previous 

studies [10], discussions with prosthetists on how long prosthesis users typically require to 

complete a grasping task with their device, and a consideration for how long subjects would 

be willing to sit for an experiment. There was a 10-degree target zone of acceptable error 

centered about the target posture for each degree of freedom. This target window has been 

shown to be effective in previous studies [10]. Each TAC test comprised 12 consecutive 
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randomized trials, which tested the six hand postures twice, and was constrained so that no 

two consecutive trials tested the same posture.

B. Signal Processing

Two control algorithms were configured for these experiments: a direct proportional EMG 

control setup and a pattern recognition classifier. For both controllers a 250 ms window 

incremented every 25 ms was used to process the data and output a decision. The direct 

EMG controller used the mean absolute value (MAV) of the windowed EMG signals to 

determine motion of the virtual hand’s DOFs. Agonist/antagonist muscle pairs were used to 

proportionally control each DOF. The pattern recognition controller used a well-studied 

configuration of time-domain and auto-regressive signal features and a linear discriminate 

analysis algorithm to determine the output class [9, 10, 13, 24–27]. EMG activity from the 

six control sites were fed into a pattern recognition classifier, which was trained to choose 

one of the six hand postures, a hand open command, or a relaxed “no motion” state. This 

controller used a pre-determined linear path between the start and end postures when 

moving the virtual hand and subjects controlled the speed the hand moved towards that 

posture.

This pattern recognition system included proportional speed control of the motions and 

smoothed the output decisions with a velocity ramp [41]. Computation times for both 

algorithms were completed in less than 5 ms and the remainder of each frame was used to 

update and render the virtual environment. All output motions were restricted to have a 

maximum angular velocity of 100°/sec.

C. Controlling the Virtual Hand

The same six control sites were used as the inputs to each controller. The sites measured 

EMG activity from two muscles each for the thumb (FPL, EPL), index (FDP1, EDC1), and 

middle finger (FDP2, EDC2).

1) Direct EMG Control Setup—The two muscles associated with each digit acted as an 

agonist-antagonist pair under the direct proportional EMG control paradigm. The difference 

between their two activity levels determined the direction and magnitude of the output 

motion of the associated DOF in the artificial hand. This setup is most-commonly 

implemented for modern prosthesis users to control their devices.

The virtual fingers’ MCP and IP joints extended or flexed together with no abduction/

adduction motion. The resultant motion for the fingers ranged from a straight position 

coplanar with the palm (all joints fully extended) to being curled with fingertips touching the 

palm (all joints flexed). The thumb’s motion combined flexion-extension and abduction-

adduction of its joints. The range of motion started from “fully open” with the thumb 

abducted with slight flexion of the MCP joint and the IP joint fully extended. The “fully 

open” position approximated the position of your thumb just before shaking someone’s hand 

and is seen in Figure 2A (tan hand). The thumb was “fully closed” when it was adducted 

with the CMC, MCP, and IP joints flexed in a position as if to hold a coin against the palm 

of the hand using only the thumb tip.
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2) Pattern Recognition Control Setup—Each subject trained the pattern recognition 

classifier to recognize eight patterns of his/her activity. Subjects were sequentially shown a 

picture of a hand posture (six grasps, hand open, or no motion), and they contracted their 

hand muscles as if to move their hand to that posture. The subjects performed isometric 

contractions because their hand was in a splint. Data were collected for three seconds for 

each posture so the classifier could learn to associate that pattern of activity with the desired 

posture. Subjects repeated each posture twice during a training phase. Three-second training 

trials have been demonstrated to be effective in prior TAC test studies [10].

The classifier output a single motion class for each decision cycle after training was 

completed. Classifying any of the six hand posture classes when the hand was at its fully 

open position (0% range of motion – ROM) would result in the hand moving toward that 

posture (i.e. “key grip”). Once the hand reached 10% ROM, only additional EMG activity 

pattern of the motion class selected at 10% ROM would continue to close the hand towards 

that particular posture. Functionally, this meant that if the subject wanted to change the hand 

to a different posture, they would have to fully open the hand and then close the hand in a 

different posture. This constraint was imposed to mimic implementation in a physical 

prosthesis that would limit object release due to inadvertent classifier selection once a grasp 

was already in use holding an object.

The range of motion of each hand posture class spanned from 0–115%. The hand in the fully 

open position was 0%, the target posture was 100%, and the full range of motion allowed for 

15% overshoot. Once the hand was in the target posture, the subject would have to relax, 

classifying as “no motion”, in order to hold the hand in the target region.

D. Experimental Conditions

There were two conditions for which both the direct EMG control and the pattern 

recognition classifier TAC tests were conducted. The first condition tested each of the six 

grasps, starting the hand from the fully open position (Neutral Condition). The hand was 

reset to the fully open position between each trial. The second condition did not reset the 

hand to the open position between trials, but instead started each trial from the previous 

trial’s target posture (Posture-to-Posture Condition). The posture-to-posture condition was 

used to test the subjects’ ability to move the hand from varying postures to other postures. 

This demonstrated the subjects’ adaptability and versatility in controlling the hand 

throughout the hand’s full ROM and in several different starting configurations.

Each subject completed four TAC tests for each of the four conditions. Each TAC test 

consisted of 12 randomized trials (postures) giving a total of 48 trials for each condition. 

Each subject was given as much time to practice as desired before data collection for each 

new controller and condition. In general, subjects took 10–15 minutes to become familiar 

with the controller interface and to learn how to move the hand. Unbeknownst to the 

subjects, the first TAC test of each new set was treated as a practice and was not used in the 

data analysis. Consequently, 36 trials for each condition-controller combination were 

analyzed.
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The order for which controller was tested first, direct proportional EMG control or pattern 

recognition control, was randomized The neutral condition was tested first. The more 

visually complex posture-to-posture condition was performed second.

E. Statistical Analysis

An analysis of variance (ANOVA) was performed on the data to determine if significant 

differences (P-value less than 0.05) existed between controllers in the same testing 

condition. ‘Failure Rate’ and ‘Completion Time’ were tested and compared between ‘Direct 

Control’ and ‘Pattern Recognition.’

III. RESULTS

A. Direct Control of Simultaneous Degrees of Freedom

The percentage of trial time spent moving one, two, or three DOFs was measured for 

successfully completed trials. Median values are shown in Fig. 3 for single-, two-, and three-

DOF movements. Error bars depict the inter-quartile range.

During neutral condition tests (Fig. 3A), subjects moved a single DOF and two DOFs of the 

hand 33% and 42% of trial-time, respectively. Subjects coordinated the movement of all 

three DOFs simultaneously only 2.7% of trial-time. However, during posture-to-posture 

tests (Fig. 3B), subjects spent more time moving single DOFs (40% of the time) than they 

did moving two of the DOFs together (30% of the time).

B. Did the Number of Simultaneously Moving DOFs Change During the Trial? (Neutral 
Condition)

Fig. 4 shows how subjects simultaneously moved the hand’s DOFs during the trials. All 

trials were normalized by their trial time and then divided into 10 divisions. The amount of 

time spent moving no DOFs, a single DOF, two DOFs, or three DOFs together was 

tabulated for each segment. Median data is shown across all subjects.

During the Neutral condition tests (Fig. 4A), subjects initially moved a single DOF at the 

start of a trial, but shortly afterwards initiated a second DOF to move simultaneously. Trials 

can be distinguished into two phases: the first phase focused on two simultaneously moving 

DOFs and a second phase where the amount of trial-time spent moving a single DOF 

increased. This trend was representative of each subject. However, the point within the trial 

when the change between phases occurred varied between subjects.

Fig. 4B shows how subjects moved the DOFs simultaneously during the posture-to-posture 

condition tests. Similar to the Neutral condition breakdown, there was an increase in two 

degree of freedom movement during the middle half of the trials and an increase in single 

degree movement during the final quarter. However, unlike the Neutral condition, single 

degree of freedom movement was greater than two degree of freedom movement throughout 

the trial.
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C. Which Degrees-of-Freedom Moved Together?

Under Direct Control, Fig. 5 shows the median amount of time spent moving each 

combination of the hand’s three DOFs during successful trials and errors bars depict the 

interquartile range. Calculations were made for each successful trial based on the output 

from the controller, and a tally was made for each DoF at each time step to determine 

whether or not it was moving. Each successful trial was then normalized by its completion 

time. Examining the breakdown for single DOF movement (T, I, or M) demonstrates that 

subjects were capable of independently moving each degree of freedom. During the neutral 

condition, there was more isolated index finger movement (11.6% of normalized trial time) 

than thumb or middle finger movement (6.6% and 2% of normalized trial time). From the 

neutral position fine pinch and hook grasps only required the movement of two DOFs to 

reach the target posture. All other grasps required all DOFs to be moved.

The strategies for controlling the hand’s DOFs were different between the Neutral condition 

and the Posture-to-Posture condition; namely, there was more time spent in the latter 

moving single DOFs (Fig. 5, bottom). However, the thumb performed most of the single 

degree of freedom movements during this condition. The index finger was the primary 

individual mover during the Neutral condition tests. These results are interesting as Fraser 

and Wing have observed that during grasping between the thumb and index finger, that one 

side (usually the thumb) tends to remain more stationary while the other moves to 

accommodate the object [42].

The movements that involved two DOFs also differ from the patterns seen in the Neutral 

condition tests. Subjects spent more time coordinating movements of the thumb and index 

finger and less time moving the fingers together. There is still very little time spent moving 

the thumb along with the middle finger and moving all three DOFs simultaneously, similar 

to the results from the Neutral condition.

D. Pattern Recognition Classifier Accuracy

Average classifier accuracy across subjects was 85% with a standard deviation of 8%, when 

tested off-line on training data. This was acceptable as a previous study has reported a 

classifier accuracy of 69% for hand grasp postures using a pattern recognition classifier 

discriminating surface EMG signals [9].

E. Failure Rate

Performance metrics were calculated for each controller and condition in order to compare 

the direct myoelectric controller to the pattern recognition classifier. These included the 

failure rate, completion time, and percent of completed trials.

The failure rate measures the proportion of trials that were unsuccessfully completed during 

the TAC tests and were averaged across subjects. Fig. 6 shows the TAC test failure rates for 

each of the four control conditions. Failure rates were below 20%, which shows that subjects 

were generally able to complete the task, but it was not an easy task. This also coincides 

with previously reported failure rates for wrist and hand motions [10, 41]. There was no 

significant difference (P>0.05, ANOVA) between the failure rates of the two controllers in 
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the neutral condition tests or the posture-to-posture condition tests. Posture-to-posture 

conditions resulted in lower failure rates when compared to the Neutral condition tests.

F. Completion Time

The completion time is the time it took the subjects to conform the virtual hand to the target. 

The completion time does not include the two seconds of dwell time that were required in 

order to successfully complete each trial. Only successful trials were used to compute the 

average completion times shown in Fig. 7. Averages were computed across subjects for each 

controller and condition and error bars represent the standard error.

In the neutral condition, pattern recognition control resulted in a significantly lower 

completion time (P<0.05, ANOVA) than the direct controller. The pattern recognition 

controller was faster with the same completion success rate as direct control.

The completion times were not significantly different (P>0.05, ANOVA) between the direct 

EMG control and the pattern-recognition control in the Posture-to-Posture condition. The 

software limitation imposed during pattern-recognition control required subjects to return 

the hand to the fully open position before switching to a different posture. Therefore, the 

posture-to-posture test using pattern recognition control was essentially a neutral condition 

test with an additional step of first opening the hand. Average pattern recognition 

completion time of the posture-to-posture condition was 6.8 sec, and the hand-opening 

phase averaged 1.61 seconds (gray shaded region).

G. Completion Time vs. Percentage of Completed Trials

Fig. 8 shows the cumulative percentage of completed trials, out of 36 total trials for each 

controller and condition pair, as a function of the trial time. All four TAC tests followed a 

similar and expected pattern.

In the neutral condition tests, pattern recognition control (triangles) resulted in faster 

completions when compared to the direct control (plus signs) results. The Posture-to-Posture 

condition TAC tests (circles and squares) resulted in higher completed trials than the Neutral 

condition tests (plusses and triangles). These results show that it took subjects approximately 

10 seconds to achieve 80% completed trails across the six grasping postures under the 

Posture-to-Posture condition.

IV. DISCUSSION

A. Direct Control Extrapolations: Moving Degrees-of-Freedom Simultaneously and the 
Bias of Target Postures

Providing the ability to simultaneously control several prosthetic fingers is a laudable goal 

and one would expect greater dexterity with such capabilities. However, providing this 

ability does not ensure that the subjects will actually use that ability. The hand postures in 

this experiment required the index and middle fingers to be stopped next to one another 

when commanded using Direct Control – except for the ‘fine pinch’ posture. The fingers 

also started in the same configuration during the Neutral condition tests and therefore could 

follow the same trajectory from start to target configurations. This may have contributed to 
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the large portion of the time spent moving the index and middle fingers together. The similar 

motions of these digits seemed to be easier for subjects to accomplish than dis-similar 

motions such as moving digits different directions, distances, or to/from different start or 

target configurations.

From Fig. 4 and Fig. 5 it is surmised that subjects started moving two DOFs simultaneously 

early on and through the middle portion of the trials, and those two DOFs were most often 

the index and middle fingers. Subjects would intuitively move the fingers together since five 

of the six postures required the fingers to have the same position in the target posture.

It was surprising how little time was spent simultaneously moving all the digits. From the 

neutral position, the cylindrical, chuck, lateral, and thumb-enclosed postures each required 

movement of all the hand’s digits. Fine pinch and the hook grasp only required movement 

from two DOFs to reach the target from the neutral position. It was hypothesized that 

subjects would initially move all the digits close to the target simultaneously and then move 

each digit into the target one at a time. This strategy seems to have been implemented with 

only two DOFs instead of all three.

The index finger spent more time moving than any other digit; moving by itself and in 

conjunction with the middle finger degree of freedom. The index finger was the only digit 

that was required to move from the neutral pose to conform the hand for the six target 

postures. All target postures except fine pinch showed that the index finger DOF was 

moving a majority of the time, either alone or with the middle finger DOF.

Fig. 3 shows that, using the Direct Control setup, very little time was spent simultaneously 

moving all DOFs. Analysis of the movements during each target posture showed that 

simultaneous three-DOF movements occurred most frequently during the “thumb enclosed” 

target posture (12.8% of the time). The chuck, key, and cylindrical postures also included 

simultaneous three-DOF motions (9.5%, 5.4%, and 2.7% of time, respectively). These 

amounts are not enough to affirm our initial assumptions that subjects would prefer to move 

all DOFs simultaneously towards the target, and then sequentially once the hand was 

relatively close to the final target posture. Instead, subjects chose to move simultaneous 

DOFs given the desired target posture, and it is assumed that different simultaneous DOF 

movement patterns would be observed with different target postures.

B. Limitations in Simultaneously Controlling Multiple Degrees of Freedom

Physiologically realistic mappings between the muscles being used as control inputs and the 

resultant hand movement sought to minimize the cognitive load on the subjects by reducing 

how much they had to “think” about what they were doing. However, it was found that 

subjects did not coordinate movements of all of the digits of the hand simultaneously, as is 

done with a healthy and intact hand. There are many differences to consider between normal 

hand movement and that done by EMG in these experiments. Perhaps the two keys issues 

are the number of control inputs used and the lack of proprioceptive feedback. In these 

experiments, the subjects were moving digits with the input of just six muscles. In the 

normal hand, many more extrinsic and intrinsic muscles would be used. Although in the 

direct control experiments the EMG signals used were functionally related to the DOFs they 
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were controlling, they were far from a complete or normal set of muscle inputs. Thus, there 

was still a much larger cognitive burden than in a normal hand. Perhaps this is why the 

subjects generally used few simultaneous DOFs.

Additionally, subjects were asked to control their EMG activity, which is a very unusual 

task. In an intact hand, single-digit movements generally require the activation of multiple 

muscles and the person is typically focused on the position, velocity, and/or force of the 

digit. In this study, subjects were wearing a splint which constrained movement but allowed 

large force generation, and all the while they were asked to focus on their muscles’ activity.

The lack of proprioception is also an important difference. The subjects had to rely on visual 

feedback to control all three DOF’s. This mimics how a prosthesis user is limited to 

primarily visual feedback from the device. Simultaneously controlling up to three DOFs, 

based on visual feedback, may be the limitation of human attention. Williams and Kirsch 

have found that subjects controlling a two-DOF cursor using four EMG sites tended to move 

sequential DOFs instead of simultaneously [20, 43]. However, that may have been due to the 

non-intuitive nature of using face and neck muscles as control sites for the computer cursor. 

Masliah and Milgram measured subjects’ coordination of simultaneous controlling 6-DOFs, 

and found that they tended to focus on subsets of the DOFS, limiting themselves to at most 

three at a time [44]. Our lab has documented amputee subjects using a prosthetic arm and 

hand to simultaneously move four DOFs to perform gross positioning motions of the limb, 

however, subject’s focused on one or two simultaneous DOFs once the hand was close to 

the intended target [45].

Future work could increase the number of control inputs to an artificial hand by using 

activity from additional extrinsic finger muscles and compartments. Researchers are 

currently working on bringing commercially available intramuscular electrodes to market 

[18, 46–49]. This could allow for an increase in controllable digits and DOFs in artificial 

hands, however, simultaneous control of all of the DOFs may be limited. Furthermore, 

additional training may improve performance of simultaneous DoF control. Subjects in this 

study were not limited in the amount of training they wished to take, but none took more 

than 30 minutes. Typical prosthesis users, by contrast, train for weeks with their device.

C. Direct EMG control versus Pattern Recognition Control for the Hand

The results from these experiments strongly suggest that the control of a multiple DOF hand 

is feasible using intramuscular EMG with either direct or pattern recognition control. This is 

required for the direct EMG control setup because surface electrodes are not capable of 

distinguishing the muscle activity of individual finger muscle compartments. Our hypothesis 

was validated that extrinsic finger and thumb muscles can serve as control inputs and allow 

for individual finger control of a multifunctional artificial hand. Pattern recognition control 

has also been effective in controlling multiple DOFs with extrinsic muscles. In these 

experiments, intramuscular direct EMG and pattern recognition control of a three-DOF hand 

performed equally well.

Another consideration is how the user expects to interact their prosthetic hand with the 

environment. Pattern recognition control is limited to a few, pre-defined grasping patterns 
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and does not allow for the user to change or modify the grasping motion once it has been 

initiated. Using the direct EMG control could enable users to move individual digits during 

and after the initiation of a grasping motion. This potentially allows the user more 

adaptability in grasping different sized and shaped objects; as well as gesturing and doing 

many other complex hand functions needed every day.

D. Summary of Important Results

• Subjects could individually control multiple muscles for each digit including 

agonist/antagonist muscle pairs. EMG activity from EDC1, FDP1, EDC2, FDP2 of 

the fingers as well as EPL and FPL of the thumb were used as EMG control sites to 

command individual digits on a 3-DOF artificial hand.

• Subjects were able to use direct proportional EMG control and pattern recognition 

control to conform the virtual hand prosthesis into six functional grasps from a 

neutral position. Furthermore, subjects using direct EMG control also demonstrated 

their ability to command the hand to change from one posture directly into another.

• Functional performance metrics suggested that direct EMG control performed 

similar to pattern recognition control, when moving a hand from a neutral, fully 

open start posture.

• Subjects demonstrated simultaneous control of two of the three DOFs using direct 

EMG control; however, they rarely controlled all three of the DOFs 

simultaneously. Simultaneous control of two DOFs was frequently observed, but 

the determination of which two DOFs was biased by the target posture.

• Evidence suggested that subjects used simultaneous control during gross motions to 

approximate the hand to the target posture before commanding single DOFs for 

fine-position control into the desired posture.
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Fig. 1. 
Six hand grasp postures represented in the virtual environment with CAPS: from top left 

(clockwise) are cylindrical, tip/fine pinch, hook, palmar, thumb enclosed, and lateral grasps.
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Fig. 2. 
TAC test visual display example. A) TAC test avatar (tan colored hand) with semi-

transparent target posture overlaid (dark gray). B) When the subject conformed the virtual 

hand to the target posture, the hand turned green.
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Fig. 3. 
Median amount of normalized trial time spent simultanesouly moving DOFs. Data is shown 

for one, two, and three DOFs together for the Neutral condition tests (top) and Posture-to-

Posture condition tests (bottom). Error bars depict inter-quartile range. Fig. 4 Simultaneous 

DOF percentages during increments of 10% of normalized trial time. Median values are 

shown for the Neutral condition (top) and Posture-to-Posture condition (bottom) tests. 

Traces represent No Movement (white), single DOF (green), two DOF (purple), and three 

DOF (red) movements.
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Fig. 4. 
Simultaneous DOF percentages during increments of 10% of normalized trial time. Median 

values are shown for the Neutral condition (top) and Posture-to-Posture condition (bottom) 

tests. Traces represent No Movement (white), single DOF (green), two DOF (purple), and 

three DOF (red) movements.
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Fig. 5. 
Simultaneous DOF combinations. Breakdown showing how subjects moved combinations 

of degrees of freedom across all target postures during Neutral condition (top) and Posture-

to-Posture condition tests (bottom). Median values with error bars depicting the interquartile 

range across all successful trials and all subjects. Combinations are shown for Thumb (T), 

Index Finger (I), and Middle Finger (M).
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Fig. 6. 
TAC test failure rates. Mean failure rates of TAC test trials shown for Direct EMG control 

and Pattern Recognition Control for both test conditions: Neutral and Posture-to-Posture 

(P2P). Error bars depict the standard error.
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Fig. 7. 
TAC test completion times. Average completion time of TAC trials for Direct EMG control 

and Pattern Recognition Control and both the Neutral and Posture-to-Posture conditions. 

Error bars represents standard error. Shaded region represents average time spent initially 

performing “Hand Open” in the Posture-to-Posture condition using Pattern Recognition 

control.
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Fig. 8. 
TAC test completion time versus percentage of completed trials. More trials were completed 

as time increased with a majority of the trials being completed after 5–7 seconds.
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