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Abstract

The intensity and submodality of pain are widely attributed to stimulus encoding by peripheral and 

subcortical spinal/trigeminal portions of the somatosensory nervous system. Consistent with this 

interpretation are studies of surgically anesthetized animals, showing that relationships between 

nociceptive stimulation and activation of neurons are similar at subcortical levels of 

somatosensory projection and within the primary somatosensory cortex (in cytoarchitectural areas 

3b and 1 of SI). Such findings have led to characterizations of SI as a network which preserves, 

rather than transforms, the excitatory drive it receives from subcortical levels. Inconsistent with 

this perspective are images and neurophysiological recordings of SI neurons in lightly 

anesthetized primates. These studies show that an extreme anterior position within SI (area 3a) 

receives input originating predominantly from unmyelinated nociceptors, distinguishing it from 

posterior SI (areas 3b and 1), long recognized as receiving input predominantly from myelinated 

afferents, including nociceptors. Of particular importance, interactions between these subregions 

during maintained nociceptive stimulation are accompanied by an altered SI response to 

myelinated and unmyelinated nociceptors. A revised view of pain coding within SI cortex is 

discussed, and potentially significant clinical implications are emphasized.
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1. Introduction

Wide agreement exists about the spinal dorsal horn, thalamic, and cerebral cortical targets of 

afferent drive triggered by noxious environmental stimuli. Pioneering studies established 

that dorsal horn neurons with thalamic projections maintain or combine the stimulus 

preferences and response characteristics of distinguishable classes of peripheral nociceptors 

[136-138]. Those studies also showed that the response properties of nociresponsive 

ventrobasal thalamic and primary somatosensory cortical (SI) neurons correspond to those 

of dorsal horn neurons [33;51;142]. These findings do not, however, permit rejection of the 

possibility that nociresponsive neuronal activity undergoes functionally significant alteration 

in its projection from spinal dorsal horn to SI. Most observations from CNS nociresponsive 

neurons have been obtained under surgical levels of anesthesia known to: (i) decrease the 

number of stimulus-activated neurons at both spinal and supraspinal levels of the 

somatosensory nervous system; and (ii) not only reduce, but fundamentally alter a neuron's 

response to stimulus-evoked excitatory drive (e.g., convert the response from tonic to phasic 

– from slowly to rapidly adapting) [42].

Recent studies using vibrotactile [103; 111; 133] or skin brushing [111] stimulation have 

shown that neurons in SI of lightly anesthetized animals respond to stimulation of a skin 

region far more extensive than the strict somatotopy of functionally segregated inputs 

observed under surgical levels of general anesthesia [99-101]. Moreover, in lightly 

anesthetized or unanesthetized subjects, subpopulations of SI mechanoresponsive neurons 

are distinguishable on the basis of patterns of spike firing that signal/encode behaviorally 

relevant sensory attributes [111]. While existing information does not allow unambiguous 

identification of subpopulations of SI neurons [18;112;113] which signal/encode 

perceptually distinguishable attributes of nociceptive sensations, SI is parcellated into 

anterior and posterior regions preferentially activated by functionally distinct nociceptors, as 

detailed below.

SI is known to receive abundant projections from spinal and brain stem neurons that receive 

their input from myelinated afferents. The spinal terminals of myelinated (Aδ) nociceptors 

do not ramify extensively, and the pain percept that accompanies their activation is 

experienced as sharp and well localized (as first/fast/discriminative pain). Reflex 

adjustments to nociceptive stimulation depend upon myelinated afferent input to the spinal 

cord and occur before a conscious reaction is initiated [128]. Collaterals of spinothalamic 

axons that terminate in brain stem nuclei can initiate a stereotypic fight or flight response 

that includes orientation to the stimulus [77]. The noxious afferent drive to cell columns in 

areas 3b and 1of SI is interspersed with a substantially more dense input from non-

nociresponsive thalamic neurons whose activity encodes features of the stimulus such as the 

location and extent of skin contact, the direction of stimulus motion across the skin, the 

roughness, softness or texture of the stimulus object, or the frequency of vibrotactile 

stimulation [111]. Considered collectively, the dorsal horn projection of myelinated afferent 

input to areas 3b and 1 appears to support abilities of normal subjects to localize skin stimuli 

and discriminate between sensory attributes that include pain intensity. Associated activation 

of other cortical regions is requisite not only for attention to a stimulus [84;92], but also for 

determination of whether the stimulus is behaviorally salient [71].
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In contrast to widespread agreement about the SI processing of afferent drive arising in 

myelinated afferents, no consensus exists about the cortical mechanisms responsible for 

sensations evoked by stimuli that activate unmyelinated (C) nociceptive afferents. In 

multiple respects the pain experiences evoked by input from C-nociceptive afferents (i.e., 

the “slow”, “2nd”, or “burning” pain percept) differ strikingly from those elicited by 

activation of myelinated nociceptive afferents. The slow conduction velocity of peripheral C 

nociceptive afferents renders information provided to the CNS useless for rapid reactions to 

the onset of a painful stimulus; selective C nociceptor activation does not elicit behavioral 

reflex responses; conscious reactions to nociceptor activation can occur before input from C 

nociceptors reaches the cerebral cortex; not only do the peripheral terminals of C 

nociceptors ramify extensively, but their central terminations within the substantia 

gelatinosa access the diffusely conducting propriospinal system [146]; C nociceptor activity 

occurs at a slow rate and does not adapt rapidly; and C nociceptors do not track rapid 

changes in stimulus intensity. These attributes of C nociceptors are incompatible with the 

fast detection and localization of a nociceptive stimulus. Consistent with the slow 

progression and poor localization of second pain, they appear ideal for detection of 

inflammatory injury [65] and for tracking a slowly progressing insult such as protein 

denaturation of the skin during prolonged or repetitive heat stimulation.

The perspectives of this review are that (i) posterior and anterior areas within SI (areas 3b/1 

and 3a) are the sites of the initial cortical activations attributable to Aδ vs. C nociceptive 

afferent drive, respectively; and (ii) when a nociceptive stimulus is maintained, neuronal 

activation within SI switches from predominantly Aδ to C nociceptor mediated. 

Accordingly, during maintained cutaneous heat stimulation the initial sensation of sharp 

pain that accurately reflects the increase in stimulus temperature at the site of stimulus 

contact converts to an aching, poorly localized pain that increases in magnitude with 

continuing stimulation (i.e., temporally summates; C. Vierck, A. Mauderli and J. Riley, 

unpublished observations). More generally, SI nociceptive cortical processing of different 

combinations, magnitudes and durations of myelinated and unmyelinated input could 

account for many of the subjective characteristics (qualitative features) of pain [83;144], 

such as those categorized by the McGill pain questionnaire [45]. Also, interactions between 

those SI neurons that receive input from specific Aδ and C nociceptors may determine the 

submodality of a variety of aversive sensations (e.g., cold, heat or mechanical pain and itch).

The following sections delineate what the authors regard as the neuromechanistic bases for 

such interactions. We attempt to do this by comparing and contrasting the SI neuronal 

activation triggered by precisely controlled environmental stimulation of myelinated vs. 

unmyelinated cutaneous afferents. Experimental findings obtained using high-resolution 

imaging approaches and neurophysiological recordings in lightly anesthetized or awake 

subjects are emphasized.

2. Sources of nociceptive input to SI

Myelinated nociceptive input to SI involves transmission of the activity of laminae I and V 

neurons in the spinal dorsal horn via the spinothalamic tract and subsequently via the 

contralateral thalamus (nucleus ventralis posterolateralis; VPL) to areas 3b/1 
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[12;16;18;22;57;69;91;109]. Thalamically-projecting nociceptive-specific (NS) neurons in 

lamina I of the dorsal horn respond to input from myelinated nociceptive afferents [27;31]. 

Responses of lamina V wide dynamic range (WDR) neurons are graded in magnitude by 

input from myelinated non-nociceptive (Aβ) and nociceptive Aδ and C afferents, exhibiting 

a low rate of firing to non-nociceptive input and a progressively higher rate as stimulus 

intensity increases over the range experienced as painful [67]. Both the NS lamina I and 

WDR lamina V neurons respond to nociceptive input with short latencies and an initial 

discharge rate that grades with the intensity of stimulation - attributes consistent with 

characteristics of the first pain experience.

Conceptualization of the role of SI cortex in somatosensory coding has long been based on 

the conviction that the projection of nociceptive, thermal and tactile information to SI 

requires a synaptic relay in nucleus ventralis posterolateralis (VPL) [139]. Anterograde 

neuroanatomical tracing and neurophysiological recordings have established that the afferent 

drive triggered by non-noxious mechanical skin contact is conveyed to the thalamus in the 

dorsal column–medial lemniscal (DC–ML) pathway and spinocervicothalamic pathway, 

whereas information about noxious and thermal stimulation is conveyed via axons in the 

spinothalamic tract (STT). These projections terminate on neurons in the contralateral VPL 

[95] which, in turn, project to areas 3b/1 in SI (blue-colored path in Figure 1). As a 

consequence, areas 3b/1 contain many non-nociresponsive neurons and a sparse 

representation of nociresponsive neurons whose response properties closely resemble those 

of NS or WDR neurons in the spinal dorsal horn (as suggested by the blue-colored pathway 

in Figure 1; [59]). These findings constitute the basis for the widely-held belief that the 

thalamic nucleus VPL is both a necessary and sufficient source of the nociceptive afferent 

drive that reaches SI.

Neuroanatomical tracing studies have identified an alternative thalamic projection to SI (see 

red-colored path in Figure 1) which conveys nociceptive information very different from 

that conveyed by the VPL projection to areas 3b/1. Anterograde and retrograde tracing 

methods have demonstrated axonal projections of a unique class of dorsal horn lamina I 

neurons to nucleus VMpo (the posterior part of the ventral medial nucleus) [29;32;97]. 

These VMpo neurons project to insular cortex and to area 3a within SI [33]. While area 3a 

has been recognized as a recipient of information contributing to fine control of 

skeletomotor functions via corticocortical connections with motor cortex [53;56], the 

possibility that area 3a contributes to pain perception was raised by the demonstration that 

selective activation of unmyelinated (C) nociceptors is accompanied by a robust activation 

of area 3a neurons [134] (described below).

C-nociceptive afferents terminate directly on a distinct category of lamina I dorsal horn 

neurons whose axons enter the spinothalamic tract and project to VMpo [30;31;78]. These 

lamina I neurons: (i) receive abundant input from neurons in the substantia gelatinosa 

(laminae II and III) – a dorsal horn region comprised of densely packed interneurons that 

receive peptidergic nerve terminals and respond to inflammatory mediators; (ii) respond to 

cold (35°C to <10°C), pinch and heat (35°C to 53°C) and are referred to as HPC or 

polymodal neurons; and (iii) like the C-nociceptive afferents that provide their input, are 

exquisitely responsive to prolonged thermal stimulation with prominent after-discharge 
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following stimulus termination. The lamina I neurons that receive input from unmyelinated 

nociceptors have been shown to be relevant not only to normal nociceptive transmission, but 

also to the development of chronic pain [6;74;110].

A CNS neuron that receives cutaneous C nociceptor input typically exhibits slow temporal 

summation of spike firing in response to repetitive heating of its receptive field [93]. 

Similarly, brief cutaneous contact with a preheated thermode is accompanied by a late (post-

stimulus) sensation that progresses from warmth to strong pain when the contacts occur 

repetitively [121]. Important features of slow temporal summation of second (“slow”) pain 

are that it: (i) is dependent upon activation of C-nociceptors, (ii) requires repetition of the 

contact stimulus at intervals of 3 sec or less, and (iii) “resets” (i.e., ratings are restored to 

low values observed at the onset of repetitive stimulation) if an interval greater than 3 sec is 

interposed in a series of stimuli delivered at intervals of 3sec or less. Each of these features 

of the second/slow pain percept is characteristic of lamina I HPC neurons [27].

3. Nociresponsive SI neurons

Demonstrations of the projection that synaptically links NS and WDR neurons in the spinal 

dorsal horn with thalamic nucleus VPL have led to the expectation that neurons in areas 3b/1 

of SI would be responsive to noxious environmental stimulation. Subsequent 

neurophysiological recordings obtained in anesthetized monkeys [60] revealed a sparse 

distribution of nociresponsive 3b/1 neurons confined to the middle layers and interspersed 

among pyramidal neurons that respond solely to non-noxious mechanical stimulation of a 

spatially restricted skin region. The functional properties of these nociresponsive 3b/1 

neurons are as follows: (i) short response latencies consistent with afferent drive arising in 

myelinated peripheral afferents; (ii) little or no tendency for after-discharge; and (iii) faithful 

signaling, via a mean rate firing code, of the intensity of noxious skin heating stimulation 

(43°C to 50°C). These area 3b/1 neurons are widely regarded as an initial neocortical stage 

in the encoding of first pain (i.e., the well localized, stimulus-locked sensation evoked by 

activation of Aδ nociceptors) [84].

The functional properties of area 3a nociresponsive neurons differ considerably from those 

of the nociresponsive neurons in areas 3b/1. Single-neuron recordings and high-resolution 

near-infrared optical intrinsic signal imaging of area 3a during noxious skin stimulation have 

revealed activity consistent with the response of lamina I HPC neurons. Specifically, 

delivery of multisecond-duration noxious skin heating is accompanied by a gradually 

increasing activation within the topographically appropriate region of area 3a. 

Simultaneously, activity in areas 3b/1 undergoes a profound suppression that persists 

following removal of the stimulus [113]. Activation of area 3a neurons by stimulation of 

unmyelinated nociceptors is particularly robust, and direct interactions between activities of 

nociresponsive neurons in area 3a and mechanoresponsive neurons in 3b/1 parallel the sign 

and magnitude of interactions that occur between pain and touch in conscious subjects [3;4]. 

Optical intrinsic signal (OIS) images showing the status of SI activation during and after 

noxious skin heating are shown in Figure 2.
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Consistent with the imaging observations illustrated in Figure 2, extracellular microelectrode 

recordings in lightly anesthetized squirrel monkeys (Figure 3) have revealed that brief (1-7 

sec duration) contact of the skin with a preheated thermode (49-56° C) elicits vigorous, but 

delayed spike discharge activity in area 3a neurons. Importantly, this spike firing attains a 

maximum after the stimulator probe is retracted from the skin [134]. Also, in response to 

repetitive application of a noxious thermal stimulus to the skin, both the optical intrinsic 

signal and spike discharge responses of individual area 3a neurons temporally summate 

(“wind-up”). This prominent slow temporal summation of area 3a neuronal activity closely 

matches that of both lamina I HPC cells [27] and ratings of second pain sensation by 

humans in response to the same stimulus [121]. Additional support for the role of area 3a 

nociresponsive neurons in the signaling of slow/2nd/burning pain derives from 

demonstrations that intradermal injection of capsaicin is followed by: (i) prolonged 

activation of an extensive region within area 3a; (ii) concurrent suppression of neurons 

within the corresponding topographic region of areas 3b/1; and (iii) sensitization to 

mechanical skin stimulation of nociresponsive neurons within the activated region of area 3a 

[134]. Viewed collectively, these observations raise the possibility that area 3a participates 

in the encoding of slow/2nd burning pain and temporal summation of second pain. In 

addition to area 3a [7], cerebral cortical activation by peripheral stimulation of unmyelinated 

nociceptors includes SII, the insula, anterior cingulate cortex, prefrontal cortex and 

hippocampus [7] [91;94;118]. This review does not attempt to compare the nociceptive 

sensitivity of SI neurons with those of neurons in other cortical regions.

4. Experimental bias in published studies of the nociceptive representation 

in SI

The concept that nociceptive processing within SI occurs solely in areas 3b/1 has existed for 

decades and continues to dominate the literature. This focus has been sustained by 

constraints imposed by SI morphological features on observations obtained in human 

cortical imaging studies. As shown in Figure 1, area 3a is relatively inaccessible at most 

mediolateral levels of human cerebral cortex, occupying a narrow 5-6mm wide region deep 

in the fundus of the central sulcus. This location is highly problematic, given the limited 

spatial resolution achievable using currently available human imaging methods. 

Furthermore, in the cerebral cortex of most primates: (i) the fundus of the central sulcus is 

occupied by major blood vessels, making insertion of an electrode into this region not only 

difficult but risky; (ii) area 3a is much narrower in anteroposterior extent than either area 3b 

or area 1; and (iii) inter-individual variation in the size and position of area 3a within the 

central sulcus [43;44;96;131] makes the use of a “standard atlas” difficult, if not misleading.

An additional barrier to understanding the contributions of SI to somatosensory perception 

derives from the fact that surgically anesthetized animals provide estimates of neuronal 

responsivity that differ from those obtained from lightly anesthetized laboratory animals or 

awake humans. Recordings from SI of anesthetized animals typically isolate responses only 

from middle-layer neurons which reflect the properties of thalamocortical axons [42;114]. In 

addition, although the axonal projections of NS and WDR dorsal horn neurons to VPL are 

dense [140], few neurons in the middle layers of areas 3b/1 respond to noxious stimulation 
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[57;59]. This apparent contradiction is resolved by the demonstration that the STT projects 

to neurons in a fringe region of VPL [98;145] with axonal terminations primarily in the 

superficial layers of 3b/1, on the distal dendrites of pyramidal neurons. Neurons in a core 

region of VPL receive non-nociceptive input from the dorsal column–medial lemniscal 

(DC–ML) pathway and project, mostly to the middle layers of area 3b/1[10]. Thus, 

pyramidal neurons in area 3b/1 of anesthetized animals respond primarily to non-nociceptive 

input conveyed via the DC–ML path and much less robustly to the nociceptive drive 

conveyed to their distal dendrites. However, recordings from each of the six cortical layers 

in lightly anesthetized animals reveal novel representations of stimulus features presumed to 

reflect between-layer and intercolumnar interactions [132].

5. Intracortical interactions: the SI encoding of nociception involves both 

area 3a and areas 3b/1

Horizontal intercolumnar interactions within SI accompany both non-noxious and noxious 

stimulation, but published imaging and neurophysiological studies have primarily revealed 

the contributions of these interactions to the SI encoding of non-noxious sensations. A 

spatially extensive region in SI becomes activated within a very short time (~15-30 msec) 

following the onset of a gentle tactile stimulus. However, if the stimulus is maintained or 

applied repetitively, the activated SI region shrinks (beginning within <50 msec after 

stimulus onset) to multiple, radially-oriented foci of activity uniquely determined by the 

physical characteristics of the stimulus [19;103;114] . The changing activation pattern over 

time is attributable to stimulus-specific dynamic intracortical excitatory and inhibitory 

processes [66;132]. Within each focus, features not explicitly represented in the 

thalamocortical input are dynamically constructed by intracortical influences. For example, 

information about direction of tactile motion is extracted from precisely timed sequential 

inputs to a spatial array of 3b/1 cell columns. These sequential inputs derive both from the 

thalamus and from neurons in the multiple cortical columns whose receptive fields are 

traversed by a moving skin stimulus.

Following surgical section of one dorsal column (DC) the usually robust ability of primates 

to perceive direction of tactile motion is lost contralaterally, as is their ability to discriminate 

between frequencies or durations of repetitive tactile stimulation [119;120;123]. In contrast, 

spatiotactile localization and discrimination remain normal [122;124]. This sparing of spatial 

discrimination, coupled with the loss of cortically derived functions dependent upon 

stimulus movement, repetition or duration is compatible with high resolution 2-

deoxyglucose metabolic maps of SI responses to tactile stimulation [113]. For example, a 

repetitive tactile stimulus normally triggers maximal neuronal activity within areas 3b/1, 

whereas activity in the bordering regions of 3a and 2 is suppressed. Following DC 

transection, repetitive tactile stimulation now evokes activity within areas 3a and 2, 

accompanied by powerful suppression/inhibition of activity within the 3b/1 region that is 

particularly deprived of afferent drive by the DC lesion. These abnormalities of the SI 

response account for the inability of a subject with a DC lesion to discriminate between 

opposing directions of tactile motion, and also for a progressive loss of sensitivity to 
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repeated presentation of a tactile stimulus [9;35;82] – functions dependent upon the 

activation of areas 3b/1.

Functionally meaningful intracortical interactions between areas 3a and 3b/1 have been 

demonstrated with imaging of SI during combined vibrotactile and thermonoxious skin 

stimulation [112;113]. As shown in Figure 2, a vibrotactile stimulus leads to vigorous 

contralateral activation of areas 3b/1, but not of area 3a. When the temperature of the 

vibrating probe is 52°C, however, area 3a is activated, and the topographically 

corresponding region of areas 3b/1 is progressively inhibited as stimulation continues. These 

observations indicate that full appreciation of the contributions of SI to somatosensory 

perception requires neurophysiological recording and/or imaging methods sensitive to 

interactions that occur between the different layers and cytoarchitectural fields that comprise 

the responding cortical territory.

Electrophysiological recordings of neuronal responses to simultaneous 25 Hz flutter and 

47°C-51°C stimulation of the skin have supported the results obtained in imaging studies of 

SI [133]. As illustrated (Figure 4A), when a flutter stimulus is near-threshold for activation 

of rapidly adapting (RA) neurons in 3b/1, simultaneous application of noxious heat to the 

same skin site suppresses the 3b/1 responses to flutter. Similarly, human psychophysical 

tests demonstrate that reduced sensitivity to flutter stimulation occurs during concurrent 

nociceptive thermal stimulation [3] – an effect accompanied by suppression of blood flow in 

the responding sectors of 3b/1 [4]. However, concurrent application of noxious heat does not 

suppress activation of 3b/1 neurons by a suprathreshold flutter stimulus [133]. Surprisingly, 

the flutter-evoked response under this condition can be substantially larger than when the 

stimulus is applied with the probe at a non-noxious temperature. These outcomes appear to 

account for otherwise difficult-to-explain reports that experimental or clinical pain is 

accompanied by increased sensitivity (hyperesthesia) to strong cutaneous stimulation, but 

hypoesthesia occurs when the cutaneous stimulus is near-threshold [5;40;107;133].

According to Whitsel et al. [132], interactions between input to areas 3b/1 and C-nociceptive 

input to area 3a are dependent upon interareal connections provided by long-distance 

collaterals of pyramidal neurons (Figure 5) [15]. These interareal connections are 

glutamatergic, but their overall effect on target neuronal populations is balanced between 

influences on local excitatory and inhibitory neurons [50]. Because an area 3a response to 

activation of C nociceptors is delayed relative to the 3b/1 response to Aβ/Aδ input, the 3b/1 

response to a stimulus that simultaneously activates Aβ, Aδ and C afferents develops rapidly 

and without restraint at the onset of stimulation. When such a stimulus remains in contact 

with the skin or is applied repetitively, however, the nociresponsive area 3a neurons become 

increasingly activated and convey a progressively increasing inhibitory influence to neurons 

in areas 3b/1. Thus, nociceptive heat applied to the skin by a thermode or water bath 

activates areas 3b/1 within a few seconds of the onset of such a stimulus [17;18;23;80], but 

no activation is detected in the same regions of 3b/1 after prolonged exposure to noxious 

skin heating [4;37;39;54;84;88]. Aδ afferent inhibition of responses to C afferent stimulation 

has been demonstrated with cortical recordings [14;81;116] and also with spinal recordings 

[47;68;76;104]. Inhibitory interactions that are reciprocal for Aδ and C afferent input [116] 

may be unique to the cortical processing of nociception.
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6. Cortical encoding of sensation intensity

The attributes of neurons within the spinothalamocortical projection to areas 3b/1 are widely 

presumed to underlie the capacities of normal individuals to detect and perceive the intensity 

of a noxious skin stimulus [12;20;57;59;80]. However, there has been a long-standing 

debate as to whether NS or WDR neurons with axons in the spinothalamic projection 

pathway encode the intensity of noxious stimulation, based on the assumption that pain 

intensity is represented by the discharge of a single category of dorsal horn neuron with little 

or no cortical elaboration of this information. This discussion has been framed in terms of 

specificity (NS) versus pattern (WDR) theories [21;33;79], neither of which considers how 

or why sensory cortex would ignore input conveyed to it via the central projections of any 

category of peripheral receptor .

It is a virtual certainty that sensation intensity is encoded by an across-areal integration of SI 

neuronal responses to a nociceptive stimulus [24;95;111]. The stimulus-response function 

that spans the full range of painful intensities evoked by a brief thermal stimulus depends 

upon integration of the activity of area 3b/1 NS and WDR neurons that respond to 

overlapping (but different) ranges of stimulus intensities. When the stimulus is maintained, 

activating C nociceptors and, as a result, nociresponsive neurons in area 3a, nociresponsive 

neurons in 3b/1 would make little or no contribution to the coding of pain intensity. This 

outcome is expected because thermal stimuli that trigger second pain [121] not only activate 

area 3a but also to suppress activity in areas 3b/1 [113].

7. Spinal, thalamic and cortical lesions affecting pain processing by SI

Early clinical reports indicated that pain sensibility is retained by patients with cortical 

infarcts involving somatosensory cortex [48]. However, subsequent clinical literature 

contains numerous reports of patients who, after anterior parietal ablations, lost the ability to 

experience pain in response to noxious stimulation, particularly if the ablations included the 

posterior wall of the central sulcus [36;41;46;52; 72;73;87;90;105;106;117;143]. While 

some of the reported ablations were accidental and not well defined in spatial extent, others 

were deliberate surgical excisions of defined portions of SI cortex performed in attempts to 

treat epilepsy or chronic pain. These observations were complicated by chronic conditions 

that alter central neuronal activity patterns, but they suggest that pain perception requires 

participation of a cortical region that either is a component of SI, or is in close proximity to 

SI. Given current knowledge, a parsimonious interpretation of these clinical reports is that: 

(i) this region corresponds to areas 3a and 3b/1; (ii) when both area 3a and areas 3b/1 are 

removed, noxious stimulation of the affected body regions ceases to evoke pain; and (iii) if a 

postcentral ablation fails to extend deep enough into the central sulcus to remove area 3a, 

the loss of pain will at most be transient – until area 3a recovers from indirectly induced 

trauma.

SI cortical lesions in humans validate the idea that area 3a contributes to the coding of pain 

sensations and support a critical role for intracortical interactions between areas 3b/1 and 3a. 

For example, hyperpathia (increased sensitivity to suprathreshold nociceptive stimulation) 

has been observed with large parietal cortical lesions that spare the posterior bank of the 
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central sulcus (thus sparing area 3a) [13]. Hyperpathia has also been observed following 

parietal cortical lesions of monkeys that spare area 3a [86]. In contrast, latencies for 

detection of a small increment in nociceptive thermal stimulation that optimally activates Aδ 

nociceptors are elevated following parietal cortical lesions [61]. Such findings are 

compatible with reciprocal and predominantly inhibitory intracortical interactions between 

areas 3a and 3b/1 as proposed by Whitsel et al. [118] and illustrated in Figure 5. A lesion 

that destroys a sector of 3b/1 would attenuate pain from selective activation of Aδ 

nociceptors but would release the neighboring region in area 3a from interareal inhibition, 

enhancing pain from C-nociceptor input.

In addition to evidence suggesting that area 3a activation might be necessary for evocation 

of 2nd/slow pain by nociceptive stimulation, experimental lesions and/or clinical conditions 

that differentially deafferent or deactivate 3b/1 support the importance for pain perception of 

intracortical interactions within SI. Following unilateral DC section, activity within 

contralateral 3b/1 undergoes a substantial suppression in response to tactile stimulation that 

vigorously activates myelinated afferents [113]. Accordingly, escape responses of monkeys 

to electrocutaneous stimulation that activates only myelinated afferents are reduced after 

ipsilateral DC section [127]. In contrast, thermal stimulation of myelinated and 

unmyelinated nociceptors (using a 51°C contact thermode) generates intense optical 

activation of area 3a following interruption of the DC [132]. Without input to 3b/1 via the 

DC–ML path, the inhibition of area 3a that normally results from activation of 3b/1 neurons 

by myelinated afferent input is reduced/eliminated, leading to an enhanced response of area 

3a neurons to activity arising from unmyelinated nociceptors. Similarly, human patients with 

large spinal lesions that include the DCs report substantially increased sensitivity/

responsivity to noxious stimulation [82], and chronic pain from spinal cord injury is more 

prevalent among patients with substantial damage the DC-ML pathway [34].

Although the STT is the major ascending spinal source of nociceptive input to VPL, VMpo, 

and SI, pain sensibility can return following surgical interruption of the STT [130], and 

ischemic infarcts involving the STT can result in chronic pain [11]. There are routes of 

nociceptive spinothalamocortical projection other than the STT [126;136], and one or more 

of these sources may contribute to development of abnormal pain sensitivity over time 

following STT damage. Neuroplastic adaptations to interruption of STT projections to the 

thalamus and cortex can result in abnormal patterns of thalamocortical activity [97;129]. 

Especially relevant to the role(s) of SI cortex in pain perception is the possibility that 

chronic pain results from lesions along the course of the STT that disrupt the normal balance 

between the activities of cortical areas 3a and 3b/1. Because STT axons from cells in 

contralateral lamina I are dorsally shifted relative to axons originating from the deep dorsal 

horn at some levels of the spinal cord [2], anterolateral chordotomy at such a level for the 

relief of lower body pain could preferentially deafferent VPL and areas 3b/1, leaving intact 

nociceptive input from dorsally shifted STT axons to VMpo. Exaggerated responses in area 

3a and increased pain sensitivity would be expected from a selective deafferentation of 3b/1 

that spares the projection of nociceptive input to area 3a. Similarly, severe dysthesthesia has 

been reported following surgical attempts to interrupt the STT laterally in the midbrain [38] 

- an outcome perhaps due to the sparing of medially shifted projections to VMpo.
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A possible alternative to chordotomy for reducing nociceptive STT input to the thalamus 

involves the selective ablation of lamina I cells whose input derives from dermatomal 

regions in which chronic pain is experienced. Intrathecal injection of the neurotoxin SP-

saporin destroys lamina I cells containing NK-1 receptors for substance P released from the 

terminals of unmyelinated nociceptors. This procedure reduces nociceptive sensitivity of rats 

to thermal stimulation of unmyelinated nociceptors [125;135]. Intrathecal injection of SP-

saporin produces less rostral deafferentation than that produced by surgical section of the 

STT, and it would preferentially reduce C nociceptive input to area 3a.

Chronic pain can occur not only following interruption of the STT in the spinal cord or brain 

stem but also after ischemic or hemorrhagic lesions of the thalamus that involve VPL [64]. 

Although variability in the location and extent of lesions makes it difficult to identify which 

thalamic structures are necessarily involved and spared in patients with thalamic pain, an 

analysis of 4 patients with thalamic lesions and chronic pain has been instructive [63]. This 

study evaluated, with MRI imaging, whether damage to the ventral caudal nucleus (Vc; 

homologous in humans to VPL) or to VMpo, or both, was associated with chronic pain 

experienced by the patients. Although this analysis set out to evaluate the hypothesis that 

pain can be disinhibited by interruption of projections from VMpo to the insula and the 

anterior cingulate cortex [26], it turned out that Vc was damaged in each case with chronic 

pain, but VMpo was spared. Such observations are in accord with the possibility that chronic 

pain following thalamic lesions can occur as a result of deafferentation of areas 3b/1, if 

nociceptive input to area 3a is spared.

Repetitive transcranial magnetic stimulation (rTMS) or direct electrical stimulation of the 

cerebral cortex is increasingly utilized as a functional equivalent of a destructive cortical 

lesion in human patients [102]. Surprisingly, rTMS stimulation anterior to the central sulcus 

(over “motor cortex”) has been found to reduce chronic pain [75]. Evidence that “motor 

cortical” rTMS (mc rTMS) can inactivate area 3a includes: (i) mc rTMS significantly 

reduces the pain evoked in a normal subject by capsaicin – a selective activator of C-

nociceptors and of area 3a nociresponsive neurons [108;133]; (ii) mc rTMS preferentially 

reduces the pain associated with C nociception relative to first pain [85], and (iii) although 

downstream influences must be considered, the parameters of mc rTMS stimulation which 

most effectively reduce pain are those associated with suppression of cortical neuron 

responsivity [62]. Transcranial magnetic stimulation has been reported to be more effective 

for facial pain than for other body regions [70]. A possible reason for this preferential effect 

on facial pain is that in humans the sector of area 3a that represents the face lies close to the 

cortical surface and is more accessible to rTMS than are the remaining sectors of area 3a 

that occupy the fundus of the central sulcus.

8. Summary and functional implications of SI encoding of pain

Early neurophysiological evaluations of nociceptive projections to SI utilized fast onset, 

short duration stimuli that preferentially activate myelinated cutaneous nociceptors. 

Accordingly, the focus of such studies was 3b/1 cortex which receives myelinated afferent 

drive via VPL -- the principal thalamic target of ascending projections from spinal NS and 

WDR neurons. A projection which does not fit this pattern , from HPC lamina I cells to 
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thalamic nucleus VMpo [28], has been challenged on technical grounds [55;141]. Even 

though subsequent anatomical studies established the validity of a lamina I projection to 

VMpo [8;32;97], the classical view persists – i.e., that SI processing of pain occurs in areas 

3b and 1. Craig and Blomqvist (2002), for example, viewed the projection from VMpo to 

area 3a as a “corollary track” subserving sensorimotor integration.

Because activation in the region designated as “SI” in human imaging studies (i.e., area 3b 

and 1) can be poorly correlated with subjects’ reports of clinical/pathological pain [89], the 

focus of human imaging research has turned to cortical regions more readily imaged and 

believed responsible for the emotional/motivational accompaniments of pain. Cortical 

imaging studies, therefore, have emphasized: (i) affective processing by the insula, cingulate 

gyrus and prefrontal cortex; and (ii) nociceptive modulation via descending connections 

such “higher-order” cortical areas issue to nuclei in the rostral brainstem [49;115;147]. Pain 

commonly is viewed as established by processing in the spinal cord, shaped by the balance 

of excitatory and inhibitory influences from the brain stem. However, evidence implicates SI 

as a site for integration of input from different afferent sources, leading to perceptual 

recognition of the presence, location, intensity, submodality and quality of touch, innocuous 

thermal sensibility, and pain. An example of interactive processing within SI is provided by 

repetitive or long duration noxious stimulation, which securely drives area 3a neurons and 

suppresses neuronal activity in 3b/1. These findings and the sparse distribution of 

nociceptive neurons in 3b/1 help explain the common failure of human imaging studies to 

detect a robust or reliable response of 3b/1 to painful stimulation or during chronic pain 

[4;58].

Cutaneous first pain, as coded by neurons in 3b/1 supports recognition of the location and 

intensity of stimulation, providing an early warning to assist reflexive actions with prompt 

attention to the stimulus and initiation of a conscious reaction. In contrast, the second/slow/

burning pain signaled by area 3a neurons is better suited to monitor the slow progression of 

nociceptive stimulus intensity which, in the case of nociceptive heat, accompanies protein 

denaturation and tissue damage. Stimulus location and the precise time of application are not 

well specified by the activity of unmyelinated nociceptors that signal tissue damage and 

release of inflammatory mediators. A notable feature of the projection system that conveys 

information to the CNS about the status of the tissues innervated by C-fibers is the 

perceptual sensitization that accompanies long-duration or repetitive nociceptive stimulation 

[121]. This feature makes the nociceptive projection to area 3a especially relevant to many 

forms of clinical/pathological pain. The high relevance of C-nociceptor input to clinical pain 

is consistent with the powerful and selective effects of morphine on input to the CNS from 

unmyelinated nociceptors [25].

It will be important to utilize different forms and paradigms of nociceptive stimulation in 

order to appreciate the distinctive functions of nociresponsive neurons in areas 3a and 3b/

1and understand the importance of interactions between these neuronal populations. Area 3a 

long has been characterized as a region devoted to processing of proprioceptive input. If, as 

the authors predict, area 3a contributes to the processing of pain referred to deep somatic 

tissues, stimuli that trigger deep muscular pain and fatigue should activate area 3a neurons. 

Other predictions about the functional characteristics of area 3a neurons are provided by the 
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unique sensitivities of the lamina I HPC neurons that project to thalamic nucleus VMpo. 

This set of dorsal horn neurons responds to noxious heat, noxious cold and skin pinch [31]. 

Also, sensitivity to puretic stimulation has been demonstrated for HPC lamina I cells [1]. 

Appreciation of the cortical processing of aversive submodalities will benefit from imaging 

and neurophysiological recordings that include observations of the responsivity of areas 3a 

and 3b/1 neurons to different forms of deep and superficial stimulation.

Acknowledgments

This work was supported, in part, by NIH grants 1-R21-NS072811-01A1, ARO W911NF-08-1-0308 and R21 
NS078619-01A1.

References

1. Andrew D, Craig AD. Spinothalamic lamina I neurons selectively sensitive to histamine: a central 
neural pathway for itch. Nat Neurosci. 2001; 4:72–77. [PubMed: 11135647] 

2. Apkarian AV, Hodge CJ. Primate spinothalamic pathways: II. The cells of origin of the dorsolateral 
and ventral spinothalamic pathways. J Comp Neurol. 1989; 288:474–492. [PubMed: 2794144] 

3. Apkarian AV, Stea RA, Bolanowski SJ. Heat-induced pain diminishes vibrotactile perception: a 
touch gate. Somatosens Mot Res. 1994; 11:259–267. [PubMed: 7887057] 

4. Apkarian AV, Stea RA, Manglos SH, Szeverenyi NM, King RB, Thomas FD. Persistent pain 
inhibits contralateral somatosensory cortical activity in humans. Neurosci Lett. 1992; 140:141–147. 
[PubMed: 1501770] 

5. Ayesh EE, Jensen TS, Svensson P. Hypersensitivity to mechanical and intra-articular electrical 
stimuli in persons with painful temporomandibular joints. J Dent Res. 2007; 86:1187–1192. 
[PubMed: 18037653] 

6. Basbaum AI. Distinct neurochemical features of acute and persistent pain. Proc Natl Acad Sci U S 
A. 1999; 96:7739–7743. [PubMed: 10393891] 

7. Baumgartner U, Tiede W, Treede RD, Craig AD. Laser-evoked potentials are graded and 
somatotopically organized anteroposteriorly in the operculoinsular cortex of anesthetized monkeys. 
J Neurophysiol. 2006; 96:2802–2808. [PubMed: 16899640] 

8. Beggs J, Jordan S, Ericson AC, Blomqvist A, Craig AD. Synaptology of trigemino- and 
spinothalamic lamina I terminations in the posterior ventral medial nucleus of the macaque. J Comp 
Neurol. 2003; 459:334–354. [PubMed: 12687703] 

9. Bender MB, Stacy C, Cohen J. Agraphesthesia. A disorder of directional cutaneous kinesthesia or a 
disorientation in cutaneous space. J Neurol Sci. 1982; 53:531–555. [PubMed: 6279783] 

10. Berkley KJ. Spatial relationships between the terminations of somatic sensory and motor pathways 
in the rostral brainstem of cats and monkeys. I. Ascending somatic sensory inputs to lateral 
diencephalon. J Comp Neurol. 1980; 193:283–317. [PubMed: 7430431] 

11. Boivie J, Leijon G, Johansson I. Central post-stroke pain--a study of the mechanisms through 
analyses of the sensory abnormalities. Pain. 1989; 37:173–185. [PubMed: 2748190] 

12. Bornhovd K, Quante M, Glauche V, Bromm B, Weiller C, Buchel C. Painful stimuli evoke 
different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory 
cortex: a single-trial fMRI study. Brain. 2002; 125:1326–1336. [PubMed: 12023321] 

13. Breuer AC, Cuervo H, Selkoe DJ. Hyperpathia and sensory level due to parietal lobe arteriovenous 
malformation. Arch Neurol. 1981; 38:722–724. [PubMed: 7305704] 

14. Bromm B, Treede RD. Nerve fibre discharges, cerebral potentials and sensations induced by CO2 
laser stimulation. Hum Neurobiol. 1984; 3:33–40. [PubMed: 6330009] 

15. Burton H, Fabri M. Ipsilateral intracortical connections of physiologically defined cutaneous 
representations in areas 3b and 1 of macaque monkeys: projections in the vicinity of the central 
sulcus. J Comp Neurol. 1995; 355:508–538. [PubMed: 7636029] 

Vierck et al. Page 13

Pain. Author manuscript; available in PMC 2015 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



16. Bushnell MC, Duncan GH, Hofbauer RK, Ha B, Chen JI, Carrier B. Pain perception: is there a role 
for primary somatosensory cortex? Proc Natl Acad Sci U S A. 1999; 96:7705–7709. [PubMed: 
10393884] 

17. Casey KL, Minoshima S, Berger KL, Koeppe RA, Morrow TJ, Frey KA. Positron emission 
tomographic analysis of cerebral structures activated specifically by repetitive noxious heat 
stimuli. J Neurophysiol. 1994; 71:802–807. [PubMed: 8176441] 

18. Chen LM, Friedman RM, Roe AW. Area-specific representation of mechanical nociceptive stimuli 
within SI cortex of squirrel monkeys. Pain. 2009; 141:258–268. [PubMed: 19136211] 

19. Chiu JS, Tommerdahl M, Whitsel BL, Favorov OV. Stimulus-dependent spatial patterns of 
response in SI cortex. BMC Neurosci. 2005; 6:47. [PubMed: 16029498] 

20. Chudler EH, Anton F, Dubner R, Kenshalo DR. Responses of nociceptive SI neurons in monkeys 
and pain sensation in humans elicited by noxious thermal stimulation: effect of interstimulus 
interval. J Neuroophysiol. 1990; 63:569.

21. Coghill RC, Mayer DJ, Price DD. Wide dynamic range but not nociceptive-specific neurons 
encode multidimensional features of prolonged repetitive heat pain. J Neurophysiol. 1993; 
69:703–716. [PubMed: 8385190] 

22. Coghill RC, Sang CN, Maisog JM, Iadarola MJ. Pain intensity processing within the human brain: 
a bilateral, distributed mechanism. J Neurophysiol. 1999; 82:1934–1943. [PubMed: 10515983] 

23. Coghill RC, Talbot JD, Evans AC, Meyer E, Gjedde A, Bushnell MC, Duncan GH. Distributed 
processing of pain and vibration by the human brain. J Neurosci. 1994; 14:4095–4108. [PubMed: 
8027764] 

24. Cohen RH, Vierck CJ Jr. Relationships between touch sensations and estimated population 
responses of peripheral afferent mechanoreceptors. Exp Brain Res. 1993; 94:120–130. [PubMed: 
8335067] 

25. Cooper BY, Vierck CJ Jr. Yeomans DC. Selective reduction of second pain sensations by systemic 
morphine in humans. Pain. 1986; 24:93–116. [PubMed: 3951883] 

26. Craig AD. A new version of the thalamic disinhibition hypothesis of central pain. Pain Forum. 
1998; 7:1–14.

27. Craig AD, Andrew D. Responses of spinothalamic lamina I neurons to repeated brief contact heat 
stimulation in the cat. J Neurophysiol. 2002; 87:1902–1914. [PubMed: 11929910] 

28. Craig AD, Blomqvist A. Is there a specific lamina I spinothalamocortical pathway for pain and 
temperature sensations in primates? J Pain. 2002; 3:95–101. [PubMed: 14622793] 

29. Craig AD, Bushnell MC, Zhang ET, Blomqvist A. A thalamic nucleus specific for pain and 
temperature sensation. Nature. 1994; 372:770–773. [PubMed: 7695716] 

30. Craig AD, Kniffki KD. Spinothalamic lumbosacral lamina I cells responsive to skin and muscle 
stimulation in the cat. J Physiol. 1985; 365:197–221. [PubMed: 4032311] 

31. Craig AD, Krout K, Andrew D. Quantitative response characteristics of thermoreceptive and 
nociceptive lamina I spinothalamic neurons in the cat. J Neurophysiol. 2001; 86:1459–1480. 
[PubMed: 11535691] 

32. Craig AD, Zhang ET. Retrograde analyses of spinothalamic projections in the macaque monkey: 
input to posterolateral thalamus. J Comp Neurol. 2006; 499:953–964. [PubMed: 17072831] 

33. Craig A. Pain mechanisms: labeled lines versus convergence in central processing. Annual Review 
of Neuroscience. 2003; 26:1–30.

34. Cruz-Almeida Y, Felix ER, Martinez-Arizala A, Widerstrom-Noga EG. Decreased Spinothalamic 
and Dorsal Column-Medial Lemniscus-Mediated Function Is Associated with Neuropathic Pain 
after Spinal Cord Injury. J Neurotrauma. 2012

35. Davidoff RA. The dorsal columns. Neurology. 1989; 39:1377–1385. [PubMed: 2552351] 

36. de Gutierrez Mahoney C. The treatment of painful hantom limb by removal of post-central cortex. 
J Neurosurg. 1944; 1:156–162.

37. Derbyshire SW, Jones AK. Cerebral responses to a continual tonic pain stimulus measured using 
positron emission tomography. Pain. 1998; 76:127–135. [PubMed: 9696465] 

38. Drake C, McKenzie K. Mesencephalic tractotomy for pain: experience with six cases. J Neurosurg. 
1953; 10:457–462. [PubMed: 13097205] 

Vierck et al. Page 14

Pain. Author manuscript; available in PMC 2015 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



39. Dube AA, Duquette M, Roy M, Lepore F, Duncan G, Rainville P. Brain activity associated with 
the electrodermal reactivity to acute heat pain. Neuroimage. 2009; 45:169–180. [PubMed: 
19027077] 

40. Eliav E, Gracely RH. Sensory changes in the territory of the lingual and inferior alveolar nerves 
following lower third molar extraction. Pain. 1998; 77:191–199. [PubMed: 9766837] 

41. Erickson T, Bleckwenn W, Woolsey C. Observations on the post central gyrus in relation to pain. 
Trans Am Neurol Assoc. 1952; 56:57–59. [PubMed: 13038792] 

42. Favorov OV, Diamond ME, Whitsel BL. Evidence for a mosaic representation of the body surface 
in area 3b of the somatic cortex of cat. Proc Natl Acad Sci U S A. 1987; 84:6606–6610. [PubMed: 
3476963] 

43. Geyer S, Schleicher A, Zilles K. Areas 3a, 3b, and 1 of human primary somatosensory cortex. 
Neuroimage. 1999; 10:63–83. [PubMed: 10385582] 

44. Geyer S, Schormann T, Mohlberg H, Zilles K. Areas 3a, 3b, and 1 of human primary 
somatosensory cortex. Part 2. Spatial normalization to standard anatomical space. Neuroimage. 
2000; 11:684–696. [PubMed: 10860796] 

45. Gilron I, Tu D, Holden RR. Sensory and Affective Pain Descriptors Respond Differentially to 
Pharmacological Interventions in Neuropathic Conditions. Clin J Pain. 2012

46. Hamby WB. Reversible central pain. Arch Neurol. 1961; 5:528–532. [PubMed: 13904081] 

47. Hanai F. Effect of electrical stimulation of peripheral nerves on neuropathic pain. Spine (Phila Pa 
1976 ). 2000; 25:1886–1892. [PubMed: 10908930] 

48. Head H, Holves G. Sensory disturbances from cerebral lesions. Brain. 1911; 34:102–254.

49. Heinricher MM, Tavares I, Leith JL, Lumb BM. Descending control of nociception: Specificity, 
recruitment and plasticity. Brain Res Rev. 2009; 60:214–225. [PubMed: 19146877] 

50. Hirsch JA, Gilbert CD. Synaptic physiology of horizontal connections in the cat's visual cortex. J 
Neurosci. 1991; 11:1800–1809. [PubMed: 1675266] 

51. Hodge CJ Jr. Apkarian AV. The spinothalamic tract. Crit Rev Neurobiol. 1990; 5:363–397. 
[PubMed: 2204486] 

52. Horrax G. Experiences with cortical excisions for the relief of intractable pain in the extremities. 
Surgery. 1946; 20:593–602. [PubMed: 21003244] 

53. Huffman KJ, Krubitzer L. Area 3a: topographic organization and cortical connections in marmoset 
monkeys. Cereb Cortex. 2001; 11:849–867. [PubMed: 11532890] 

54. Jones AK, Brown WD, Friston KJ, Qi LY, Frackowiak RS. Cortical and subcortical localization of 
response to pain in man using positron emission tomography. Proc Biol Sci. 1991; 244:39–44. 
[PubMed: 1677194] 

55. Jones EG. A pain in the thalamus. J Pain. 2002; 3:102–104. [PubMed: 14622794] 

56. Jones EG, Porter R. What is area 3a? Brain Res. 1980; 203:1–43. [PubMed: 6994855] 

57. Kenshalo DR, Chudler EH, Anton F, Dubner R. SI nociceptive neurons participate in the encoding 
process by which monkeys perceive the intensity of noxious thermal stimulation. Brain Res. 1988; 
454:378–382. [PubMed: 3409021] 

58. Kenshalo, D.; Willis, W. The role of the cerebral cortex in pain sensation.. In: Peters, A., editor. 
Cerebral Cortex. Plenum; New York: 1991. p. 153-212.

59. Kenshalo DR, Iwata K, Sholas M, Thomas DA. Response properties and organization of 
nociceptive neurons in area 1 of monkey primary somatosensory cortex. J Neurophysiol. 2000; 
84:719–729. [PubMed: 10938299] 

60. Kenshalo D, Iwata K, Sholas M, Thomas D. Response properties and organization of nociceptive 
neurons in area 1 of monkey primary somatosensory cortex. J Neurophysiol. 2000; 84:719–729. 
[PubMed: 10938299] 

61. Kenshalo, DJ.; Willis, WJ. The role of the cerebral cortex in pain sensation.. In: Peters, A., editor. 
Cerebral Cortex. Plenum; New York: 1991. p. 153-212.

62. Khedr E, Koth H, Kamel N, Ahmed M, Sadek R, Rothwell J. Long-lasting antalgic effects of daily 
sessions of repetitive transcranial magnetic stimulation in central and peripheral neuropathic pain. 
J Neurol Neurosurg Psychiat. 2005; 76:833–838. [PubMed: 15897507] 

Vierck et al. Page 15

Pain. Author manuscript; available in PMC 2015 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



63. Kim JH, Greenspan JD, Coghill RC, Ohara S, Lenz FA. Lesions limited to the human thalamic 
principal somatosensory nucleus (ventral caudal) are associated with loss of cold sensations and 
central pain. J Neurosci. 2007; 27:4995–5004. [PubMed: 17475808] 

64. Klit H, Finnerup NB, Jensen TS. Central post-stroke pain: clinical characteristics, pathophysiology, 
and management. Lancet Neurol. 2009; 8:857–868. [PubMed: 19679277] 

65. Koerber HR, McIlwrath SL, Lawson JJ, Malin SA, Anderson CE, Jankowski MP, Davis BM. 
Cutaneous C-polymodal fibers lacking TRPV1 are sensitized to heat following inflammation, but 
fail to drive heat hyperalgesia in the absence of TPV1 containing C-heat fibers. Mol Pain. 2010; 
6:58. [PubMed: 20858240] 

66. Kohn A, Pinheiro A, Tommerdahl MA, Whitsel BL. Optical imaging in vitro provides evidence for 
the minicolumnar nature of cortical response. Neuroreport. 1997; 8:3513–3518. [PubMed: 
9427317] 

67. Le BD, Chitour D. Do convergent neurones in the spinal dorsal horn discriminate nociceptive from 
non-nociceptive information? Pain. 1983; 17:1–19. [PubMed: 6314228] 

68. Lee KH, Chung JM, Willis WD Jr. Inhibition of primate spinothalamic tract cells by TENS. J 
Neurosurg. 1985; 62:276–287. [PubMed: 3871474] 

69. Lee MC, Zambreanu L, Menon DK, Tracey I. Identifying brain activity specifically related to the 
maintenance and perceptual consequence of central sensitization in humans. J Neurosci. 2008; 
28:11642–11649. [PubMed: 18987200] 

70. Lefaucheur JP, Drouot X, Menard-Lefaucheur I, Zerah F, Bendib B, Cesaro P, Keravel Y, Nguyen 
JP. Neurogenic pain relief by repetitive transcranial magnetic cortical stimulation depends on the 
origin and the site of pain. J Neurol Neurosurg Psychiatry. 2004; 75:612–616. [PubMed: 
15026508] 

71. Legrain V, Iannetti GD, Plaghki L, Mouraux A. The pain matrix reloaded: a salience detection 
system for the body. Prog Neurobiol. 2011; 93:111–124. [PubMed: 21040755] 

72. Lende RA, Kirsch WM, Druckman R. Relief of facial pain after combined removal of precentral 
and postcentral cortex. J Neurosurg. 1971; 34:537–543. [PubMed: 5554359] 

73. Lewin W, Phillips C. Observations on partial removal of the post-central gyrus for pain. J Neurol 
Neurosurg Psychiatry. 1952; 15:143–147. [PubMed: 14955686] 

74. Li JL, Li YQ, Nomura S, Kaneko T, Mizuno N. Protein kinase C gamma-like immunoreactivity in 
the substantia gelatinosa of the medullary dorsal horn of the rat. Neurosci Lett. 2001; 311:185–
188. [PubMed: 11578825] 

75. Lima MC, Fregni F. Motor cortex stimulation for chronic pain: systematic review and meta-
analysis of the literature. Neurology. 2008; 70:2329–2337. [PubMed: 18541887] 

76. Liu XG, Morton CR, Azkue JJ, Zimmermann M, Sandkuhler J. Long-term depression of C-fibre-
evoked spinal field potentials by stimulation of primary afferent A delta-fibres in the adult rat. Eur 
J Neurosci. 1998; 10:3069–3075. [PubMed: 9786201] 

77. Lovick TA. Integrated activity of cardiovascular and pain regulatory systems: role in adaptive 
behavioural responses. Prog Neurobiol. 1993; 40:631–644. [PubMed: 8484005] 

78. Lu Y, Perl ER. Modular organization of excitatory circuits between neurons of the spinal 
superficial dorsal horn (laminae I and II). J Neurosci. 2005; 25:3900–3907. [PubMed: 15829642] 

79. Maixner W, Dubner R, Bushnell MC, Kenshalo DR Jr. Oliveras JL. Wide-dynamic-range dorsal 
horn neurons participate in the encoding process by which monkeys perceive the intensity of 
noxious heat stimuli. Brain Res. 1986; 374:385–388. [PubMed: 3719344] 

80. Moulton EA, Keaser ML, Gullapalli RP, Greenspan JD. Regional intensive and temporal patterns 
of functional MRI activation distinguishing noxious and innocuous contact heat. J Neurophysiol. 
2005; 93:2183–2193. [PubMed: 15601733] 

81. Mouraux A, Guerit JM, Plaghki L. Non-phase locked electroencephalogram (EEG) responses to 
CO2 laser skin stimulations may reflect central interactions between A partial partial differential- 
and C-fibre afferent volleys. Clin Neurophysiol. 2003; 114:710–722. [PubMed: 12686279] 

82. Nathan PW, Smith MC, Cook AW. Sensory effects in man of lesions of the posterior columns and 
of some other afferent pathways. Brain. 1986; 109(Pt 5):1003–1041. [PubMed: 3096488] 

83. Nielsen J, rendt-Nielsen L. The influence of rate of temperature change and peak stimulus duration 
on pain intensity and quality. Somatosens Mot Res. 1998; 15:220–229. [PubMed: 9874521] 

Vierck et al. Page 16

Pain. Author manuscript; available in PMC 2015 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



84. Oshiro Y, Quevedo AS, McHaffie JG, Kraft RA, Coghill RC. Brain mechanisms supporting 
discrimination of sensory features of pain: a new model. J Neurosci. 2009; 29:14924–14931. 
[PubMed: 19940188] 

85. Passard A, Attal N, Benadhira R, Brasseur L, Saba G, Sichere P, Perrot S, Januel D, Bouhassira D. 
Effects of unilateral repetitive transcranial magnetic stimulation of the motor cortex on chronic 
widespread pain in fibromyalgia. Brain. 2007; 130:2661–2670. [PubMed: 17872930] 

86. Peele T. Acute and chronic parietal lobe ablations in monkeys. J Neurophysiol. 1944; 7:269–286.

87. Perl E. Pain and nociception. Handboook of Physiology. The Nervous System. Sensory Processes 
American Physiological Society. 1984:915–975.

88. Peyron R, Garcia-Larrea L, Gregoire MC, Costes N, Convers P, Lavenne F, Mauguiere F, Michel 
D, Laurent B. Haemodynamic brain responses to acute pain in humans: sensory and attentional 
networks. Brain. 1999; 122(Pt 9):1765–1780. [PubMed: 10468515] 

89. Peyron R, Laurent B, Garcia-Larrea L. Functional imaging of brain responses to pain. A review 
and meta-analysis (2000). Neurophysiol Clin. 2000; 30:263–288. [PubMed: 11126640] 

90. Ploner M, Freund HJ, Schnitzler A. Pain affect without pain sensation in a patient with a 
postcentral lesion. Pain. 1999; 81:211–214. [PubMed: 10353510] 

91. Ploner M, Gross J, Timmermann L, Schnitzler A. Cortical representation of first and second pain 
sensation in humans. Proc Natl Acad Sci U S A. 2002; 99:12444–12448. [PubMed: 12209003] 

92. Price DD. Psychological and neural mechanisms of the affective dimension of pain. Science. 2000; 
288:1769–1772. [PubMed: 10846154] 

93. Price DD, Hu JW, Dubner R, Gracely RH. Peripheral suppression of first pain and central 
summation of second pain evoked by noxious heat pulses. Pain. 1977; 3:57–68. [PubMed: 876667] 

94. Qiu Y, Noguchi Y, Honda M, Nakata H, Tamura Y, Tanaka S, Sadato N, Wang X, Inui K, Kakigi 
R. Brain processing of the signals ascending through unmyelinated C fibers in humans: an event-
related functional magnetic resonance imaging study. Cereb Cortex. 2006; 16:1289–1295. 
[PubMed: 16280463] 

95. Quevedo AS, Coghill RC. Filling-in, spatial summation, and radiation of pain: evidence for a 
neural population code in the nociceptive system. J Neurophysiol. 2009; 102:3544–3553. 
[PubMed: 19759320] 

96. Rademacher J, Caviness VS Jr. Steinmetz H, Galaburda AM. Topographical variation of the 
human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb 
Cortex. 1993; 3:313–329. [PubMed: 8400809] 

97. Ralston HJ III. Pain and the primate thalamus. Prog Brain Res. 2005; 149:1–10. [PubMed: 
16226572] 

98. Rausell E, Jones EG. Chemically distinct compartments of the thalamic VPM nucleus in monkeys 
relay principal and spinal trigeminal pathways to different layers of the somatosensory cortex. J 
Neurosci. 1991; 11:226–237. [PubMed: 1702464] 

99. Reed JL, Pouget P, Qi HX, Zhou Z, Bernard MR, Burish MJ, Haitas J, Bonds AB, Kaas JH. 
Widespread spatial integration in primary somatosensory cortex. Proc Natl Acad Sci U S A. 2008; 
105:10233–10237. [PubMed: 18632579] 

100. Reed JL, Qi HX, Pouget P, Burish MJ, Bonds AB, Kaas JH. Modular processing in the hand 
representation of primate primary somatosensory cortex coexists with widespread activation. J 
Neurophysiol. 2010; 104:3136–3145. [PubMed: 20926605] 

101. Reed JL, Qi HX, Zhou Z, Bernard MR, Burish MJ, Bonds AB, Kaas JH. Response properties of 
neurons in primary somatosensory cortex of owl monkeys reflect widespread spatiotemporal 
integration. J Neurophysiol. 2010; 103:2139–2157. [PubMed: 20164400] 

102. Ridding MC, Rothwell JC. Is there a future for therapeutic use of transcranial magnetic 
stimulation? Nat Rev Neurosci. 2007; 8:559–567. [PubMed: 17565358] 

103. Simons SB, Chiu J, Favorov OV, Whitsel BL, Tommerdahl M. Duration-dependent response of 
SI to vibrotactile stimulation in squirrel monkey. J Neurophysiol. 2007; 97:2121–2129. 
[PubMed: 17035362] 

104. Sjolund BH. Peripheral nerve stimulation suppression of C-fiber-evoked flexion reflex in rats. 
Part 1: Parameters of continuous stimulation. J Neurosurg. 1985; 63:612–616. [PubMed: 
3875698] 

Vierck et al. Page 17

Pain. Author manuscript; available in PMC 2015 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



105. Stone T. Phantom limb pain and central pain; relief by ablation of a portion of posterior central 
cerebral convolution. Arch Neurol Psychiat. 1950; 63:739–748.

106. Sugar O, Bucy P. Postherpetic trigeminal neuralgia. Arch Neurol Neurosurg Psychiat. 1951; 
63:739–748.

107. Svensson P, Graven-Nielsen T, rendt-Nielsen L. Mechanical hyperesthesia of human facial skin 
induced by tonic painful stimulation of jaw muscles. Pain. 1998; 74:93–100. [PubMed: 9514565] 

108. Tamura Y, Okabe S, Ohnishi T, Saito N, Arai N, Mochio S, Inoue K, Ugawa Y. Effects of 1-Hz 
repetitive transcranial magnetic stimulation on acute pain induced by capsaicin. Pain. 2004; 
107:107–115. [PubMed: 14715396] 

109. Timmermann L, Ploner M, Haucke K, Schmitz F, Baltissen R, Schnitzler A. Differential coding 
of pain intensity in the human primary and secondary somatosensory cortex. J Neurophysiol. 
2001; 86:1499–1503. [PubMed: 11535693] 

110. Todd, A.; Koerber, H. Neuroanatomical substrates of spinal nociception.. In: McMahan, S.; 
Koltzenburgh, M., editors. Wall and Melzzck's Textbook of Pain. Elsevier; Churchill Livingston; 
London: 2005. p. 73-96.

111. Tommerdahl M, Favorov O, Whitsel B. Dynamic representations of the somatosensory cortex. 
Neurosci Biobehav Rev. 2010; 34:160–170. [PubMed: 19732790] 

112. Tommerdahl M, Delemos KA, Favorov OV, Metz CB, Vierck CJ Jr. Whitsel BL. Response of 
anterior parietal cortex to different modes of same-site skin stimulation. J Neurophysiol. 1998; 
80:3272–3283. [PubMed: 9862921] 

113. Tommerdahl M, Delemos KA, Vierck CJ Jr. Favorov OV, Whitsel BL. Anterior parietal cortical 
response to tactile and skin-heating stimuli applied to the same skin site. J Neurophysiol. 1996; 
75:2662–2670. [PubMed: 8793772] 

114. Tommerdahl M, Favorov O, Whitsel BL, Nakhle B, Gonchar YA. Minicolumnar activation 
patterns in cat and monkey SI cortex. Cereb Cortex. 1993; 3:399–411. [PubMed: 8260808] 

115. Tracey I, Mantyh PW. The cerebral signature for pain perception and its modulation. Neuron. 
2007; 55:377–391. [PubMed: 17678852] 

116. Tran TD, Matre D, Casey KL. An inhibitory interaction of human cortical responses to stimuli 
preferentially exciting Adelta or C fibers. Neuroscience. 2008; 152:798–808. [PubMed: 
18308475] 

117. Veldhuijzen DS, Greenspan JD, Kim JH, Lenz FA. Altered pain and thermal sensation in subjects 
with isolated parietal and insular cortical lesions. Eur J Pain. 2010; 14:535–11. [PubMed: 
19939715] 

118. Veldhuijzen DS, Nemenov MI, Keaser M, Zhuo J, Gullapalli RP, Greenspan JD. Differential 
brain activation associated with laser-evoked burning and pricking pain: An event-related fMRI 
study. Pain. 2009; 141:104–113. [PubMed: 19058914] 

119. Vierck CJ Jr. Tactile movement detection and discrimination following dorsal column lesions in 
monkeys. Exp Brain Res. 1974; 20:331–346. [PubMed: 4426357] 

120. Vierck CJ Jr. Impaired detection of repetitive stimulation following interruption of the dorsal 
spinal column in primates. Somatosens Mot Res. 1998; 15:157–163. [PubMed: 9730116] 

121. Vierck CJ Jr. Cannon RL, Fry G, Maixner W, Whitsel BL. Characteristics of temporal summation 
of second pain sensations elicited by brief contact of glabrous skin by a preheated thermode. J 
Neurophysiol. 1997; 78:992–1002. [PubMed: 9307129] 

122. Vierck CJ Jr. Cohen RH, Cooper BY. Effects of spinal tractotomy on spatial sequence recognition 
in macaques. J Neurosci. 1983; 3:280–290. [PubMed: 6822864] 

123. Vierck CJ Jr. Cohen RH, Cooper BY. Effects of spinal lesions on temporal resolution of 
cutaneous sensations. Somatosens Res. 1985; 3:45–56. [PubMed: 4070892] 

124. Vierck CJ Jr. Favorov O, Whitsel BL. Neural mechanisms of absolute tactile localization in 
monkeys. Somatosens Mot Res. 1988; 6:41–61. [PubMed: 3242343] 

125. Vierck CJ Jr. Kline RH, Wiley RG. Intrathecal substance p-saporin attenuates operant escape 
from nociceptive thermal stimuli. Neuroscience. 2003; 119:223–232. [PubMed: 12763083] 

126. Vierck CJ Jr. Luck MM. Loss and recovery of reactivity to noxious stimuli in monkeys with 
primary spinothalamic cordotomies, followed by secondary and tertiary lesions of other cord 
sectors. Brain. 1979; 102:233–248. [PubMed: 110388] 

Vierck et al. Page 18

Pain. Author manuscript; available in PMC 2015 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



127. Vierck C, Hamilton D, Thornby J. Pain reactivity of monkeys after lesions to the dorsal and 
lateral columns of the spinal cord. Exper Brain Res. 1971; 13:140–158. [PubMed: 4998892] 

128. Vincler M, Maixner W, Vierck CJ Jr. Light AR. Effects of systemic morphine on escape latency 
and a hindlimb reflex response in the rat. J Pain. 2001; 2:83–90. [PubMed: 14622829] 

129. Weng HR, Lee JI, Lenz FA, Schwartz A, Vierck C, Rowland L, Dougherty PM. Functional 
plasticity in primate somatosensory thalamus following chronic lesion of the ventral lateral spinal 
cord. Neuroscience. 2000; 101:393–401. [PubMed: 11074162] 

130. White, J.; Sweet, W. Pain and the Neurosurgeon: A Forty-year Experience. Charles C Thomas; 
Springfield: 1969. 

131. White LE, Andrews TJ, Hulette C, Richards A, Groelle M, Paydarfar J, Purves D. Structure of the 
human sensorimotor system. I: Morphology and cytoarchitecture of the central sulcus. Cereb 
Cortex. 1997; 7:18–30. [PubMed: 9023429] 

132. Whitsel, B.; Tommerdahl, M.; Kohn, A.; Vierck, C.; Favorov, O. The SI response to noxious skin 
heating as revealed by optical intrinsic signal (OIS) imaging.. In: Bushnell, M.; Casey, K., 
editors. Pain Imaging. IASP Press; Seattle: 2000. 

133. Whitsel BL, Favorov OV, Li Y, Lee J, Quibrera PM, Tommerdahl M. Nociceptive afferent 
activity alters the SI RA neuron response to mechanical skin stimulation. Cereb Cortex. 2010; 
20:2900–2915. [PubMed: 20308203] 

134. Whitsel BL, Favorov OV, Li Y, Quibrera M, Tommerdahl M. Area 3a neuron response to skin 
nociceptor afferent drive. Cereb Cortex. 2009; 19:349–366. [PubMed: 18534992] 

135. Wiley RG, Kline RH, Vierck CJ Jr. Anti-nociceptive effects of selectively destroying substance P 
receptor-expressing dorsal horn neurons using [Sar9,Met(O2)11]-substance P-saporin: behavioral 
and anatomical analyses. Neuroscience. 2007; 146:1333–1345. [PubMed: 17418497] 

136. Willis WD, Kenshalo DR Jr. Leonard RB. The cells of origin of the primate spinothalamic tract. J 
Comp Neurol. 1979; 188:543–573. [PubMed: 118192] 

137. Willis WD, Leonard RB, Kenshalo DR Jr. Spinothalamic tract neurons in the substantia 
gelatinosa. Science. 1978; 202:986–988. [PubMed: 102034] 

138. Willis WD, Trevino DL, Coulter JD, Maunz RA. Responses of primate spinothalamic tract 
neurons to natural stimulation of hindlimb. J Neurophysiol. 1974; 37:358–372. [PubMed: 
4205568] 

139. Willis WD, Westlund KN. Neuroanatomy of the pain system and of the pathways that modulate 
pain. J Clin Neurophysiol. 1997; 14:2–31. [PubMed: 9013357] 

140. Willis WD Jr. Zhang X, Honda CN, Giesler GJ Jr. Projections from the marginal zone and deep 
dorsal horn to the ventrobasal nuclei of the primate thalamus. Pain. 2001; 92:267–276. [PubMed: 
11323148] 

141. Willis WD Jr. Zhang X, Honda CN, Giesler GJ Jr. A critical review of the role of the proposed 
VMpo nucleus in pain. J Pain. 2002; 3:79–94. [PubMed: 14622792] 

142. Willis, W.; Coggeshall, R. Sensory mechanisms of the spinal cord. Plenum Press; New York: 
1991. 

143. Woolsey C, Erickson T, Gilson W. Localization in somatic sensory and motor areas of human 
cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. 
J Neurosurg. 1979; 51:476–506. [PubMed: 479934] 

144. Yarnitsky D, Ochoa JL. Release of cold-induced burning pain by block of cold-specific afferent 
input. Brain. 1990; 113(Pt 4):893–902. [PubMed: 2397391] 

145. Yokota T. Thalamic mechanism of pain: Shell theory of thalamic nociception. Jap J Physiol. 
1989; 39:335–348. [PubMed: 2507813] 

146. Zheng J, Lu Y, Perl ER. Inhibitory neurones of the spinal substantia gelatinosa mediate 
interaction of signals from primary afferents. J Physiol. 2010; 588:2065–2075. [PubMed: 
20403977] 

147. Zhuo M. Cortical excitation and chronic pain. Trends Neurosci. 2008; 31:199–207. [PubMed: 
18329111] 

Vierck et al. Page 19

Pain. Author manuscript; available in PMC 2015 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Neuroanatomical projection paths that convey nociceptive afferent drive from skin 
nociceptors to contralateral primary somatosensory cortex (SI)
Shown in red – projection from unmyelinated C nociceptors to: (1) HPC cells in spinal cord 

lamina I: (2) neurons in the posterior part of ventromedial nucleus of thalamus (VMpo): and 

(3) area 3a neurons in SI cortex. Shown in blue - projection from myelinated Aδ-nociceptors 

to: (1) NS neurons in lamina I and WDR neurons in lamina V of the spinal cord dorsal horn; 

(2) neurons in the ventral posterior lateral nucleus of thalamus (VPL); and (3) SI neurons in 

3b/1. Inset at top-left shows: (1) cytoarchitectonic areas which comprise SI (3a, 3b, 1, and 

2); and (2) the location of each area in the postcentral gyrus in human cerebral cortex; CS = 

central sulcus; cytoarchitectonic area 4 = primary motor cortex. Note the position of area 3a 

(ca. 2cm below the cortical surface) at the fundus of the CS, as well as its narrow (<6mm) 

rostro-caudal extent relative to that of either area 3b or area 1.
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Figure 2. Optical response of SI to thermoneutral vs. thermonoxious tactile stimulation
A: Low and higher-magnification views of somatosensory cortex in the left hemisphere of a 

squirrel monkey. Green rectangles in the higher-magnification view indicate regions of 

interest (ROI) in areas 3a and 3b/1. B: Site on contralateral hand exposed to skin flutter 

stimulation delivered via a 5mm-diameter contactor with precise control of temperature. The 

parameters of the flutter stimulus were: amplitude – 200μm; frequency – 25Hz; duration – 

5s, probe temperature – either 38°C (neutral) or 52°C (noxious). C: Series of images 

showing the temporal development of the stimulus-evoked SI optical intrinsic signal. The 

optical response to flutter stimulation with a probe temperature of 38°C mainly occupies 

3b/1 (top row of images), with a reduction over time in the activity evoked in area 3a. In 

striking contrast, the highest intensity and greatest spatial extent of the SI optical response to 

52°C flutter occurs in area 3a, well after the stimulus is removed from the skin (bottom 

row). Furthermore, although 3b/1 initially respond to 52°C flutter, 3b/1 activation decreases 

and eventually disappears during the period when the optical response to 38°C flutter is 

maximal or near-maximal (between 6-10s after stimulus onset).
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Figure 3. Response of area 3a neurons to thermoneutral vs. thermonoxious skin contact (from 
Whitsel et al., 2009)
A: Spike train data obtained from a neuron in area 3a using indent-and-hold stimulation – on 

each trial the skin was indented 0.5mm for 7s. For this neuron, 51°C (trials 7-12) evoked a 

significant response, but not 38°C (trials 1-6 and 13-18). B: Spike trains obtained from a 

neuron in area 3a, using a “wind-up” protocol which evokes slow/2nd/burning pain in 

humans. Brief (0.8 sec duration) skin indentations were delivered repetitively (1 stimulus 

every 2 sec). In contrast to this neuron's insensitivity to 38°C contact, a significant elevation 

of spike firing occurred during exposures to 55°C stimulation, and this elevation of spike 

firing persisted following the stimulus. Panels at top: raster-type displays of spike trains 

recorded during and following a series of successive contacts delivered to the skin by a 

probe maintained at a thermoneutral (38°C) or thermonoxious temperatures (51°C – neuron 

in A; 55°C – neuron in B). Vertical bar indicates time of probe retraction. Panels in second 
row: superimposed PST histograms showing mean firing rates (MFR) in response to 38°C 

(dark shading) vs. 51 ° C or 55°C (light shading) skin contact; horizontal arrow along the 
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ordinate indicates spontaneous (no-stimulus) firing rate. Panels in third row: “difference 

PSTs” showing the difference between the mean firing rates (ΔMFR) recorded in noxious 

test trials vs. non-noxious control trials. Bottom panels: difference PSTs showing the 

difference between the mean firing rate recorded in non-noxious recovery trials (13-18) vs. 

non-noxious control trials (1-6).
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Figure 4. Response of an exemplary rapidly adapting (RA-type) area 3b neuron to 
thermoneutral and thermonoxious 25Hz skin flutter stimulation (from Whitsel et al., 2010)
Format as in Figure 3. The first and the last 6 trials were delivered with the probe at a 

neutral (38°C) temperature; trials 7-12 were delivered with the probe at a noxious (48°C) 

temperature. A: The response to near-threshold (50μm peak-to-peak amplitude) skin flutter 

stimulation. The presence of noxious input in trials 7-12 significantly suppressed this 

neuron's response to 50μm flutter. B: The response to supra-threshold (200μm peak-to-peak 

amplitude) skin flutter stimulation. The presence of noxious input in trials 7-12 failed to 

suppress the spike firing evoked by suprathreshold skin flutter.
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Figure 5. Diagram of interareal connections subserving interactions between areas 3a and 3b/1
The regions in areas 3a and 3b/1 that process input from the same body region are linked by 

glutamatergic (excitatory) connections arising from pyramidal neurons of each area. These 

axonal connections terminate synaptically on both excitatory and inhibitory interneurons. 

Due to greater responsivity of inhibitory interneurons relative to excitatory interneurons, the 

overall effect of the interareal connections on the target neuronal population typically is 

inhibitory, as in the competitive interactions that occur frequently between areas 3a and 

3b/1. However, in vigorously activated SI cell columns, the normally inhibitory synaptic 

action of GABA has been postulated to diminish due to activity-dependence of neuronal 

[Cl−]I [133]. When this occurs, GABA's action switches to excitation, and the normally 

inhibitory interaction between areas becomes facilitatory. Such a transformation of the 

cortical action of GABA would be accompanied by an alteration of perception. For example, 

a tactile stimulus could be experienced as painful if vigorous activation of 3b/1 triggers 

activity in area 3a nociresponsive neurons proposed to underlie slow/2nd/burning pain. Such 

a modification of the action of GABA would be accompanied by allodynia – a common 

clinical malady.
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