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Abstract

Background—Clinical evaluation of CNVs identified via techniques such as array comparative 

genome hybridisation (aCGH) involves the inspection of lists of known and unknown duplications 

and deletions with the goal of distinguishing pathogenic from benign CNVs. A key step in this 

process is the comparison of the individual's phenotypic abnormalities with those associated with 
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Mendelian disorders of the genes affected by the CNV. However, because often there is not much 

known about these human genes, an additional source of data that could be used is model 

organism phenotype data. Currently, almost 6000 genes in mouse and zebrafish are, when 

knocked out, associated with a phenotype in the model organism, but no disease is known to be 

caused by mutations in the human ortholog. Yet, searching model organism databases and 

comparing model organism phenotypes with patient phenotypes for identifying novel disease 

genes and medical evaluation of CNVs is hindered by the difficulty in integrating phenotype 

information across species and the lack of appropriate software tools.

Methods—Here, we present an integrated ranking scheme based on phenotypic matching, degree 

of overlap with known benign or pathogenic CNVs and the haploinsufficiency score for the 

prioritisation of CNVs responsible for a patient's clinical findings.

Results—We show that this scheme leads to significant improvements compared with rankings 

that do not exploit phenotypic information. We provide a software tool called PhenogramViz, 

which supports phenotype-driven interpretation of aCGH findings based on multiple data sources, 

including the integrated cross-species phenotype ontology Uberpheno, in order to visualise gene-

to-phenotype relations.

Conclusions—Integrating and visualising cross-species phenotype information on the affected 

genes may help in routine diagnostics of CNVs.

Introduction

High-throughput technologies are increasingly being applied to the detection of copy 

number variation in patients with developmental delay or unexplained congenital 

malformations. Methods such as array comparative genomic hybridisation, SNP genotyping 

array and genome sequencing enable the genome-wide detection of structural variants. The 

typical landscape of CNVs in a patient shows from 20 to over 100 duplications and 

deletions,1 ,2 most of which are relatively small in size, while a few CNVs cover longer 

regions of the genome. Each CNV can either represent neutral polymorphic variation or 

convey clinical phenotypes by inducing gene dosage effects or dysregulation of genes.3 In 

particular, the interpretation and classification of rare CNVs remains difficult.4 Therefore, it 

is desirable to evaluate each of the CNVs with respect to which of the affected genes might 

be associated with individual phenotypic features observed in the patient. However, aligning 

the genes affected by a CNV to clinical and functional phenotypic features is still 

challenging.5–7

Currently, a typical approach is to prioritise larger CNVs for further investigation,6 under 

the assumption that size correlates with the number of affected genes (NAG) and that larger 

CNVs are found less frequently among the general population.8 The more genes affected, 

the stronger the predicted impact on an organism's molecular machinery. In the diagnostic 

setting, the focus is often set exclusively on CNVs larger than 400 000 bases (400 kb) as 

candidates for pathogenic variations.9 ,10 However, this strategy is not reliable, since small 

CNVs can also have serious phenotypic consequences.6 For example, the minimal critical 

region of deletions in Phelan–McDermid syndrome covers around 140 000 bp and affects 

only four genes (see https://decipher.sanger.ac.uk/syndrome/20). Furthermore, around 10% 
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(118 of 1230) of the pathogenic CNVs in the data from the International Standards For 

Cytogenomic Arrays Consortium (ISCA)11 are smaller than 400 kb (data not shown).

Having additional information on the affected genes is often helpful to interpret the 

identified CNVs. A common approach is to use phenotype information about the human 

gene or about its ortholog in a model organism such as mouse or zebrafish.12 There are 

several databases that store the phenotypic consequences of systematic gene knock-outs in 

these model organisms, but aligning data from these distributed databases to a given set of 

patient phenotypes can still be a time-consuming and laborious task. To give an example, 

consider a patient with an abnormality of the morphology of the nose and a deletion 

encompassing the gene IGF2BP1. This gene is not currently associated with any human 

diseases (see OMIM:608288), but its ortholog has been knocked out in mouse. To use model 

organism information, the physician would have to collect all the phenotype information for 

the mouse knock-out and manually compare it with the human phenotype data in order to 

find that the deletion of IGF2BP1 might explain the abnormal nose morphology, because the 

knock-out mouse is annotated to ‘short snout’. Here, we present a software tool to 

automatically obtain and visualise such phenotypic alignments using a cross-species 

phenotype ontology.

Ontologies are knowledge representations that make use of controlled vocabularies for 

representing knowledge about a domain, thereby enabling automated computer reasoning. 

We have recently described cross-species ontological methods that use computer reasoning 

over phenotype ontologies.13 These methods can be used to identify similarities between 

human disease manifestations and observations made in genetically modified model 

organisms.14 For example, the mouse phenotype ‘short snout’ would then be inferred to be 

closely related to the human phenotype ‘abnormal nose morphology’. Integration and 

alignment of the phenotype ontologies and a diversity of model organism databases is being 

performed within the context of the Monarch Initiative.15 Notably, we have previously 

shown the usefulness of the Uberpheno resource for disease and CNV interpretation.13 ,16–18 

In this manuscript, we show that integrating phenotype information improves the 

prioritisation of pathogenic CNVs compared with an evaluation based solely on the overlap 

with known pathogenic and benign CNVs, the haploinsufficiency (HI) score or the size of 

the CNVs. Here, we present PhenogramViz, implemented as a Cytoscape app. Cytoscape is 

an easy-to-use open source software platform for complex network analysis and 

visualisation. Cytoscape's core features can be enhanced by implementing so-called 

apps.19 ,20 PhenogramViz facilitates visualisation of a large set of integrated phenotypic data 

and aids in phenotype-guided interpretation and prioritisation of CNVs.

Methods

Data preparation

We use four different resources providing links between a gene g and phenotype terms: 

OMIM,21Orphanet,22 Mouse Genome Informatics (MGI)23 and Zebrafish Information 

Network (ZFIN).24 OMIM and Orphanet contain links between genes (g) and human 

monogenic syndromes. These syndromes, in turn, are linked to terms of the Human 

Phenotype Ontology (HPO) representing the abnormalities of patients with that disease.25 
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MGI and ZFIN provide phenotype annotations of knock-out or knock-down experiments for 

mouse and zebrafish genes. Aligned and integrated data from these sources are being made 

available as part of the Monarch Initiative.15 Especially, the Uberpheno ontology allows 

information from mouse and zebrafish to be integrated in the following way:

We assign an information content value, IC(t), to each phenotype term t of the Uberpheno 

ontology. This value is defined as the negative logarithm of the frequency of annotations to 

that term.26 Here, that frequency is the probability of annotations to term t among all 

annotated genes in human, mouse and zebrafish. A high IC(t) indicates a high specificity of t 

because only a few genes are linked to t.

We also obtained HI scores27 for each gene, which are used for visualisation and 

benchmarking.

We downloaded the CNV data provided by Database of Genomic Variants (DGV)28 and the 

ISCA.11 We excluded CNVs with no affected genes. We claim that larger CNVs are easily 

identifiable using standard prioritisation methods such as NAG. Thus, we focused on CNVs 

with no more than 30 affected genes.

From the resulting data, we generated a set of pathogenic CNVs and a set of benign CNVs. 

Our list of benign CNVs comprises all CNVs listed in DGV entries and CNVs from ISCA 

that are marked as ‘benign’ or ‘likely benign’. Our list of pathogenic CNVs comprises all 

CNVs listed in ISCA that are marked as ‘pathogenic’ or ‘likely pathogenic’.

Affected genes

For each CNV, we compile a list of affected genes that comprises any gene whose start 

position or end position (coding sequence) is located within the CNV interval. Thus, 

partially affected genes are included in order to assess possible effects caused by disruption 

of gene sequences at the CNV boundaries.

Construction of phenograms

PhenogramViz supports generation of hypotheses regarding which affected gene g of a 

deleted or duplicated region might cause which phenotypic feature of the phenotypic 

spectrum of a patient.

That means, given a patient with a phenotypic spectrum P={t1, t2,...} for each t∈P, we 

attempt to find a gene g that explains t. To construct a phenogram (Ψ), we iterate over each 

gene g in the CNV and obtain all phenotype annotations tg from the four resources described 

above. For each of these annotations, we search for the best (ie, highest IC) common 

ancestor (tCA) with the patient's phenotypic features (tp) in the Uberpheno ontology. Using 

this approach, we obtain two types of links between g and tp: direct and indirect links. If tg is 

a descendant of tp (ie, tCA=tp, meaning that the phenotype associated with the gene is 

identical to a phenotype seen in the patient or is a more specific subclass of it), we can infer 

a direct link from g to tp. An example for a direct link is gene DTNA in figure 3, which is 

annotated to ‘Ventricular septal defect’, which is a subclass of tp ‘Abnormality of cardiac 

ventricle’. If tg and tp are both descendants of tCA, then there is an indirect link between tg 
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and tp. Note that in this case IC(tCA) must be greater than a specified threshold λ, which is 

used to exclude unspecific matches. An example for an indirect link is gene TTR in figure 3, 

which is annotated to ‘Nystagmus’ (tg). Both ‘Nystagmus’ and ‘Strabismus’ (tp) are 

descendants of ‘Abnormality of eye movement’ (tCA). Adding nodes and directed edges 

iteratively results in a network of genes and phenotypes, which we call phenogram.13

Phenotype-dependent scorings

Aside from allowing for investigation of CNVs using cross-species phenotype information, 

the app additionally allows individual CNVs to be prioritised using a score that illustrates 

their relevance to the patient’s phenotypes. This score, called phenogram-score (PHS), is 

calculated for each of the patient's CNVs. It is defined as the size of the phenogram, i.e. the 

number of nodes that the phenogram contains. Formally, PHS=|{t∈Ψ}|+|{g∈Ψ}|.

Phenotype-independent scorings

Here, four different scorings were considered: NAG, number of overlapping benign CNVs 

(OBE), number of overlapping pathogenic CNVs (OPA) and HI score. NAG counts the 

number of genes located in the CNV region. HI takes the maximum haploinsufficiency score 

(see above) for the affected genes as an indicator for their pathogenicity. Although the HI 

score was designed for deletions of genes, we assume that for a given gene, the HI score is 

generally a good indicator for dosage sensitivity caused by either threshold effects or altered 

stoichiometry.27

OBE reflects the amount of overlap with benign CNVs found in DGV and ISCA for each 

CNV in a patient. Here, an overlap means that at least 80% of the patient's CNV is covered 

by the benign CNV. Based on the number of overlapping CNVs, the OBE score is calculated 

(table 1A).

OPA reflects the amount overlapping pathogenic CNVs found in ISCA for each CNV in a 

patient (see table 1B). An overlap is considered if the ratio of their intersecting region to 

their joined region is greater than 0.1. This ensures that both an overlap exists and the 

lengths of the two CNVs are similar.

Ranking of CNVs

The scores described above (NAG, OBE, OPA, HI and PHS) can be used to rank CNVs 

found in a patient, whereby for NAG, OPA, HI and PHS the CNVs are ranked in descending 

order, for OBE the CNVs are ranked in ascending order. Aside from individual rankings, a 

combined ranking is computed, where several individual ranks of a CNV are averaged. 

These averaged ranks are taken to rank the CNVs again in descending order. Here, we used 

PHS together with OPA, OBE and HI (PHS+OPA+OBE+HI). Note that in case of ties, we 

determined the average rank, i.e. if five CNVs obtain the highest score, they all get the rank 

3.

Benchmark test for CNV prioritisation

The number of CNVs per individual is estimated between 20 and 100.1 ,2 We performed a 

benchmark test, where we chose a pathogenic CNV together with the associated HPO terms 
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according to the criteria described below. For each pathogenic CNV, we simulated 100 test 

cases. In each test case, we added 49 random benign CNVs from the set of benign CNVs 

described above. We ranked the CNVs in each of the sets according to the values calculated 

by the five methods described above. The analysis was regarded as successful whenever the 

pathogenic CNV was ranked first. The pathogenic CNVs came from the list of pathogenic 

CNVs described earlier. We removed all pathogenic CNVs, which were annotated with less 

than three phenotype terms from the HPO. Thus, in the benchmark test we used 278 

pathogenic CNVs, 71 being duplications and 207 being deletions. As mentioned above, we 

generated 100 tests per CNV, corresponding to a total of 27 800 test cases. We used 

Uberpheno build #171 (April 2014). An IC-cut-off λ of 1 was used to calculate the 

phenograms. Files containing the data used in this manuscript are accessible through the 

PhenogramViz website (http://compbio.charite.de/contao/index.php/phenoviz.html).

Implementation of PhenogramViz as a Cytoscape app

Cytoscape is an open source software platform originally designed for visualising molecular 

interaction networks and biological pathways and for integrating these networks with 

annotations, gene expression profiles and other sources of information. It has become a 

general platform for complex network analysis and visualisation. The Cytoscape core 

distribution provides basic functionality to layout and query a network with the central 

organising principle being a network graph, represented as nodes and as edges between 

nodes. Additional features can be made available as apps (also referred to as plug-ins).19 ,20

PhenogramViz features can be accessed through a Cytoscape Control Panel (see figure 2).

Cytoscape supports a variety of automated network layout algorithms. We chose its ‘Prefuse 

Force Directed’ layout to be the default for our phenograms. Whereas the network layout 

determines the location of the nodes and edges, an attribute-to-visual mapping allows data 

attributes to control the appearance of their associated nodes and edges. Using Cytoscape's 

Vizmapper feature, we assigned different shapes and colours for genes affected by the 

selected CNV, phenotypes found in the patient and common ancestors between a gene's 

phenotype annotation and the patient's phenotypic feature. Edges emanating from a gene are 

labelled by the phenotype annotation used for creating the edge. For example, in figure 3 the 

gene CDH2 is labelled with ‘dilated heart left ventricle (M)’ because a mouse model for this 

gene is associated with this term and the term is a descendant of the patient phenotype 

‘Abnormality of cardiac ventricle’. The user can adjust our ‘PhenogramViz’ visual style 

through Cytoscape's ‘Style’ Control Panel.

We introduced colour codes for the number of overlaps of a CNV with known pathogenic 

CNVs from ISCA as well as for the number of overlaps with known benign CNVs from 

DGV and ISCA (table 1). Thus, the colour green applies to CNVs that are more likely to be 

benign (no overlap with pathogenic CNVs, and multiple overlaps with benign CNVs), and 

the colour red to CNVs that are more likely to be pathogenic. PhenogramViz contains 

extensive links and information on the data sources used in the form of tooltips and links to 

external websites. The app together with further documentation (eg, video tutorials) is 

available from the website (http://compbio.charite.de/contao/index.php/phenoviz.html).
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Results

PhenogramViz is a Cytoscape app that facilitates a phenotype-guided interpretation of 

CNVs. One of its most fundamental features is visualising gene-to-phenotype associations 

as a 2D network of nodes and edges, which we call phenograms. Phenograms visualise 

which gene or genes affected by a deleted or duplicated region are most likely to contribute 

to the observed phenotypic abnormalities of the patient. For example, in Williams–Beuren 

syndrome, the deletion of gene ELN is responsible for supravalvular aortic stenosis and gene 

BAZ1B is linked to hypercalcaemia.29 Thus, in a phenogram, the BAZ1B node would have 

an edge to the hypercalcaemia node. Genes and phenotypes are connected by directed edges, 

whereby the cross-species phenotype ontology Uberpheno was used to align patient 

phenotypes to phenotypes of the genes affected by the CNV.

Scores based on a phenogram are used to rank the CNVs in a patient according to predicted 

clinical relevance. To test the performance of our method, we simulated 27 800 cases in 

which a single pathogenic CNV was spiked into a random set of 49 benign CNVs (see 

Methods). We have compared six methods for scoring the CNVs. One is phenotype-based 

(PHS), four are phenotype-independent scores (NAG, OBE, OPA and HI) and one is a 

combined method (PHS+OPA+OBE+HI).

NAG counts the number of affected genes. PHS computes the number of nodes in the 

corresponding phenogram, connecting affected genes to patient phenotypes. OPA/OBE 

scores CNVs by the number of overlapping pathogenic/benign CNVs. HI ranks the CNVs 

according to the maximal haploinsufficiency score found among the affected genes.

For the 27 800 test cases with 50 CNVs each, we generated the receiver operating 

characteristic (ROC), which is a plot of the true positive rate against the false positive rate 

for all different possible cut-offs. The area under the ROC curve (AUC) is an indicator of 

the performance of a classifier, whereby an AUC of one indicates the best performance 

(figure 1A) and an AUC of 0.5 indicates a random classification (grey line in figure 1A). 

Among the individual methods, PHS achieves the best AUC (0.9), followed by OPA 

(0.869), NAG (0.866), HI (0.879), and OBE (0.814). The combined method PHS+OPA

+OBE+HI achieves an AUC of 0.94, outperforming all other methods.

In addition, the combined method ranks the pathogenic CNV in first place in ~56% of the 

simulations and in the range between rank 1 and rank 5 in over 80% of the simulations 

(figure 1B). The single methods rank the pathogenic CNV on top in 38% (PHS), 32% 

(NAG), 21% (OPA) and 17% (HI) of the simulated cases (see figure 1B). We did not find a 

remarkable difference for duplications vs. deletions, e.g. 55.7% of the pathogenic 

duplications ranked first place and 56.6% of the pathogenic deletion ranked first place.

Our method is well able to rank smaller pathogenic CNVs better than larger benign CNVs: 

in repeated simulation runs, we found that ~ 18 000 (of 27 800) patients had at least one 

benign CNV that was larger (contained more genes) than the sought-after pathogenic CNV. 

In 98% of the cases (~ 17 700), we ranked a smaller pathogenic CNV better than a larger 

benign CNV.
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In summary, we claim that given sufficient phenotypic information about the patient and the 

presence of phenotype annotations for the affected genes in human or the orthologous genes 

in mouse or zebrafish, a score based on the phenotypic alignment (PHS) between the 

patient's symptoms and the known phenotype annotations of the genes is able to prioritise 

pathogenic CNVs. PHS in combination with other well-known indicators of CNV 

pathogenicity (OPA, OBE and HI) is found to reliably identify pathogenic CNVs in a set of 

benign CNVs.

Usage example and data format

PhenogramViz was implemented as a Cytoscape app, and users first have to install 

Cytoscape (V.3.0.2 or newer) before installing the app. For the analysis, the user must 

provide the patient's phenotype and CNV data (figure 2). For each CNV, the PHS is 

calculated. All CNVs are then ranked by the combined score (PHS+OPA+OBE+HI). If a 

CNV overlaps with known pathogenic or benign CNVs from ISCA and DGV, this is 

displayed as a colour code (see figure 2(5)). Double clicking a CNV opens a network view 

of the corresponding phenogram. Phenograms are constructed with a default λ of 2.5. Figure 

3 shows the phenogram resulting from phenotype and CNV data of a patient with a large 

deletion on chromosome 18 and several smaller deletions and duplications. The patient 

presented for genetic evaluation because of developmental delay, especially affecting 

expressive language skills. Clinical examination showed a long philtrum and thin upper lip 

vermillion, strabismus convergens and hypotelorism, tapering fingers, brachydactyly, 

oedematous feet and short stature. The parents reported feeding difficulties in infancy. 

Sonography had revealed an unusual asymmetry in cardiac ventricle size. All of these 

characteristics were encoded as HPO terms and entered into our app, as well as the list of 28 

deletions and duplications. Most of the deletions and duplications were either devoid of 

genes or annotated as non-pathogenic CNVs. There was one 14.45 Mb deletion containing 

55 genes on chromosome 18. Previous reports30 described similar features in patients with 

overlapping deletions, strongly suggesting a causal role of this deletion in the pathogenesis 

of the patient's disorder. Analysis of the data with PhenogramViz shows that five genes of 

the large deletion on chromosome 18 align with central phenotypic characteristics of the 

patient (figure 3). Some phenotypic features cannot be incorporated into the phenogram, 

suggesting that they are caused by reduced dosage of gene products whose phenotypic 

effects in humans or model organisms have not yet been elucidated. As expected, the score 

of the chromosome 18 deletion ranks substantially better than all other CNVs in this patient 

(figure 2), emphasising its probable pathogenic role.

Conclusion

The classification of CNVs as benign or pathogenic is not trivial. Often, medical analysis 

focuses on the set of affected genes and aims to align knowledge about these genes with 

patient phenotypes. With its easy-to-use graphical interface, PhenogramViz greatly 

facilitates the integration of phenotypic data from humans and model organisms in the 

evaluation of CNVs of uncertain pathogenic significance and thereby allows physicians 

access to a knowledge base whose utilisation is otherwise difficult in routine diagnostics. 

One of the major features of our app is the easy access to information and data on which 
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predictions and visualisation are based. For example, every link in a phenogram can be 

explored and every element of the rankings can be explained (see figure 3). The 

visualisations can be used as part of the provenance for the data explanations themselves and 

could be considered as justification for further evaluation, treatments, etc., and towards this 

end, can be included in the medical record.

Several methods exist for the prediction of pathogenic CNVs among a set of benign CNVs, 

including Genomic Classification of CNVs Objectively (GeCCO),31 NETwork-Based 

Analysis of Genetic associations (NETBAG)32 and a ranking based on HI scores.27 GeCCO 

makes use of several genomic features such as the density of long interspersed nuclear 

elements or the presence of genes known to be associated with nervous system phenotypes 

in the mouse and is trained for detecting CNVs related to intellectual disability and is not 

intended to be a tool for arbitrary diseases associated with CNVs. NETBAG is a functional 

gene network that has been applied to autism CNVs. It uses the set of affected genes of all 

CNVs in a patient and tries to identify functionally connected clusters. Again, the 

phenotypes of the patient are not taken into account. In addition, NETBAG's webpage only 

allows for loading a set of genes, but no CNV intervals. The aforementioned method that 

ranks CNVs by HI scores uses a predictive model based on multiple genomic features to 

distinguish a set of known haploinsufficient and haplosufficient genes. This model can be 

used to predict specific haploinsufficient genes and thus assesses the pathogenicity of 

deletions. Again, this method is phenotype agnostic and a software tool to perform 

predictions is not provided.

In general, it may not be trivial for physicians to apply GeCCO, NETBAG or the HI ranking 

methods to their own data. We claim that our tool has the advantage of being independent of 

a specific phenotypic category, since it is not trained for any specific clinical phenotype or 

disease focus. Also, to our knowledge, ours is the first tool that makes extensive use of the 

available phenotype resources that exist for human, mouse and zebrafish and aims to 

perform a phenotypic alignment of the affected genes to the patient phenotypes. Finally, the 

visual exploration of single gene-to-phenotype relationships for all genes in a particular 

CNV is a feature unique to our software.

We have demonstrated that a score based on the phenogram can be used for prioritisation of 

pathogenic CNVs. We furthermore showed that a combination of four scores is best suited 

for prioritising pathogenic CNVs. Thus, in PhenogramViz the patient's CNVs are ranked per 

default by the combination of overlap with known pathogenic and benign CNVs, together 

with a score that reflects how well the phenotype knowledge of the affected genes aligns 

with the recorded phenotypes of the patient, and the HI score.

Currently, there are 8866 human genes with phenotype annotations directly derived from 

human diseases or transferred from mouse or zebrafish experiments. Therefore, phenotype 

associations for about 55% of the approximately 20 000 human protein-coding genes are 

still to be uncovered. Efforts such as those of the International Mouse Phenotype 

Consortium33 and Zebrafish Mutation Project34 to provide a comprehensive characterisation 

of the phenotypic effects of mutation in nearly all mouse genes will further strengthen 

phenotype-based analyses such as the one presented here. We are also participating in the 
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Monarch Initiative, which aims to provide data integration for a large diversity of phenotype 

data, including additional model and non-model organisms, which, in future, will greatly 

expand the phenotype coverage available to PhenogramViz and hence better support clinical 

interpretation of CNVs.
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Figure 1. 
Performance evaluation. To evaluate our method, we spiked one pathogenic CNV into a set 

of 49 benign CNVs and generated a ranked list with each of the methods ‘number of 

affected genes’ (NAG), ‘overlap benign’ (OBE), ‘overlap pathogenic’ (OPA), 

‘haploinsufficiency’ (HI), ‘phenoscore’ (PHS) and a combination of selected methods (PHS

+OPA+OBE+HI). A total of 27,800 test cases were generated. (A) Receiver operating 

characteristic (ROC) curves of the rankings obtained by the different methods (the grey line 

indicates random ranking). (B) A stacked bar chart showing how often the different methods 
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ranked the pathogenic CNV on first place, among the first three CNVs, and among the first 

five CNVs. AUC, the area under the ROC curve.
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Figure 2. 
PhenogramViz Control Panel and workflow. The control panel is used to enter the 

phenotypic abnormalities of the patient coded as Human Phenotype Ontology (HPO) terms 

by loading a file (1) or by entering terms via a search window (2). Users should then enter a 

list of CNVs as a file (3) or as a list of genes that correspond to one or more CNVs (4). The 

CNVs are then ranked according to the combined score, with the CNV predicted most likely 

to be pathogenic being placed at top of the list (5). See table 1 for information on colour 

codes and see Methods on how to access underlying data. Users can double-click individual 

CNVs to display the phenogram. HPO terms and genes that could not be incorporated into 

the phenogram are displayed in red font. Users can adjust the specificity filter (λ) to hide or 

show unspecific matches. To protect privacy, we have ‘greyed out’ the exact positions of the 

CNVs found in the patient.
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Figure 3. 
Example phenogram. Human genes located in the selected CNV are displayed as green 

diamonds, phenotypes found in the patient are displayed as blue circles and the common 

ancestors between a gene's phenotype annotation and the patient's phenotypes are displayed 

as orange triangles. The size of a gene node is proportional to its haploinsufficiency score.

27Edges from genes are labelled by the phenotypes (human, mouse or zebrafish) associated 

with that gene and that were used for linking the gene directly or indirectly to the patient 

phenotypes. A right-click on nodes opens a context menu that provides either a link to the 

corresponding term-information page (here: HPO Term Browser) for a phenotype (1) or a 

link to the corresponding entries at the EntrezGene website for a gene (2). A right-click on 

edges opens a context menu that provides external links to the primary annotation resources, 

here: to MGI (3) and to the OMIM entry (4) associated with the gene. HPO, Human 

Phenotype Ontology; MGI, Mouse Genome Informatics; MPO, Mammalian Phenotype 

Ontology; ZFIN, Zebrafish Information Network.
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Table 1

Mapping overlaps of pathogenic and benign CNVs to scores and colours

(A) Incorporation of the overlap with benign CNVs into the score OBE and its visual feedback in the app.

CNV overlaps with... OBE score Colour

no benign CNVs 0 Red

one benign CNV 1 Orange

two or three benign CNVs 2 Yellow

more than 3 benign CNVs 3 Green

(B) Incorporation of the overlap with pathogenic CNVs into the score OPA and its visual feedback in the app.

CNV overlaps with... OPA score Colour

no pathogenic CNVs 0 Green

one pathogenic CNV 1 Yellow

two or three pathogenic CNVs 2 Orange

more than 3 pathogenic CNVs 3 Red

A CNV of a patient can be tested for overlap with known benign and known pathogenic CNVs seen in other individuals.

OBE, number of overlapping benign CNVs; OPA, number of overlapping pathogenic CNVs.
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