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Abstract
The objective of this study was to investigate the impacts of the Deepwater Horizon (DWH)

oil discharge at the seafloor as recorded in bottom sediments of the DeSoto Canyon region

in the northeastern Gulf of Mexico. Through a close coupling of sedimentological, geochem-

ical, and biological approaches, multiple independent lines of evidence from 11 sites sam-

pled in November/December 2010 revealed that the upper ~1 cm depth interval is distinct

from underlying sediments and results indicate that particles originated at the sea surface.

Consistent dissimilarities in grain size over the surficial ~1 cm of sediments correspond to

excess 234Th depths, which indicates a lack of vertical mixing (bioturbation), suggesting the

entire layer was deposited within a 4–5 month period. Further, a time series from four deep-

sea sites sampled up to three additional times over the following two years revealed that

excess 234Th depths, accumulation rates, and 234Th inventories decreased rapidly, within a

few to several months after initial coring. The interpretation of a rapid sedimentation pulse is

corroborated by stratification in solid phase Mn, which is linked to diagenesis and redox

change, and the dramatic decrease in benthic formanifera density that was recorded in sur-

ficial sediments. Results are consistent with a brief depositional pulse that was also reported

in previous studies of sediments, and marine snow formation in surface waters closer to the

wellhead during the summer and fall of 2010. Although sediment input from the Mississippi

River and advective transport may influence sedimentation on the seafloor in the DeSoto

Canyon region, we conclude based on multidisciplinary evidence that the sedimentation

pulse in late 2010 is the product of marine snow formation and is likely linked to the DWH

discharge.

PLOS ONE | DOI:10.1371/journal.pone.0132341 July 14, 2015 1 / 24

OPEN ACCESS

Citation: Brooks GR, Larson RA, Schwing PT,
Romero I, Moore C, Reichart G-J, et al. (2015)
Sedimentation Pulse in the NE Gulf of Mexico
following the 2010 DWH Blowout. PLoS ONE 10(7):
e0132341. doi:10.1371/journal.pone.0132341

Editor:Wei-Chun Chin, University of California,
Merced, UNITED STATES

Received: February 10, 2015

Accepted: June 12, 2015

Published: July 14, 2015

Copyright: © 2015 Brooks et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: (https://data.
gulfresearchinitiative.org) (https://data.
gulfresearchinitiative.org/data/Y1.x031.000:0001)
(https://data.gulfresearchinitiative.org/data/Y1.x031.
000:0002) (https://data.gulfresearchinitiative.org/data/
Y1.x031.000:0003).

Funding: Funding was provided by the Gulf of
Mexico Research Initiative (http://
gulfresearchinitiative.org) through the Florida Institute
of Oceanography (http://www.fio.usf.edu), Center for
Integrated Modeling and Analysis of Gulf Ecosystems
(http://www.marine.usf.edu/c-image/), and Deepsea
to Coast Connectivity in the Eastern Gulf of Mexico

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0132341&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://data.gulfresearchinitiative.org
https://data.gulfresearchinitiative.org
https://data.gulfresearchinitiative.org/data/Y1.x031.000:0001
https://data.gulfresearchinitiative.org/data/Y1.x031.000:0001
https://data.gulfresearchinitiative.org/data/Y1.x031.000:0002
https://data.gulfresearchinitiative.org/data/Y1.x031.000:0002
https://data.gulfresearchinitiative.org/data/Y1.x031.000:0003
https://data.gulfresearchinitiative.org/data/Y1.x031.000:0003
http://gulfresearchinitiative.org
http://gulfresearchinitiative.org
http://www.fio.usf.edu
http://www.marine.usf.edu/c-image/


Introduction
The 2010 Deepwater Horizon (DWH) blowout event discharged >600 million L of oil and
large quantities of natural gas (e.g., methane, ethane, butane, propane) into NE Gulf of Mexico
(GoM) waters over an ~3-month period [1–4]. In addition, almost 7 million L of chemical dis-
persants were injected into the deep-sea environment for the first time at such a great depth
(~1500 m) [5–7]. It is estimated that at least 60% of the oil released reached the sea surface
where it was subjected to a variety of processes including biotic and abiotic reactions, cleanup
activities, transport out of the study area or to nearby beaches by physical processes, evapora-
tion, and settling to the sea floor [5, 7, 8]. The remaining ~40% of the oil and an unknown
quantity of the deep injected dispersants never reached the surface and remain unaccounted
for [5, 9].

An oil slick was detected in open marine and coastal surface waters from Louisiana to Flor-
ida, including the DeSoto Canyon region (Fig 1) [10, 11]. Subsurface hydrocarbon-rich plumes
were initially detected to the southwest of the wellhead at depths between ~1000 and 1200 m,
with a more diffuse plume identified between ~50 and 500 m [1, 4, 6, 9, 12]. Later, subsurface
plumes were identified between ~1000 and 1400 m, and ~400 m to the northeast of the well-
head, in the DeSoto Canyon region [13].

An unusually large marine snow event was documented in oil contaminated surface waters
following the blowout [14]. The marine snow may have formed from extracellular polysaccha-
rides and other exudates produced by phytoplankton and/or bacterioplankton in response
to exposure from surfaced oil [15, 16]. Originally thought to have formed in situ in direct
response to the oil [14], the marine snow was no longer present in surface waters by the end of
June 2010, likely due to rapid sedimentation to depth [15]. It was reported that as the marine
snow attracted particulates on the sea surface and in the water column, it lost buoyancy and
rapidly sank in what was termed a “dirty blizzard” [13, 17], potentially creating a sedimentation
pulse on the sea floor [16–19]. The wide range in particle size and density within the marine
snow was attributed to the heterogeneous nature of the particles. Approximately 60% of the
marine snow particles fell between diatom and coccolithophore densities [14]. Calculated set-
tling rates [14] suggest it took particles a few days to several weeks to reach the seafloor for the
depth range of cores collected in this study. Sea floor sediment traps continued to accumulate
an abnormally large amount of marine snow throughout the Fall 2010. A sediment trap
deployed by Passow (Pers. Comm., 2013) ~120 m above the seafloor (~1400 m depth) in the
vicinity of the DWH wellhead, began collecting samples in late August of 2010. The first cup
(collecting until mid September, 2010) was described as “overflowing”, with more than 1.5
g/m2/d on average during the 3-week period. Sedimentation rates in September and early Octo-
ber of 2010 were 2–5 times higher than those observed one year later (U. Passow, Pers. Comm.,
2013).

Previous marine snow investigations have documented that once the rapidly sinking marine
snow reaches the sea floor, it may cover and suffocate benthic communities, potentially causing
temporary anoxic bottom conditions [20–22]. Although little is known about marine snow for-
mation at depth, it was suggested that marine snow may have formed within subsurface plumes
as well [7, 14, 23].

Deep GoM sediment impacts following the DWH event have not been well documented,
but a 3.8–5 cm-thick reddish-brown surface layer within 10 km of the DWH wellhead was
interpreted as freshly sedimented material in response to the “dirty blizzard” [16, 17, 19].
The primary objective of this study was to investigate the impacts of the DWH discharge as
recorded in bottom sediments from the DeSoto Canyon area approximately 20–100 nautical
miles east/northeast of the DWH wellhead. Specific questions addressed include: 1) Did the
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event directly or indirectly alter the temporal and/or spatial sediment distribution patterns in
the study area, and if so, how? 2) What is the sedimentary signature of the event, and how is it
manifested in bottom sediments? and 3) What is the long-term preservation potential of the
event signature in the sedimentary record?

Fig 1. Study area map. Location map of the northeastern Gulf of Mexico showing core sites discussed here in proximity to the DWHwellhead, Desoto
Canyon, the Mississippi River, and the extent of the sea surface oil slick (gray shading) mapped by Garcia-Pineda [11].

doi:10.1371/journal.pone.0132341.g001
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Setting
The study area is located along the NW Florida outer continental shelf and slope, to the east of
the DWH wellhead, in ~100 m to>1500 m water depths (Fig 1). The most conspicuous phys-
iographic feature in the study area is the DeSoto Canyon, an S-shaped submarine canyon
located ~100 km south of the Florida panhandle. The canyon exhibits both erosional and depo-
sitional features and is constrained by at least five salt domes [24].

Bottom sediments surrounding the DeSoto Canyon are complex in both texture and com-
position, reflecting the different sedimentologic regimes to the west and east. To the west, sedi-
mentation is dictated by the Mississippi River and the input of siliciclastics into the NE GoM.
Bottom sediments are dominated by quartz sand on the shelf forming the “MAFLA” (Missis-
sippi-Alabama-Florida) Sand Sheet [25, 26]. Slope sediments are siliciclastic-rich silts and
clays, with pelagic carbonate oozes making up a larger fraction in deeper regions [27]. To the
east, sedimentation is dictated by biogenic carbonate production forming the West Florida
Sand Sheet on the mid-outer shelf, grading down slope into the finer-grained West Florida
Lime Mud [26]. Sediment accumulation rates calculated from 14C dates range from ~17 cm/ky
northwest of DeSoto Canyon [28] to ~10 cm/ky to the southeast [28, 29]. These are linear accu-
mulation rates (LAR), which do not account for down-core compaction. A mass accumulation
rate (MAR) of 0.05 g/cm2/yr was determined by 210Pb methods for a single core in the DeSoto
Canyon region at ~1850 m water depth [30].

Typically, the highest proportion of carbonate in bottom sediments, frequently in excess of
75%, occurs on the west Florida shelf, and carbonate content decreases from ~60% at the shelf-
slope break to ~25% at the base of slope [27]. To the west of the canyon, the carbonate content
exhibits an opposing pattern with a basin-ward increase, likely reflecting a seaward decrease in
Mississippi River influence and corresponding increase in pelagic carbonate deposition [27].
Particulate organic carbon (POC) for one core in the DeSoto Canyon region at ~1850 m water
depth ranged from ~0.67%–1.17% for the upper 18.5 cm of the core [30]. Clay mineral assem-
blages in bottom sediments are also complex. In general, smectite is the dominant clay mineral
west of the canyon, due to input from the Mississippi River, while kaolinite is dominant east of
the canyon reflecting input from the Apalachicola River [27, 31, 32]. The differences in sedi-
ment types/sources on either side of Desoto Canyon makes this an ideal region to investigate if
the DWH event altered natural sedimentation patterns/processes; as any alteration should be
readily visible as a change in the relative abundance of the two sediment types.

Methods

Sample collection
Multicores were collected from seventeen sites in the DeSoto Canyon region of the NE Gulf of
Mexico (GoM) during November/December 2010, using a MC-800 Multicorer capable of col-
lecting up to eight, 10-cm diameter by 70 cm-long cores per deployment with minimal distur-
bance to the sediment-water interface (Fig 1). Eleven of these cores, collected 20–100 nautical
miles (NM) northeast of the DWH wellhead from 100 m to>1500 m water depths, were
chosen for detailed analyses based on the following criteria: 1) no visible evidence of a break in
sediment deposition, 2) well preserved sediment-water interface, 3) no visible evidence of sedi-
ment mixing, 4) no evidence of gravity flow deposition, 5) representative coverage of different
water depths (including the depths of the two documented subsurface plumes at ~400 m and
1000–1400 m), and 6) representative coverage of both the siliciclastic–dominated and carbon-
ate–dominated sediment regimes west and east of DeSoto Canyon, respectively. Four of the
eleven sites (M-04, P-06, D-08, D-10) were reoccupied and cored up to three more times over
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the following two years to obtain a temporal perspective, and are referred to here as ‘time series’
sites (Fig 1). No permissions were required for collection of cores at any sites and this study did
not involve endangered or protected species.

One core per deployment was split longitudinally, photographed, and described visually.
For select cores, the entire core half was x-rayed to ensure stratigraphic integrity and to detect
subtle sedimentary structures. One core per deployment was extruded at 2–5 mm intervals for
sediment texture/composition and geochronological analyses. The 2 mm sampling interval was
focused on the surficial 2–10 cm (based on visual descriptions), which represents most recent
deposition, and would ensure the greatest possible resolution of recently impacted sediments.
A calibrated threaded rod attached to a tight fitting plunger was used to extrude the core verti-
cally upward through a flat acrylic surface, where the sample was carefully extracted from the
top. Once extruded, samples were weighed immediately to provide the wet weight required for
determining pore water content. Each sample was then freeze-dried and weighed for dry
weight to calculate dry bulk density.

Sediment texture and composition
Sediment texture/composition analyses were conducted on all cores collected in November/
December 2010, and included grain size, calcium carbonate content (%CaCO3), and total
organic matter (%TOM). Grain size was determined by wet sieving the sample through a
63 μm screen. The fine-size (<63 μm) fraction was analyzed by pipette [33] to measure %silt/%
clay. The sand-size (>63 μm) fraction was volumetrically too small to analyze further and is
reported here as %sand. Carbonate content was determined by the acid leaching method
according to Milliman [34]. Total organic matter (TOM) was determined by loss on ignition
(LOI) at 550°C for at least 2.5 hours [35].

Additional compositional analyses were performed on a subset of the time series cores col-
lected in November/December 2010, using a variety of techniques including microscopic
(digital and SEM), energy dispersive x-ray (EDS), core-scanning x-ray fluorescence (XRF) and
x-ray diffraction (XRD). Microscopic analysis was performed using a digital microscope
(Dino-Lite) at magnifications ranging from 70x to 220x, and by Scanning Electron Microscope
(SEM) at magnifications ranging from 2kx to 8kx. The latter was conducted on a Hitachi S-
3500N SEM at the University of South Florida College of Marine Science, St. Petersburg, FL.
Select grains identified under the SEM, were analyzed by EDS to determine the elemental
composition.

Entire core elemental compositions were determined for all four 2010 time series cores
at the mm-scale by XRF core scanning at the NIOZ (Royal Netherlands Institute for Sea
Research) laboratory using standard optimized settings [36]. This technique provides a rapid,
non-destructive means to analyze sediment cores at high-resolution for elemental composition.
Analysis was performed on an Avaatec XRF Core-Scanner with a 1mm by 1cm wide slit win-
dow at 1mm step resolution. Whole sediment cores were covered with a thin film transparent
to X-rays to prevent sediment sticking to the device and prevent the core from drying out. The
analysis chamber was flushed with He to provide accurate measurement of light elements.

Select cores/samples were analyzed by XRD to determine mineralogical content. Samples
were analyzed on a Bruker D-8 Advanced system using cobalt radiation at the University of
Georgia Department of Geology.

Microbial community structure
Based on radiocarbon evidence and proximity to the wellhead, microbial community structure
was examined on 2010 time series core D-10 using next generation sequencing. Total genomic
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DNA was extracted from 0.5 g of sediment from each core section using a MoBio PowerSoil
DNA extraction kit according to the manufacturer’s protocol (MoBio Laboratories, Carlsbad,
CA). DNA concentration was determined using a Quant-IT kit (Life Technologies, Grand Isle,
NY). DNA was sent to the Institute for Genomics and Systems Biology Next Generation
Sequencing Core facility at Argonne National Laboratory for SSU rRNA gene sequencing.
Sequencing reactions were conducted on an Illumina MiSeq platform in a 151x151x12 bp run
using sequencing primers and procedures that were previously described [37]. The resulting
sequences were processed using QIIME v.1.7 [38]. Briefly, reads were demultiplexed using
QIIME default paramaters (reads were truncated if 3 consecutive bases had a phred score less
than 3, only reads>114 bases were retained). Sequences that were less than 60% similarity to
any sequence in the GreenGenes database (v.13-5) [39] were discarded. Operational taxonomic
units (OTU) were defined at 97% similarity using UCLUST [40], and only OTUs that repre-
sented more than 0.005% of the total reads were considered [41]. Putative taxonomy was
assigned to representative reads using RDP classifier [42, 43] at 50% confidence and all reads
assigned to the sequences from predominant photosynthetic microbial groups, cyanobacteria
and phytoplankton chloroplasts were extracted. Samples were grouped based on sediment
depth (0–2 cm,> 2 cm depth intervals) and the relative abundance of phototroph sequences
was transformed to meet assumptions of normality. A Welch’s t test was used to compare the
two groups.

Natural abundance radiocarbon
Subsamples of 2010 time series cores P-06 and D-08 and D-10 were prepared for Δ14C analysis
at the National High Magnetic Laboratory at Florida State University. Dried sediment was acid
treated in 10% HCl to remove carbonates then combusted and purified to CO2 following the
methods of Choi andWang [44]. The break seal tubes for Δ14C analysis were sent to National
Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS) where they were converted
to graphite targets and analyzed by accelerator mass spectrometry [45]. Values are reported in
the Δ14C notation according to Stuiver and Polach [46].

Benthic foraminifera
Subsamples of 2010 time series cores P-06 and D-08 were freeze-dried, weighed and washed
with a sodium hexametaphosphate solution through a 63-μm sieve to disaggregate the clay par-
ticles from foraminifera tests. The>63-μm fraction was dried, weighed again, and stored at
room temperature. All benthic foraminifera were picked from the samples, identified, and
counted. Foraminifera assemblage density values were reported in individuals per unit volume
(indiv./cm3) [47]. The values were normalized to the known wet volume of each sample based
on the diameter of the core tube (10 cm) and the height of each sample (2 or 5 mm).

Biomarkers
Biomarkers were analyzed using a modified EPA method [48] for the analysis of biomarkers.
Freeze-dried samples were extracted (at 100°C, 1500 psi, 9:1v:v dichloromethane: methanol)
using an ASE system (Dionex 200). Previous to extraction, samples were spiked with d50-Tetra-
cosane. Activated copper (40 mesh, 99.9%, Sigma-Aldrich, USA) was added and lipid extracts
were clean using solid-phase extraction (SPE) with silica/cyanopropyl glass columns (SiO2/C3-
CN, 1 g/0.5 g, 6 mL) made at the USFCMS-PL. Silica gel (high purity grade, 100–200 mesh,
pore size 30A, Sigma Aldrich, USA) was combusted (450°C for 4h) and deactivated (2%) previ-
ous to column preparation for SPE. Biomarkers were collected using hexane (100%). All sol-
vents used were the highest purity available. Two blanks were included in each set of samples
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(15–18 samples) to ensure no contamination during sample preparation. Biomarkers were
quantified using GC/MS/MS multiple reaction monitoring (MRM) on a Varian 320 triple
quadrupole MS. Splitless injections of 1μL of the sample were conducted. We used a RXi5sil
column (30 m x 0.25 mm x 0.25 μm) with a GC oven temperature programming of 80°C held
for 1 min, then increased to 200°C at a rate of 40°C/min, to 250°C at 5°C/min, to 300°C at
2°C/min, to 320°C at 10°C/min, and held for 2 min. The GC was operated in constant-flow
mode (1ml/min) with an inlet temperature of 275°C and a transfer line temperature of 320°C.
Ion source temperature was 180°C and source electron energy was 70eV. Argon at a pressure
of 1 millitorr was used as a collision gas. We targeted biomarker compounds (hopanes, ster-
anes, diasteranes) as conservative tracers for crude oil [49, 50]. Total concentration of biomark-
ers was calculated using the response factor by comparison with a known standard mixture
(Calibration mix, Chiron, S-4436-10-IO) and the internal standard (d4-cholestane). When no
commercial reference standard was available, compounds were quantified using the response
factor for the nearest available homologue in the same compound class. Concentrations were
corrected for the recovery of the surrogate standard (d50-Tetracosane). Recoveries from spiked
samples included with each batch were generally within 60–80%. Replicate analyses were per-
formed on selected samples and relative standard deviations (RSDs) of replicates (N = 4) for
biomarker analysis were between 4% and 22%. Total biomarker concentration is expressed as
sediment dry weight.

Short-lived radioisotopes
Short-lived radioisotope analyses were conducted on all cores collected at the eleven sites and
throughout the two-year time series. Samples were analyzed by gamma spectrometry on Series
HPGe (High-Purity Germanium) Coaxial Planar Photon Detectors for total 210Pb (46.5Kev),
214Pb (295 Kev and 351 Kev), 214Bi (609Kev), 137Cs (661Kev), 7Be (447 Kev), and 234Th (63
Kev) activities. Data were corrected for counting time and detector efficiency, as well as for the
fraction of the total radioisotope measured yielding activity in dpm/g (disintegrations per min-
ute per gram).

Detector efficiencies were all<3% of the activities measured, determined by similar meth-
ods to Kitto [51]. The IAEA-447 organic standard, which has a similar density to the sediment
analyzed in this study, was analyzed using varying weights (1g, 3g, 5g, 7g, 9g, 12g, 15g, 17g,
20g, 30g, 40g and 50g) as a proxy for geometry. A calibration template was produced relating
the counts measured to the known activity of the standard for the range of sample weights. By
using the calibration template for various weights, self-absorption of the sample is included in
the detector efficiency calculations [52]. The Cutshall method [53] was used on select sediment
samples, and results show that the self-absorption and variability is negligible and within detec-
tion error. The activity of the 214Pb (295 Kev), 214Pb (351 Kev), and 214Bi (609 Kev) were aver-
aged as a proxy for the 226Ra activity of the sample or the supported 210Pb that is produced in
situ. The supported 210Pb was subtracted from the total 210Pb to determine the unsupported
(i.e., excess) 210Pb, which is used for dating within the last ~100 years [54]. 137Cs is a thermonu-
clear byproduct and represents the height of nuclear bomb testing in the early-mid 1960s [55],
or other thermonuclear incidents [56]. 7Be has a short half-life (~53 days) and is an indicator
of recent sediment deposition. 234Th has a half-life of ~24 days and is usually only detectable at
the sediment surface. Supported 234Th was determined by reanalysis of the same sample>120
(~5 half-lives) days after core collection (i.e., all excess 234Th decayed). The supported 234Th
was subtracted from the total 234Th to determine the unsupported (i.e., excess) 234Th. Activities
of excess 234Th were corrected for activity decayed between the time of core collection and
sample analysis and are termed “Decay Corrected 234Th”. Although excess 234Th is typically
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used as in indicator of surface mixing (e.g., bioturbation) [30, 57, 58], it has been used as a geo-
chronological tool where sediments are unmixed [59].

In order to assign specific ages to sedimentary layers down core, excess 210Pb data were run
through the CIC (Constant Initial Concentration) and CRS (Constant Rate of Supply) models,
the latter of which is appropriate under conditions of varying accumulation rates [60, 61].
Activity values vs. depth down core were plotted for each core, and model results applied to
assign a date to each individual sample. Mass accumulation rates (MAR) were calculated for
each data point (i.e., “date”), thereby giving MAR over the past ~100 years. The use of mass
accumulation rates corrects for differential sediment compaction down core, thereby enabling
a direct comparison of excess 210Pb accumulation rates throughout the core (i.e., over the last
~100 years). Mass accumulation rates were calculated as follows:

MAR; g=cm2=yr ¼ dry bulk density ðrÞ � LAR

Where : dry bulk density; g=cm3 ¼ dry weight � sample volume

sample volume ¼ sample interval ðzÞ � area of core barrel ðinner diameterÞ

LAR ¼ linear accumulation rate; cm=yr

Recognizing that excess 234Th profiles may represent deposition and not bioturbation,
excess 234Th-based MAR were calculated from CIC and CRS model results in the same fashion
as excess 210Pb, as well as by simply dividing the depth of the excess 234Th penetration by 120
days (~5 half lives) to acquire LAR. MAR were then calculated according to the same equation
as described above.

Sediment inventories of excess 234Th were calculated according to the method described in
Baskaran and Santschi [62] following the equation:

I ¼ ðri;Ai; ziÞ

Where I is the excess 234Th inventory (dpm/cm2), pi is the dry bulk density (g/cm
3), Ai is the

activity of excess 234Th (dpm/g) of sample I, and zi is the thickness of sample i in cm. All excess
234Th inventories were decay corrected to the date of collection. Sediment inventories are inde-
pendent of excess 234Th depth and therefore not impacted by bioturbation.

Results
With the exception of the shallowest core at ~100 m (M-01), the surficial ~1–10 cm of all cores
collected were brown in color, overlying a massive light tan unit (Figs 2–4). The surface discol-
oration was typically thicker and better defined with increasing water depth. In most cores the
medium to dark brown layer contained one or more�1 cm-thick dark brown-black bands that
correspond with Mn spikes in XRF data (discussed below). Core photographs and x-radio-
graphs show little in the way of sedimentary structures, although sand-sized biogenic particles
(planktonic foraminifera and/or pteropods) were occasionally visible.

Sediment texture and composition
Texturally, the grain size of all 2010 cores tends to become finer with increasing water depth as
expected, and with few exceptions tends to fine-upward over the ~1 cm-thick surficial layers
(Figs 2–4; Table 1). For cores collected in water depths of�600 m, the fining-upward unit is
often manifested as a decrease in sand-sized sediments, whereas for sites in>1000 m depths it
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is often represented as an increase in clay-sized sediments. Carbonate content tends to increase
slightly over the surface layer in cores collected in�600 m water depths (Figs 2–4; Table 1).

Fig 2. Core P-06 description. Description of core P–06 collected in December 2010 showing a surficial brown layer containing multiple dark brown-black
bands corresponding to Mn spikes, and distinct sediment texture/composition, benthic foraminifera density, natural abundance radiocarbon (Δ14C), and
biomarkers over the surficial ~1 cm (see Fig 1 for location).

doi:10.1371/journal.pone.0132341.g002

Fig 3. Core D-08 description. Description of core D–08 collected in December 2010 showing a surficial brown layer containing dark brown-black bands
corresponding to Mn spikes, and distinct sediment texture/composition, benthic foraminifera density, natural abundance radiocarbon (Δ14C), and biomarkers
over the surficial ~1 cm (see Fig 1 for location).

doi:10.1371/journal.pone.0132341.g003
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Both deep (>1000 m) sites on the siliciclastic-dominated west side of DeSoto Canyon (D-08
and D-10) recorded slight increases in carbonate content. Total organic matter (TOM) ranges
from ~3% to ~12% with the highest percentages occurring in sediments from the deepest sites
(Figs 2–4; Table 1). Down-core TOM percentages exhibit little variability (Figs 2–4; Table 1).

Microscopic analyses for three 2010 time series sites (D–08, D–10, P–06) using both the dig-
ital microscope (70x-200x) and SEM (2kx-8kx magnification) show that sediments consist pre-
dominantly of unidentifiable, amorphous aggregates with trace amounts of identifiable
siliciclastic grains and biogenic carbonates. SEM analysis showed biogenic material to consist
predominantly of coccolithophore plates, which appeared to be more common near the sedi-
ment surface. Otherwise, no discernible difference(s) were evident between the surface and
underlying layers in the three cores analyzed.

Elemental composition, determined by SEM/EDS and Scanning XRF, yielded similar results
in that, with few exceptions, no discernable differences were evident between the surface and
underlying layers. EDS data showed surficial and underlying sediments from all 2010 cores
analyzed (D–08, D–10, P–06) to consist dominantly of Si, O, Al, and Ca with subordinate
amounts of C, Mg and K. Scanning XRF data for the same three cores showed no appreciable
differences in lithogenic elements (Ti, Al, Fe, Si) and/or biogenic elements (Ca, Si) between the
surface and underlying layers. An exception is Mn, which substantially increased in the surfi-
cial ~1–10 cm brown layer, and consistently exhibited pronounced spikes correlating to the�1
cm-thick darkest brown-black bands that occur within this interval (Figs 2–4).

XRD results showed a detrital silicate and biogenic carbonate mineral assemblage consid-
ered typical for the NE GoM. Dominant clay minerals include smectite and kaolinite, as
expected. No discernable variations in mineralogical composition over the surficial layer, as
compared to down-core, was evident.

Fig 4. Core D-10 description. Description of core D–10 collected in December 2010 showing a surficial brown layer containing dark brown-black bands
corresponding to Mn spikes, and a distinct sediment texture/composition, phytoplankton-affiliated gene sequences, natural abundance radiocarbon (Δ14C),
and biomarkers over the surficial ~1 cm (see Fig 1 for location).

doi:10.1371/journal.pone.0132341.g004
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Table 1. Sediment texture and composition data at 2 mm intervals to excess 234Th depth, as well as average and ranges below excess 234Th depths
to depths of excess 210Pb (~100 yrs). Data for cores D-08, D-10, and P-06 are shown graphically in Figs 2–4 and are not included here.

Site ID Top Depth (cm) Bottom Depth (cm) % Gravel % Sand % Silt % Clay % Carbonate % TOM (LOI)

0.0 0.2 0.0 11.4 73.4 15.3 77.2 3.8

M-01 0.2 0.4 0.0 19.6 67.2 13.2 76.1 3.4

0.4 0.6 0.0 19.5 77.3 3.1 76.4 3.2

0.6 0.8 0.0 20.7 67.6 11.7 76.1 3.4

0.8 1.0 0.0 17.0 68.8 14.2 76.4 3.1

Average 2.0 11.5 0.1 19.5 71.1 9.3 75.1 3.6

Range 2.0 11.5 0.0–0.4 16.3–24.6 67.8–75.5 4.5–14.2 74.4–75.9 3.1–4.1

0.0 0.2 0.0 7.2 18.4 74.4 62.7 6.1

M-03 0.2 0.4 0.0 4.8 66.3 28.8 64.2 5.0

0.4 0.6 2.2 11.1 64.8 21.9 61.6 6.8

Average 0.6 15.5 0.2 9.4 60.0 30.5 62.3 5.1

Range 0.6 15.5 0.0–0.6 3.0–15.7 49.9–79.4 12.2–40.0 58.5–65.3 3.2–6.4

0.0 0.2 0.0 5.8 57.5 36.7 54.2 6.5

M-04 0.2 0.4 0.0 7.8 67.3 24.9 *NA *NA

0.4 0.6 0.0 13.9 64.2 21.9 59.1 6.6

0.6 0.8 0.0 9.2 59.0 31.8 *NA *NA

0.8 1.0 0.0 5.5 65.4 29.1 54.7 6.8

1.0 1.2 0.0 9.2 62.7 28.1 54.9 6.4

Average 1.2 16.5 0.0 20.4 49.9 29.7 57.4 6.4

Range 1.2 16.5 0.0–0.0 11.8–28.1 42.7–58.7 24.6–36.2 54.3–61.9 5.1–7.6

0.0 0.2 0.0 0.8 46.0 53.3 54.1 6.7

M-05 0.2 0.4 0.0 0.6 38.8 60.6 42.6 8.4

0.4 0.6 0.0 3.1 45.0 51.9 46.2 7.4

Average 0.6 9.5 0.0 7.8 48.2 44.0 46.9 7.7

Range 0.6 9.5 0.0–0.0 3.5–11.4 36.4–74.9 18.5–58.8 43.6–50.5 6.2–9.1

0.0 0.2 0.0 0.6 49.3 50.1 55.0 4.7

M-06 0.2 0.4 0.0 0.8 58.7 40.4 52.2 6.2

0.4 0.6 0.0 2.5 15.8 81.7 46.3 7.9

Average 0.6 10.5 0.0 4.1 45.1 50.8 44.9 7.0

Range 0.6 10.5 0.0–0.1 1.6–9.1 37.0–65.3 29.6–60.1 40.5–50.3 5.6–9.1

0.0 0.2 0.0 16.4 44.9 38.7 62.2 5.4

M-07 0.2 0.4 0.0 23.2 48.5 28.3 66.5 4.6

0.4 0.6 0.0 30.6 46.0 23.4 65.0 5.1

0.6 0.8 0.0 30.1 44.5 25.4 68.6 4.3

0.8 1.0 0.0 33.8 44.6 21.6 69.6 4.2

Average 1.0 15.5 0.0 26.9 45.0 28.1 64.1 4.7

Range 1.0 15.5 0.0–0.1 13.1–42.5 34.9–56.4 13.3–36.1 60.1–67.5 4.4–4.9

0.0 0.2 0.0 49.8 30.7 19.5 73.2 3.7

M-08 0.2 0.4 0.0 47.5 35.3 17.2 73.3 4.8

0.4 0.6 0.0 51.4 36.9 11.7 72.4 6.4

0.6 0.8 0.0 53.3 31.1 15.6 74.6 5.0

Average 0.8 17.5 0.1 45.0 34.6 20.2 71.0 5.0

Range 0.8 17.5 0.0–0.8 29.8–65.9 27.1–49.8 5.0–30.2 51.9–79.0 2.9–8.1

0.0 0.2 0.0 2.5 60.0 37.4 59.7 6.0

M-09 0.2 0.4 0.0 4.8 72.1 23.1 *NA *NA

0.4 0.6 0.0 7.9 61.7 30.4 *NA *NA

(Continued)
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Natural abundance radiocarbon
Natural abundance radiocarbon, analyzed on 2010 time series cores P-06, D-08 and D-10
(Figs 2–4), exhibited a reproducibility of ±6.5‰ based on 17 replicate samples. We hypothe-
sized that if significant quantities of petroleum-based carbon had been input to surface layers,
then surficial sediments would be depleted in 14C relative to underlying sediments, as observed
at sites P-06 and D-10, the sites closest to the DWH wellhead (Fig 1). Most petro-carbon deple-
tion was to the south and west of the wellhead, although some migrated to the northeast also
[63]. Consistent with our observations, Chanton et al. [63], and Valentine et al. [23], observed
that petro-carbon deposition was mainly within the 0–1 cm surface interval of sediments.

Microbial community structure
Microbial communities were characterized using next generation sequencing of SSU rRNA
gene sequences. Overall, communities were dominated by members of the prokaryotic phyla
Proteobacteria, Planctomycetes, Chloroflexi, and Thaumarchaeota. These phyla were observed
at high relative abundance in all cores sampled in the northern Gulf and likely represent the
core community observed in sediments of this region. Since chloroplasts of eukaryotes also
contain rRNA genes, eukaryotic algae may also be detected in our dataset. Unlike other micro-
bial groups mentioned above, sequences affiliated photosynthetic microbial groups, Cyanobac-
teria (Synechococcus) and chloroplasts of marine diatoms, were significantly enriched by one
order of magnitude (p< 0.00008) in surficial (0–2 cm depth) sediments compared to underly-
ing sections (Fig 4). The relative abundances of these planktonic phototroph sequences reached
a maximum at ~1 cm sediment depth. Sequences related to the Bacillariophyta comprised the
majority of detected phytoplankton chloroplast sequences (> 98%).

Benthic foraminifera
A decline in benthic foraminiferal density was evident in all 2010 time series cores analyzed.
This decline is represented by a continuous decrease below down-core means of 80–93% in
assemblage density (all genera, infaunal and epifaunal) and benthic foraminiferal accumulation
rate (BFAR) in the surficial ~1 cm in cores P-06 and D-08 (Figs 2 and 3).

Biomarkers
All 2010 time series cores analyzed for total biomarkers showed elevated concentrations over
the surface ~1 cm (Figs 2–4). A comparison of the ~1 cm thick surface interval to underlying
sediments indicated an increase in the concentration of total biomarkers in the surface sedi-
ment layer by 26% in D-10, 37% in D-08, and 72% in P-06.

Short-lived radioisotopes
Excess 210Pb and 234Th were detected in almost all cores. When detected, 137Cs and 7Be levels
were exceptionally low, which is consistent with other reports [30], and will not be discussed

Table 1. (Continued)

Site ID Top Depth (cm) Bottom Depth (cm) % Gravel % Sand % Silt % Clay % Carbonate % TOM (LOI)

Average 0.6 16.5 0.0 11.4 48.4 40.2 54.9 6.0

Range 0.6 16.5 0.0–0.2 6.0–18.9 39.0–65.0 25.0–48.5 53.1–57.8 5.5–6.9

*NA–Not Analyzed

doi:10.1371/journal.pone.0132341.t001
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here. Excess 210Pb was detected in all eleven November/December 2010 cores to depths ranging
from ~10–19 cm. Mass accumulation rates over the past ~100 years ranged from 0.05–0.16 g/
cm2/yr (Table 2), which is consistent with rates previously reported for the NE GoM [30].
Excess 234Th was detected in all November/December 2010 cores, except for Core M-01, col-
lected at the shallowest depth of 100 m (Fig 1). Excess 234Th depths ranged from 0.4 to 1.2 cm
(Table 2). Excess 234Th-based MAR calculated by the CRS model are reported here (because
they are the most conservative) and range from 0.48 to 2.40 g/cm2/yr (Table 2). Sediment
inventories of excess 234Th ranged from 0.37 to 2.72 dpm/cm2 (Table 2).

Excess 210Pb and 234Th was detected in all cores collected from the four time series sites (M-
04, D-08, D-10, P-06) over the entire two-year period (Table 2). Excess 234Th profile depths,
MAR, and inventories are all highest in cores collected in late 2010/early 2011, after which they
decreased rapidly (within a few to several months) and then remain relatively stable over the
following ~2 years (Figs 5 and 6; Table 2). Excess 234Th inventories and MAR were categorized
by their core collection date. Late 2010/early 2011 inventories and MAR were compared to late
2011 and 2012 inventories and MAR with a student’s T test and differences between the two
time periods were highly significant, p = 0.007 for MAR and p = 0.0018 for inventories
(Table 3).

Discussion
Multiple independent lines of sedimentological, geochronological, geochemical, and biological
evidence point to a rapid, but short-lived sedimentation event from surface waters to the deep
sea floor of the NE Gulf of Mexico (GoM) in late 2010 that was coincident with the formation
of oil slicks and marine snow formation from the DWH discharge [16, 23, 63]. A radionuclide
distribution time series from sites occupied multiple times between 2010 and 2012 indicates
greater excess 234Th depths, MAR and inventories in late 2010/early 2011 relative to later col-
lection periods (Figs 5 and 6). Consistent dissimilarities in grain size and natural abundance
radiocarbon over the surficial ~1 cm of sediments relative to underlying sediments are consis-
tent with a lack of downward mixing of the surface ~1 cm into underlying, relatively homoge-
neous sediments by bioturbation, or other processes. Stratification in the form of speciation of
metals, specifically solid phase Mn, provides evidence for redox change in sediments that is
consistent with elevated sedimentation rates [64]. Total biomarker concentrations in sediments
were also elevated above baseline levels (Figs 3 and 4). A dramatic decrease in benthic forami-
nifera density in surficial sediments coincided with the lack of bioturbation, apparent elevated
mass accumulation rates and total biomarker concentrations (Figs 3 and 4). Lastly, a substan-
tial enrichment in SSU rRNA gene sequences derived from photosynthetic organisms (phyto-
plankton chloroplasts) that normally occupy the sea surface mixed layer were detected in the
top ~2 cm of deep-sea sediment cores, which is consistent with the hypothesis of a depositional
event directly after the Deepwater Horizon (DWH) discharge (Fig 4). Both the microbial com-
munity structure (relative abundance of phytoplankton-affiliated gene sequences) and hydro-
carbon chemistry (recalcitrant biomarkers) suggest input/deposition of material from surface
waters was recorded in surficial sediments of cores collected in December, 2010.

Sedimentological, biological and chemical evidence are consistent with the rapid deposition
of a layer corresponding to the depth of excess 234Th. In the absence of downward mixing, we
hypothesize that the observed excess 234Th profiles reflect deposition, and that the entire 0.4–
1.2 cm thick surface layer was deposited rapidly, within a period of 4–5 months. A central issue
that must be addressed is that although the down-core excess 234Th profiles are consistent with
decay profiles, bioturbation could produce similar distributions [65, 66]. Little information is
available on bioturbation in shelf and slope sediments of the Gulf of Mexico. Polychaetes
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Table 2. Excess 234Th and excess 210Pb profile depths, MAR, and inventories.

Site ID Nov. 2010 Dec. 2010 Feb. 2011 Sept 2011 Aug. 2012 Oct. 2012

D-08
Depth (cm) 1.2 0.4

234Th MAR (g/cm2/yr) 2.00* 0.40+

1143
Inventory (dpm/cm2) 1.04* 0.19+

210Pb Depth (cm) 13.5

MAR (g/cm2/yr) 0.07

D-10
Depth (cm) 0.4 0.4 0.4 0.4

234Th MAR (g/cm2/yr) 0.60* 0.48* 0.25+ 0.14+

1520
Inventory (dpm/cm2) 1.68* 1.70* 0.40+ 0.26+

210Pb Depth (cm) 18.0

MAR (g/cm2/yr) 0.12

P-06
Depth (cm) 1.2 0.4 0.4

234Th MAR (g/cm2/yr) 1.35* 0.35+ 0.66+

1043
Inventory (dpm/cm2) 1.06* 0.06+ 0.35+

210Pb Depth (cm) 16.0

MAR (g/cm2/yr) 0.06

M-04
234Th Depth (cm) 1.2 0.4
234Th MAR (g/cm2/yr) 1.76* 0.20+

400
Inventory (dpm/cm2) 1.34* 0.44+

210Pb Depth (cm) 16.0

MAR (g/cm2/yr) 0.07

M-01 234Th Not Detected

100
210Pb Depth (cm) 10.0

MAR (g/cm2/yr) 0.16

M-03
Depth (cm) 0.6

234Th MAR (g/cm2/yr) 1.09*

300
Inventory (dpm/cm2) 1.89*

210Pb Depth (cm) 16.0

MAR (g/cm2/yr) 0.07

M-05
Depth (cm) 0.6

234Th MAR (g/cm2/yr) 1.17*

500
Inventory (dpm/cm2) 1.01*

210Pb Depth (cm) 9.0

MAR (g/cm2/yr) 0.08

M-06
Depth (cm) 0.6

34Th MAR (g/cm2/yr) 2.4*

600
Inventory (dpm/cm2) 0.59*

210Pb Depth (cm) 10.0

MAR (g/cm2/yr) 0.05

M-07
Depth (cm) 1.0

234Th MAR (g/cm2/yr) 1.34*

400
Inventory (dpm/cm2) 1.24*

210Pb Depth (cm) 15.0

MAR (g/cm2/yr) 0.07

M-08
Depth (cm) 0.8

234Th MAR (g/cm2/yr) 1.58*

400
Inventory (dpm/cm2) 2.72*

210Pb Depth (cm) 18.0

(Continued)
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(38%) and amphipods (21%) comprised the majority of the macrofaunal (primary bioturba-
tors) standing stock along the north-central and northeastern GoM slope previous to the
DWH event [67]. Anecdotally, during foraminiferal identification [68], there were no visible
skeletal remains of polychaete or amphipod taxa in the surface 50 mm of the D-08 and P-06
cores collected in December 2010 and February 2011. Bioturbation depths reported for deep-
sea sediments in the GoM at sites near our study area (1.75 to 3.25 cm) are larger than the max-
imum excess 234Th depths (1.2 cm) observed in this study [30]. However, the variation in
excess 234Th inventory is consistent with increased sediment deposition in 2010 and early
2011, and cannot be explained by variations in bioturbation. Bioturbation could increase the
excess 234Th depth, but would not affect the excess 234Th inventory.

At steady state, excess 234Th inventories should be directly proportional to sediment accu-
mulation rates. Under steady state conditions, the flux of excess 234Th to the seafloor (J in dpm
cm-2 y-1) is directly proportional to the inventory of excess 234Th in seafloor sediments (I in
dpm cm-2) multiplied by the decay constant (in y-1):

J ¼ l� I

The summed decay rate of excess 234Th in the sediments is equal to the decay constant (λ)
multiplied by the excess 234Th inventory (I) in sediments. At steady state (constant inventory)
this decay rate is balanced by the input of new excess 234Th. As 234Th is highly particle reactive,
excess 234Th input should be directly proportional to the sediment accumulation rate, and the
input rate of excess 234Th should balance the decay rate. Since the decay rate is directly propor-
tional to the inventory, so is the input rate and thus the sediment accumulation rate, assuming
relatively steady state conditions on the time scale of the life of the tracer, which is several
months.

Our results demonstrate that excess 234Th inventories decreased by a factor of 4–5 from late
2010 to late 2011 and 2012. Thus we assert that sediment accumulation rates follow the same
trend. Excess 234Th inventories are independent of bioturbation, which would merely redistrib-
ute excess 234Th, not change the quantity of it. Over time, we observe the excess 234Th inven-
tory decrease, which is consistent with decreasing rates of excess 234Th input via decreased
sedimentation rates. Excess 234Th-derived sediment mass accumulation rates were at least 4
times higher in late 2010 (0.48 to 2.40 g.cm-2y-1), as compared to 2011 and 2012 (0.14 to 0.66 g
cm-2y-1) (Figs 5 and 6).

The dramatic decline in excess 234Th depth, mass accumulation rates (MAR), and excess
234Th inventories (which is independent of bioturbation) in our time series results (Figs 5 and
6; Table 2) are consistent with the occurrence of a brief, but rapid depositional event in

Table 2. (Continued)

Site ID Nov. 2010 Dec. 2010 Feb. 2011 Sept 2011 Aug. 2012 Oct. 2012

MAR (g/cm2/yr) 0.15

M-09
Depth (cm) 0.6

234Th MAR (g/cm2/yr) 0.74*

400
Inventory (dpm/cm2) 0.37*

210Pb Depth (cm) 16.5

MAR (g/cm2/yr) 0.07

* denotes Late 2010/Early 2011 values in Table 3
+ denotes Late 2011/2012 values in Table 3.

doi:10.1371/journal.pone.0132341.t002
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Fig 5. Excess 210Pb and 234Th profiles for time series sites. Excess 210Pb and excess 234Th profiles for time series cores collected at site M-04 in
November 2010 and October 2012, and sites P–06, D–08, and D–10 collected in December 2010, February 2011, September 2011 and August 2012.
Profiles are expanded to show the decrease in decay-corrected excess 234Th activities and excess 234Th depths following initial coring in December 2010
(see Fig 1 for core site locations).

doi:10.1371/journal.pone.0132341.g005
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summer/fall 2010 after the DWH discharge. These results indicate that the depositional event
quickly subsided in 2011, and sedimentation remained relatively constant over the subsequent
two years (Figs 5 and 6). The depositional pulse was detected in continental slope sediments
between ~300 m and ~1500 m both to the east and west of DeSoto Canyon. The 100 m site
(M-01) revealed no indication of a distinct surface layer and no excess 234Th signal. Although
excess 234Th-derived MAR for the surface layer are considerably higher than average rates cal-
culated for the previous ~100 years using excess 210Pb (Table 2), rates determined using these
different methods cannot be directly compared due to the differences in time scales involved
[69, 70].

In contrast to surface sediment layers characterized in previous work conducted closer to
the wellhead [17, 19], the distinct color change in the surface layer (<1–10 cm) of this study is
not a reflection of the sedimentology or petroleum input, but reflects diagenetic processes that
are consistent with a rapid depositional event. The�1 cm-thick dark brown-black color bands
within the surficial brown layer represent spikes in manganese (Mn) oxides, as indicated by
enrichments of Mn relative to titanium (Ti) and iron (Fe) in XRF core scans (Figs 3 and 4).
Manganese oxide enrichments are commonly observed in pelagic surface sediments due to
redox-related cycling of Mn in association with organic matter diagenesis. Below the oxygen
penetration depth in the sediment column, Mn oxides are utilized as electron acceptors in
ongoing organic matter remineralization [71]. This process releases dissolved Mn2+ into pore
waters, which then diffuses vertically upwards and reprecipitates as Mn oxides upon contact
with dissolved oxygen. In pore waters, such Mn cycling results in a single, well-defined peak of
Mn oxide close to the oxygen penetration depth [72]. However, most cores analyzed in this
study show multiple Mn peaks in the upper sediments, suggesting a pulsing of sediment input.
Multiple Mn peaks in sediment cores have been interpreted to indicate vertical shifts in the

Fig 6. Mass accumulation rates (MAR) and 234Th inventories for time series sites.Graphs showing (A)
average MAR over the past ~100 years calculated using excess 210Pb, (B) MAR of the four time series sites
from November 2010 to October 2012 calculated using excess 234Th, (C) excess 234Th inventories of the four
time series sites from November 2010 to October 2012.

doi:10.1371/journal.pone.0132341.g006

Table 3. Results of T–test using Excess 234Th MAR and Inventories from *Late 2010/Early 2011 time period and +Late 2011/2012 time period.

* Late 2010/ Early 2011 MAR +Late 2011/2012 MAR * Late 2010/ Early 2011 Inventory +Late 2011/2012 Inventory

1.76 0.40 1.34 0.19

1.09 0.25 1.89 0.40

1.17 0.35 1.01 0.06

2.40 0.14 0.59 0.26

1.34 0.66 1.24 0.35

1.58 0.20 2.72 0.44

0.74 0.37

2.00 1.04

0.60 1.68

1.30 1.06

0.48 1.70

Average 1.31 0.33 1.34 0.28

Standard Deviation 0.59 0.19 0.66 0.14

Standard Error 0.18 0.08 0.20 0.06

n 11 6 11 6

P Value 0.0070 0.0018

doi:10.1371/journal.pone.0132341.t003
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oxygen penetration depth [73, 74], which causes the active Mn peak to shift vertically, leaving a
relict peak at the former position. Bulk Mn sampled at mm-scale resolution, digested in strong
acid, and measured by ICP-MS by Hastings [64] corroborates the multiple Mn peaks we
observe and the rapid shoaling of the Mn oxide peak.

Depositional mechanisms
Our observations are consistent with a depositional pulse driven by the formation and rapid
settling of the large marine snow particles, as documented in overlying surface waters of the
northern GoM during early summer 2010 [14]. Elevated hopane concentrations in sediments
[23, 75], depletion in natural abundance radiocarbon [63], and the detection of oil-associated
marine snow [16], is consistent with the incorporation of DWH oil in marine snow particles
and their rapid sedimentation to the deep NE GoM. Specifically, hopanes, steranes, and dia-
steranes, which are widely used for oil fingerprinting, detected in the surface sediment pulse
layer of cores used in this study, indicated the presence of DWH oil. Sediments below the sur-
face layer and from a control site (all depth intervals) showed no match with DWH oil [75].
Following the DWH event, marine snow aggregates over a wide range of size classes formed in
surface oil slicks and possibly in subsurface oil plumes [7, 14]. Once buoyancy was lost, the
marine snow rapidly settled to the sea floor. The detection of gene sequences affiliated with
planktonic diatoms originating from sea surface habitats in the surficial sediment layer (Fig 4),
as well as larger concentrations of petrogenic hydrocarbons (Figs 3 and 4), is consistent with
rapid settling of sea-surface material to the sea floor. Upon reaching the sea floor, organic mat-
ter was respired, creating reducing conditions in the sediments [64], thus apparently inhibiting
bioturbation and facilitating the preservation of the sediment pulse layer. The relatively consis-
tent siliciclastic and biogenic sedimentary components in surface sediments suggests that sedi-
ment sources did not noticeably change, but the depositional mechanism created a much
higher flux rate of the natural particles in the water column to the sea floor, as supported by
sediment trap observations by Passow (Pers. Comm, 2013). The slight increase in carbonate
content and coccolithophores observed in some surface sediments is consistent with the
observed increase in the clay-size fraction of the surface interval in some deeper cores.

Although our findings are consistent with a documented marine snow event, alternative
depositional mechanisms must be considered. For example, the intentional discharge of Missis-
sippi River water to repel oiled waters from coastal regions [76] would be expected to increase
siliciclastic input/deposition. The unusually high seasonal runoff may also have increased silici-
clastic input/deposition. An increase in bio-mineral (i.e., carbonate and/or siliceous) produc-
tion due to nutrient input from increased Mississippi River discharge may also have occurred.
However, no significant increase in siliciclastic composition was detected. In fact, the only sys-
tematic variation in sediment composition was a subtle increase in calcium carbonate content
in the two deep cores (D-08 and D-10) west of DeSoto Canyon, which is where increased silici-
clastic input would be most expected. In addition, with one exception (core P-06), cores col-
lected to the east of DeSoto Canyon, a carbonate province generally believed to receive little
input fromMississippi River sediments, recorded the pulse with no increase in siliciclastic
input. Additionally, Mississippi River discharge could not explain the elevated hopane, sterane,
and diasterane concentrations [23, 75] and depletion in natural abundance radiocarbon [63] in
NE GoM surface sediments that are indicative of petroleum hydrocarbon input. Thus,
although input from the Mississippi River may have played a role, our evidence supports
marine snow as the primary depositional mechanism.

Advective, or lateral sediment transport is another possibility, and is not uncommon in
deep-sea settings [77], including the NE GoM [78]. Advection could explain the variations in

Sedimentation Pulse following the 2010 DWH Blowout

PLOS ONE | DOI:10.1371/journal.pone.0132341 July 14, 2015 19 / 24



excess 234Th inventories in our two-year time series due to sediment focusing. However, our
observations of organisms and chemicals transferred from the sea-surface to surficial sedi-
ments (phytoplankton gene sequences and biomarkers) and the consistency in sediment source
cannot be explained by an advective transport mechanism. Though advective transport
undoubtedly plays a role in depositional patterns of the NE GoM and should continue to be
investigated, our results are more consistent with a sedimentation pulse originating from the
sea surface.

Conclusions
A depositional pulse was recorded in bottom sediments in the DeSoto Canyon region of the
NE Gulf of Mexico during late summer and fall of 2010, as a ~1 cm-thick sedimentary layer
extending up to 100 nautical miles northeast of the DWH wellhead in water depths ranging
from ~300 to ~1500 m. The sediment pulse layer was detected in two diverse sedimentological
regimes, exhibited sedimentary properties distinctly different from underlying sediments, and
included components originating from the sea surface. The depositional mechanism is inter-
preted to be an extensive marine snow event that was observed in surface waters over the study
area during the summer of 2010. Independent studies have linked the marine snow event with
the 2010 DWH blowout. Sediments below the surface pulse layer are generally homogeneous
and contain no evidence of previous similar depositional events, which suggests that either this
was a unique occurrence, or that deposits resulting from such events have not been preserved
in the sedimentary record. Continued study will help to determine if/how this depositional
event will eventually be recorded in bottom sediments in the NE GoM.
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