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Abstract

High spatial and angular resolution diffusion weighted imaging (DWI) with network analysis
provides a unique framework for the study of brain structure in vivo. DWI-derived brain
connectivity patterns are best characterized with graph theory using an edge weight to
quantify the strength of white matter connections between gray matter nodes. Here a
dimensionless, scale-invariant edge weight is introduced to measure node connectivity.
This edge weight metric provides reasonable and consistent values over any size scale
(e.g. rodents to humans) used to quantify the strength of connection. Firstly, simulations
were used to assess the effects of tractography seed point density and random errors in the
estimated fiber orientations; with sufficient signal-to-noise ratio (SNR), edge weight esti-
mates improve as the seed density increases. Secondly to evaluate the application of the
edge weight in the human brain, ten repeated measures of DWI in the same healthy human
subject were analyzed. Mean edge weight values within the cingulum and corpus callosum
were consistent and showed low variability. Thirdly, using excised rat brains to study the
effects of spatial resolution, the weight of edges connecting major structures in the temporal
lobe were used to characterize connectivity in this local network. The results indicate that
with adequate resolution and SNR, connections between network nodes are characterized
well by this edge weight metric. Therefore this new dimensionless, scale-invariant edge
weight metric provides a robust measure of network connectivity that can be applied in any
size regime.

PLOS ONE | DOI:10.1371/journal.pone.0131493 July 14,2015

1/29


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0131493&domain=pdf
http://creativecommons.org/licenses/by/4.0/

el e
@ ) PLOS ‘ ONE Dimensionless Tractography Derived Edge Weight

Competing Interests: The authors have declared Introduction

that no competing interests exist.
A more complete understanding of brain function requires detailed information about which brain

regions are structurally connected and how the strength of these connections relates to function [1,
2]. Recently developed innovative methods of determining brain structure in vivo [3-9] have shown
that diffusion-weighted magnetic resonance imaging (DWI) can provide enhanced gray matter
(GM) and white matter (WM) contrast, due to local tissue anisotropy [10], and also allows stream-
line modeling of WM fiber structure in each voxel [11], particularly in regions where fibers “kiss”
or cross. Using DWT tractography techniques [12] and network analysis [13], graph theory models
of brain WM connectivity networks [14] in vivo can be created in which GM anatomical regions
correspond to network nodes and WM fibers correspond to network edges connecting nodes.

Recent interest in brain connectivity has focused largely on the large-scale cortical structure
of the brain [15-22]. In addition to cortical analysis, graph theory has been applied to under-
stand the relation between structural connections and brain development [23], as well as path-
ological states like epilepsy [24], schizophrenia [25], Alzheimer’s [26], Parkinson’s disease [27],
and multiple sclerosis [28].

Most MRI studies of brain networks use binary graph metrics of connectivity, but recently
edge weights have been introduced as a way of quantifying the strength of connections [29, 30].
An ideal edge weight metric should quantify the strength of connection in a logical manner that
can be applied to a brain of any size (e.g. rodents to humans) and be independent of image resolu-
tion. Also the edge weight should be dimensionless in order to represent an analytical weighting
factor that is independent of the measured quantifies which fits into an expression of connection
strength between nodes [31]. Currently available DWI-based edge weight metrics are summarized
in Table 1. Only edge weight 1, 2, and 5 (the latter introduced in this manuscript) are dimension-
less, while edge weights 3 and 4 have dimensions that are the inverse third power of distance, so
they depend on brain size. In addition, edge weights 1-4 all depend on image resolution. Edge
weight 2 depends on the value of fractional anisotropy (FA); however, FA may not be an adequate
measure of connectivity strength because it does not adequately parameterize the underlying tissue
structure in regions of complex fiber structure and is affected by acquisition parameters (e.g. b-val-
ues, number of gradient directions). In addition, the values of edge weights 1-4 diverge as track
seeding point densities increase (see Fig 1 and discussion in the Methods). However high seed
densities (e.g. > 40 seed points per voxel [29]) are needed to increase reliability of network met-
rics. So a scheme for calculating edge weights is needed that provides a reliable measure of connec-
tivity strength, which converges to a stable value as the seed density increase, and is independent
of length scale, image resolution, and the tractography scheme used to estimate WM fibers.

In this study, a dimensionless, scale-independent edge weight measure of node connectivity
is presented, which is derived from diffusion-weighted tractography. This new edge weight is
based on the previously defined edge weight 4 in Table 1 [15] and provides an edge weight that
is dimensionless, independent of brain size and resolution, and relatively independent of the
parameters used for diffusion acquisition and tractography (e.g. seed density). As described in
the Methods section, this new edge weight introduces the use of an indicator function to
restrict the streamlines of the edge to only those originating from the WM voxels in the edge
between connected GM nodes. To illustrate the application of this edge weight to network anal-
ysis, this new metric is used to quantify connectivity between the major structures in sub-corti-
cal network of the limbic system in the mesial temporal lobe (TL). Abnormal connectivity in
the TL is thought to be related to disorders, such as epilepsy [33], and changes in the connectiv-
ity between the following major structures of the TL are theorized to be the source of epilepsy
emergence [34]: the hippocampus (HC), amygdala (AM), thalamus (TH) and entorhinal cortex
(EC). Therefore developing a method for studying the network connectivity of brain regions,
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Table 1. Edge weights, w(e), derived from DWI tractography. The edge weight, w4(e;), introduced by Li, et.al., is defined by Sy, which is the number of set
of streamlines connecting node i toj. The edge weight, wx(e;) (introduced by Lo, et.al.), depends on S;; and FA, which is the average fractional anisotropy
value from all voxels making up the edge. The edge weight, w;(e;) (introduced by Buchanan et.al.), depends on S;; and the volume of the connected nodes,
V,, when x =i orj. The edge weight, w,(e)) (introduced by Hagmann et.al.) depends on the inverse of /(f), which is the length of the streamline f (in units of dis-
tance) from the set of all streamlines connecting node i to j, and A; and A; are the surface areas of node j and . Finally the edge weight described in this manu-
script (w(ej), 5th row) is defined over the set M of voxels making up the edge, m is a voxel from set M, P, is the number of seed points per voxel, p is a
seed point out of all P,oxe from voxel m, V, . is the image voxel volume, A; is the surface area of node i and f, , corresponds to a streamline originating from
voxel m and seed point p. Generally, edge weights use in literature are some variation of weighting with the number of streamlines, FA or 1/ I(f).

Edge weight Characteristics
1 wiq(ey) =Si].[32] Difr.ner;siorlﬂess, but biased towards longer lengths and higher resolution yields larger edge weights for a tract of
a fixed volume.
2 wo(ej) = FA*|S;l,[26] Dimensionless, but biased towards longer lengths and FA does not characterize adequately complex fiber
structures. Higher resolution yields larger edge weights for a tract of a fixed volume.
3 wy(g) = ﬁ S; 1, [30] Dimensions of [length], increases as the cube of seed density and is biased towards longer edges. Higher
' resolution yields larger edge weights for a tract of a fixed volume.
4 w,(e,) = LZL [16] Dimension of [length], removes tract length dependence, but increases as the cube of seed density. Higher
ANZG) T AA = I(f) ’ resolution yields larger edge weights for a tract of a fixed volume.
€S
5

M_Puoxel (f..) Dimensionless, does not depend on tract length or image resolution, and converges to a fix value as seed
— [ Yvoxer 2 Za\Imp R 3 . . -
w(e;) = (p= AiA E I(f,.) density increases (introduced in this manuscript).
m= =il mp

1
doi:10.1371/journal.pone.0131493.1001

°

like these limbic structures, using graph theory may aid in understanding the development and
progression of epilepsy and other neurological disorders.

Methods
2.1. Edge Weight

To represent structural connectivity in the brain as a complex network, WM fibers connecting
anatomical GM structures may be described as a graph of edges connecting nodes. Throughout
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Fig 1. Edge weight, w(e), values as seed density increases for a 3D straight edge. For this calculation,
the image resolution, d, is taken to be 1, which results in a voxel volume of 1, and a surface area of 6. The
calculation of w,(e) assuming an FA value of 1. These assumptions made the value for w4(e), wz(e), and
ws(e) of Table 1 equal. For a different value of FA, w,(e) behaves similarly to w4 (e) scaled by the appropriate
FA value along the track. As described by Hagmann et. al. [16], w,(e) removes the length dependence.
However, wy(e) still displays a divergent asymptote as seed density increases. The edge weight proposed in
this paper, w(e) (Eq 1), displays a constant value of 1/6 for all seed densities.

doi:10.1371/journal.pone.0131493.g001
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the rest of this manuscript, ‘fibers’ calculated with DWI tractography will be referred to as
streamline and the real WM fibers in the brain will be referred to simply as fibers. Streamlines
originate from track seeding points within a voxel of interest and the total number of stream-
line in an edge comes from two sources: the number of seeds per voxel and the number of vox-
els that make up the edge. For the successful creation of a network representation of the brain,
an edge weight metric is needed that provides a stable, dimensionless value, that is independent
of length scale, image resolution (as long as sufficient information is obtained at a given resolu-
tion to characterize the fiber), and the tractography seeding used to estimate WM fibers. How-
ever, current DWI-based edge weight metrics (see Table 1) diverge as the seeding density
increases, as shown in Fig 1. For this simulation, edge weights 1 through 5 were calculated for
two single isotropic-voxel nodes connected by a straight edge. For simplicity in this simulation,
the voxel width (in arbitrary units) is set to d = 1, node surface area to A = 6d” = 6, and the
voxel isotropic volume to d® = 1. As the seed density increases, the values of edge weight 1
through 4 diverge because the number of streamline calculated is directly proportional to the
seed density. This behavior holds true for any edge geometry, not just the simple geometry of
this illustration, so the value of these edge weights depends on the scheme for seeding fiber
tracts.

To determine the connectivity strength of an edge, a dimensionless, scale-invariant edge
weight [35] is proposed below in Eq 1, which is based on the previously defined edge weight 4

[15].
Vvoxe Y X R(fm
wie;) = (p—;> (A +A>;; l(fm: (1)

where yr is an indicator function defined below. Relative to edge weight 1 through 4 in Table 1,
this proposed edge weight removes the dependence on image resolution, and tractography
seeding density, by normalizing the edge weight by the ratio of the voxel volume, V.. and
the number of seeds per voxel, P,x. As introduced by Hagmann, et al. [15], A,, is the surface
area of the n” node, which provides a scaling that favors edge weights with more streamline
connections for a given node surface area, while the inverse sum over streamline length makes
the edge weight independent of the length of the streamlines. For the edge weight proposed in
Eq 1, the first sum is over the number of voxels, M, in the edge, and the second sum is over the
seed points in each voxel, where I(f,, ;) is the length of the streamline originated from seed
point p in voxel m. Using this formulation, the value of the edge weight will be unchanged as
spatial resolution changes, since V., and number of voxels, M, will change in the opposite
sense by the same factor as the resolution changes. Therefore this edge weight formulation is
independent of resolution.

To ensure an accurate estimation of WM fiber structure throughout the brain, streamlines
are calculated from a seed points in every voxel within the entire brain. However, streamlines
in an edge may originate from voxels outside the edge, which will result in overestimating the
edge weight. The selection of only the streamlines directly connecting nodes of interest requires
an appropriate WM and GM segmentation in order to only seed WM tract voxels within the
edge of interest. Selecting the appropriate WM voxels requires a priori knowledge of the WM
tract to sufficiently determinate the appropriate WM and GM boundaries; however in most
cases, such segmentation is problematic. Therefore, a more general approach is taken in this
work. To isolate only the streamlines forming the edge, streamline-fiber filtering is performed,
with the indicator function of Eq 1, to remove streamlines originating from voxels external to
the edge. To filter these streamlines from the set of all streamlines that may travel thought the
set of M edge voxels, only the streamlines that meet the following two criteria are retained: 1)
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Fig 2. Scheme for streamline filtering. In the left diagram, three nodes (n;, n, and n3) are shown
connected by two edges, e, and e,3. In the center diagram, the nodes of interest, ny and n,, are connected
by M voxels. In the right diagram, region R contains the seed points that contribute to the desired edge
weight, e4.

doi:10.1371/journal.pone.0131493.9002

Originate from seed points in the set of M edge voxels and 2) directly connect the nodes (i.e.,
no additional nodes are found in the fiber path). Within the set of all seed points, M x P, in the
edge, these criteria define a subset of seed points, R, located at positions xg, yr, and z in the M
voxels used to calculate edge weight. Therefore, the inclusion of the indicator function,

- Lf,, € R )
) ={ o p o @

will ensure that only the streamlines directly connecting these nodes are included, and eliminates
spurious streamlines that do not originate from seed points in the edge. The use of this indicator
function can be illustrated using the idealized structure diagrammed on the left of Fig 2, where
only streamlines originating in the WM regions (light gray) and connecting the nodes (darker
gray) will be included in the calculation of the edge weight and all other streamlines will be dis-
carded. In the voxelized image of this structure, shown in middle diagram of Fig 2, the nodes
(darker gray) of interest, n; and n,, are connected by a set of M voxels (light gray) that define the
edge, e;,, between these two nodes. The indicator function will filter these streamlines to include
only those shown in the diagram on the right in Fig 2 and eliminate the streamlines running
through e;, but originated from the voxels in the edge between nodes 2 and 3.

The properties of this edge weight formulation, that result in independence from spatial
resolution and seed density, can be most easily visualized with a simple example of two-dimen-
sional connectivity. For application in two-dimensions, the edge weight in Eq 1 can be modi-
fied by replacing V. with pixel area, A,;..;, and using the node perimeter, rather than node
surface area, in the calculation. The simple two-dimensional edge is illustrated in part A of Fig
3, where the connected nodes (gray boxes) are single pixels of width d, area &2 and perimeter
4d. In part B, the number of seeds-per-pixel, Py;..;» equals 1 and results in only one streamline
connecting the nodes with a fiber length of d, which results in a dimensionless two-dimen-
sional edge weight value of 1/4. In part C, P,,;.; equals 4 giving four streamlines; however, the
edge weight normalization factor (Apixer/ Ppixer) results in edge weight value of 1/4. This result
is consistent for any number of seeds-per-pixel in the edge, as shown in the examples in parts
B and C. In part D, the edge consists of two pixels connecting the nodes with Pp,; = 1. In
this case, the streamline length would be 24, but since all the pixels in the streamline path are
seeded, a total of two streamlines would connect the nodes. Therefore, the two-dimensional
edge weight is still 1/4. For two-dimensional streamlines directly connecting identical nodes
through a face (as in Fig 3) with any number of pixels in a straight edge, the edge weight value
is 1/4. Therefore the edge weight result is independent of the number of pixels that make up
the streamline and the number of seeds-per-pixel. In a straightforward manner, this approach
can be extended to the three-dimensional case to show that the edge weight of Eq 1 is dimen-
sionless, and independent of resolution and seed density.

PLOS ONE | DOI:10.1371/journal.pone.0131493 July 14,2015 5/29
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Fig 3. Two-dimensional WM fibers are contained within the edge, e;; (white pixels), connecting nodes
(gray pixels), n; and n;, as labeled in Part A. For straight-line edges, the fiber lies within pixels of the edge.
The streamline tracks are shown in pixels of the edge performed with (B) one seed-per-pixel and (C) four
seeds-per-pixel in a single-pixel edge, and (D) one seed-per-pixel in a two-pixel edge. (E) A fully connected
2D network with straight edges on each face of a central node, n; (dark gray), connected to four other nodes
(light gray), each through a single fiber (white) similar to the fiber shown in part B-D.

doi:10.1371/journal.pone.0131493.9003

The relationship between nodes within a network is central to understanding network prop-
erties. A measure of particular importance is the connectivity strength of any node in a
weighted graph [31], which is defined by

s(n) = S wie,). 3)

i7j

In this equation, w(e;) is the edge weight (Eq 1) connecting node i to node j. The node
strength in Eq 3 provides insight into the topological structure of a graph and allows the
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Fig 4. Three-dimensional edge, e; (white pixels), connecting nodes (gray pixels), n; and n;, as shown
in Parts A and B. As shown on the left in A, the voxel has dimension, d by ad by d. Part B illustrates a fully
connected 3D network with a central node, n;, (dark gray) connected to six other nodes (light gray), each
through a single straight edge (white) similar to the fiber shown in Part A. The front node and edge are render
transparent is this diagram to make the central node visible.

doi:10.1371/journal.pone.0131493.g004

estimation of statistical properties within the architecture of weighted networks [36]. Returning
to the two-dimensional case, a node fully connected with straight edges on each face (4 edges,
each with an edge weight of 1/4), as the one shown in part E of Fig 3, the connectivity strength
of central node, 1;, in this network is equal to 1. This illustrates a useful property of the normal-
ized weight edge defined in Eq 1, since the resulting connection strength has a logical value of 1
for a node fully connected in manner illustrated in part E.

A network of simply connected nodes in three dimensions can be treated, using Eq 1, in a
manner similar to the treatment of the two-dimensional graph above. However the edge weight
for voxels that do not have an isotropic aspect ratio will depend on the aspect ratio of the vox-
els. For example, the edge weight shown in part A of Fig 4 between identical single-voxel nodes
connected by an edge voxel in a straight line, is given by the following:

1 (af)d? 1
) =3 ((a B+ aﬁ)d2> d’ )

where the voxel-width in Fig 4A is d, ad, or Bd. The voxel has a volume of, (od”, and a surface
area of, 2ad’+2pd"+2apd’ = 2 (o +B+ap &, so the edge weight depends on the orientation of
the voxel. Eq 4 represents the edge weight for streamlines traversing left-right in Fig 4A, along
the voxel-width d, hence providing an inverse length of 1/d (last term on the right-hand side of
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Eq 4). Therefore diffusion-weighted data should be acquired and processed with isotropic reso-
lution to avoid an orientation bias in the calculation of streamlines and in the calculation of
network parameters.

For isotropic voxels, Eq 4 will be simpler since the surface area, A, of a single cubic voxel
node is 64° with a voxel volume, V.5, of d°. For the case of identical single, cubic-voxel nodes
separated by M voxels in a straight line, the streamlines will have a length of Md and the num-
ber of streamlines will be determined by MP,,,,.;, since each voxel will contribute to the fiber
estimation. Therefore the edge weight defined in Eq 1 between these two single-voxel nodes
will have a value of 1/6, since the resulting number of streamlines will be normalized by the
number of seed-points-per-voxel and the number of voxels. Also using Eq 2, the connection
strength will have a logical value of 1 for a fully connected network with a single node in the
center of a network of identical single nodes on the type shown in part B of Fig 4 (were u =v =
w=1).

The edge weight and connection strength parameters can be used with more complex net-
work graphs. For example, a rectangular node of many cubic voxels, with single-voxel width, d,
that has “u” voxels in one dimension, “v” in the second, and “w” in the third dimension, has a
surface area of that is the sum of the number of voxels in each of its six rectangular faces (“uv”
will refer to the face of the node with surface area uvd?, and so on for the other faces). The sur-
face area of these nodes is A = (2uv + 2uw + 2vw) d°. For any number of voxels in a straight
edge of voxels connecting nodes with any number of seed points in each voxel, the number of
streamlines in the face with cross section “uv” becomes uvMP and the length will be, I = Md.
Using Eq 1, the edge weight is then given by

P M
1 L1 uy

(2uv + 2vw + 2uw)d? ‘o= Md 2(uv + vw + uw)

wie,) =% 8

Therefore, the numerator in the sum depends on the surface area of the voxel face through
which the edge connects the nodes, e.g. uv, however, if the edge were to connect through uw
then the numerator would be uw. For a fully connected central rectangular node, as shown in
part B of Fig 4, with an edge through each one of its faces (i.e., through uv, vw, and uw faces)
that connects the central node to 6 other identical nodes, results in the following node connec-
tion strength:

(6)

s(n) = 2w(e,) + 2w(e,,) + 2w(e,,) = 2( uv 4+ vw + uw )) =1.

2(uv + vw + uw

The central node contains 6 edges, where the opposite face has the same edge (i.e. 2 edges
through faces uv, 2 through vw, and 2 through uw). As for both the earlier two-dimensional
and three-dimensional cases, the connection strength is equal to one for a rectangular node
fully connected along a straight edge at each nodal face to identical rectangular nodes. In the
case of rectangular nodes, the edges will have a different number of streamlines connecting
each face, but changing the number of seed points per voxel and length of fiber (number of
voxels in an edge) will not affect this result.

For connected nodes of isotropic voxels that are not identical, the value of edge weight
and node connection strength will depend on the exact geometry of the connected nodes. To
explore the range of possible edge weight values, consider the special case of two connected
identical rectangular nodes that are connecting through an edge, which is one voxel thick (i.e.
w = 1). The surface area of the nodes is A = 2uvd” + 2ud” + 2vd” and the edge length can be any
arbitrary length, I = Md, where M is the number of voxels in the straight edge. The edge weight
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in Eq 5 is modified with w = 1 and is given by

uv _ uv _ 1 7)
2wv+v+u) 2wv(l+i+ 214140

w(e) =

Foru=v=1 (or u=v=w), w(e) will be equal to 1/6 (Eq 4 for isotropic voxels), but as u
and v become very large, w(e) tends to an asymptotic value of 1/2. Therefore, the connection
strength of any node will depend on the geometry of all the nodes in the connected network.

In summary, the edge weight presented here (Eq 1) provides a logical, dimensionless, scale-
invariant measure of the connection strength between two nodes in a network. This edge
weight is inversely proportional to the surface area of the connected nodes and directly propor-
tional to the number of streamlines connecting the nodes. When the nodes are sufficiently
defined by voxels smaller than the node size and the seeding is sufficiently dense, the edge
weight provides a measure of the overall connectivity between two nodes relative to the surface
area available to create connections. Also as shown above, the numerical value of the edge
weight in an idealized, fully connected network provides a node connection-strength with unit
value, which allows real networks to be directly compared to ideal networks of connected
nodes. More complex geometries will be discussed in the next section using a combination of
mathematical analysis and numerical simulations.

2.2. Numerical Analysis

To estimate network parameters in more realistic situations, two types of simulations were per-
formed: 1) Edge weight was calculated for more complex fiber-pathway geometries using vari-
ous seed densities, and 2) edge weight was calculated in the presence of random errors in the
fiber direction estimation. All simulations were performed in IDL (Exelis Visual Information
Systems, Boulder, CO).

Firstly to estimate the effect of increasing the seed density, the edge weight between con-
nected single-voxel nodes was estimated for three edge geometries: 1) Through an arch of fibers
(part A of Fig 5) in the plane of the nodes, 2) fibers slanted at 45° within the plane (part B) of
the nodes, and 3) fibers slanted at a polar angle of 45° and an azimuthal angle of 54.1° (part C).
The space between nodes was set to 1, 2, or 3 voxels, and the seed density was n® and varied
from n =1 to 100. The seed points were placed uniformly in every voxel and across voxel
boundaries. If the streamline originating from a seed point was a member of subset R in Eq 2
forming the edge between nodes, streamlines from that seed point were used to calculate the
edge weight; otherwise, the streamlines were discarded. The results of these simulations can be
directly compared to the analytical expression for the edge weight of the arched and slanted
fibers presented in the Appendix.

Secondly to estimate the effect of noise on the edge weight calculation, where noise is char-
acterized by a random Gaussian distribution in the estimated diffusion displacement orienta-
tion (e.g. the effect of noise on calculated diffusion directions), a simulation was performed
for streamlines angled at 45° within a plane (part B of Fig 5) in a matrix of three-dimensional
voxels. To estimate the effect of random error as the length of the streamlines connecting the
nodes increase; the number of voxels between nodes was set to 1, 2, 3, 5 and 10 voxels. Without
random errors, the streamline in each voxel was set to have unit displacement probability vec-
tor components, v = [0.707, 0.707, 0.0], in an X, y, z coordinate system. To simulate the effect of
random errors, the diffusion displacement probability orientation in each voxel was modified
by adding a random error to the orientation vector, with a standard deviation of o set to 0 (no
error), 0.03, 0.07, 0.1 or 0.2. For each level of random error, the streamlines were calculated
with 5° (125) seed points in each voxel with a tracking step size of half the voxel width. Then
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// d

Fig 5. Diagram of two cubic, single-voxel nodes connected by a fiber in 3D. (A) Arched streamlines
joining two nodes (dark gray) in the same plane of voxels connected at one face of each cubic node. (B)
Nodes in the same plane of voxels connected by 45° streamlines at two adjoining orthogonal faces of each
node. The nodes are separated by one or more voxels (one voxel separation shown in B). In this diagram, the
streamlines joining the nodes at the closest point have a length equal to /2 times the voxel width. (C) Nodes
connected at three adjoining orthogonal faces of each node by streamlines slanting at a polar angle of 45°
and azimuthal angle of 54.1°. The nodes are in two voxel-planes separated by one or more voxels (one voxel
separation shown in C). In this diagram, the streamline joining the nodes at the closet point will have a length
equal to /3 times the voxel width.

doi:10.1371/journal.pone.0131493.g005

for each level of random noise, the calculation was repeated 105 times with a random assign-
ment of orientation in each voxel.

2.3. MRI Acquisition

2.3.1. Human brain in vivo. The University of Florida Institutional Review Board
approved all human studies and consent forms. One healthy subject provided written consent
to participate in this study and was scanned ten times over the course of one month, which
provided a control set of ten acquisitions from which to estimate the variability of network
properties across different MR acquisitions. With each scan, temperature and phantom based
measurements were acquired to ensure consistency of scanner performance at each time point.
The subject was scanned on a 3 T Siemens Verio system in the Shands Hospital of the Univer-
sity of Florida. High angular resolution diffusion imaging (HARDI) [37] data were obtained
with a spin-echo prepared echo planar image [38] readout using the following set of parame-
ters: TR/TE = 17300/81 ms, 2 scans without diffusion weighting, 6 diffusion gradient directions
with b-values of 100 s/mm” and 64 diffusion gradient directions with diffusion weighting 1000
s/mm”. The diffusion gradients were distributed following a scheme of electrostatic repulsion
[39]. The diffusion-weighted images covered the entire brain with an isotropic resolution of
2.0 mm, field of view (FOV) of 256 mm x 256 mm, and 73 slices. This image was spatially
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interpolated to 1.0 mm isotropic resolution using cubic convolution [40] with the CONGRID
function in IDL. In addition, a high-resolution T1 structural scan of the entire brain was
acquired with TR/TE = 2500/3.77 ms, resolution 1mm isotropic, FOV of 256 mm x 256 mm
and 176 slices.

2.3.2. Excised rat brain. The rats perfused and placed in fixative at the University of
South Florida (USF, St. Petersburg, FL) with the approval of the USF Institutional Animal Care
and Use Committee (IACUC) permit #R3486. Four excised, fixed 90-day-old normal rat brains
were examined with a repeated measurement on two brains for a total of six datasets. Prior to
imaging, all brains were placed in buffered saline solution overnight to remove the free fixative.
HARDI data was obtained using a 17.6 T Bruker Avance system (Bruker Corp, Billerica, MA)
with the following set of parameters: 7 diffusion weightings 100 s/mm? and 64 diffusion
weightings of 2225 s/mm?. The diffusion gradients were distributed following the scheme of
electrostatic repulsion. An image resolution of 190 x 190 x 190 um? was acquired; this dataset
will be referred to throughout this text as the 190 pm dataset. Two new images were recon-
structed for each of the six datasets. Interpolating the original image to 95 x 95 x 95 um” with
cubic convolution yielded the second dataset, which will be referred to as 95 um. Finally,
degrading the original image by using only half of the original k-space information to recon-
struct a new image yielded a resolution of 380 x 380 x 380 um”, referred to as 380 pum dataset.

2.4. Data Processing

Using a rank-2 diffusion tensor model of diffusion, maps of FA and average diffusivity (AD)
were created from the HARDI data using an in-house software written in IDL. The GM nodes
were created by visual inspection using ITK-SNAP [41] (http://www.itksnap.org/) to delineate
the desired structures on the FA and AD maps. For human data, the image segmentation was
performed on a single dataset and registered to the other nine datasets using FSL’s FLIRT
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT). Nodes were then registered using ApplyXFM by
applying the matrix transformation from FLIRT. Each rat’s dataset was manually segmented
using the defined structures in the Paxinos and Watson Rat Brain Atlas [42]. For rat data, the
FA map of the 95 um dataset was used for GM node segmentation. These structures were then
registered onto the 190 and 380 pm images by applying an identity transformation using
ApplyXFM. In this work, the method of Wishart distributed tensor [43] was used to character-
ize the displacement probability function in each voxel. This method allows the reconstruction
of multiple displacement probability orientations in each voxel (i.e. resolves kissing or crossing
fibers). The displacement probability function, streamlines, and edge weight (as defined in Eq
1) were calculated using an in-house software written in C. Deterministic tractography was
performed, using a modified version of the fiber assignment by continuous tracking algorithm
[44]. Streamlines were launched bilaterally (since diffusion is antipodal symmetric) and the
direction of propagation was defined at each tracking step to be that which results in the least
angular deviation from the direction defined by the previous streamline path step. Tractogra-
phy was performed over a mask covering the entire brain using the following parameters: 125
seeds per voxel distributed within and across voxels, through voxels with FA larger than 0.05, a
fiber step size of half the voxel size, and no step-to-step track deviations greater than 50°.

2.4.1. Node Definition, Resolution, and Edge Weight Variability. The reliable segmen-
tation of GM nodes, along with the definition of WM edges, is a crucial part of estimating con-
nectivity in the brain. In MR images with appropriate contrast, the desired anatomical regions
can be segmented as nodes by selecting voxels that meet the criteria of spatial location and con-
trast of the specific region. However limited spatial resolution (i.e., voxel size) may result in vol-
ume averaging, and ambiguity in the selection of the GM node boundaries and WM edge, that
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can affect the accuracy of the edge weight calculation. To investigate the effect of segmentation
and resolution on network definition, edge weights and node connections strength were calcu-
lated for representative networks in human brains in vivo and in excised rat brains.

Firstly, several networks in the human brain were examined to determine the variability of
streamline calculation and edge definition across the 10 data acquisitions on the same subject.
As a first test, two regions of large, coherent WM fiber bundles in the cingulum and corpus cal-
losum (CC) were selected, which are next to each other and the fibers travel orthogonally.
Using FA images at 2 mm isotropic resolution, single voxel-thick, disk-shaped nodes with radii
of about 6-7 mm were placed within the cingulum (surface area 459.2 mm?, see part A of Fig
6) and CC (surface area 309.2 mm?, see part B). Two-node and three-node networks were cre-
ated in the cingulum, as shown in parts A and C. A long WM fiber bundle edge of roughly
49 mm length was defined between nodes 1 and 3 in the cingulum, as shown in part C. Placing
anode in the middle of this long WM tract of the cingulum creates two cingulum short edges,
between nodes 1 and 2 and between nodes 2 and 3 roughly 24 mm each. To study the edge
weight estimation in the CC, nodes were placed laterally (22 mm apart) on each side of the
body of the CC at the point where the WM starts to branch outward into the cortex, as shown
in parts C and D. This edge will be referred to as the long edge of the CC, as shown in part D. A
second three-node network is made by placing a third node at the midline of the body of the
CC, creating two CC short edges of 10 and 11 mm.

Secondly, major structures in the temporal lobe (TL) in the excised rat brain were used to
define a network of major nodes (i.e. only four nodes) by segmenting the brain using visual
inspection from structures defined in the Paxinos and Watson Rat Brain Atlas [42]. This TL
network was studied in four excised rat brains. A coronal view of the structures is shown in
part I of Fig 6: the thalamus (TH) is blue, amygdala (AM) is green, entorhinal cortex (EC) is
yellow and hippocampus (HC) is red. The same color scheme is used for the nodes in the TL
network in parts E through H. To obtain a first estimation of the boundaries, the rat brain TL
nodes were segmented using FA maps in ITK-SNAP from coronal slices using the Paxinos and
Watson atlas. Further refinement was performed in the sagittal and transverse slices to achieve
a 3D representation of the nodes with smooth contours. In segmenting the TH, the acoustic
radiation, fasciculus retroflexus, and medial lemniscus were used as boundary markers. The
HC included CA1, CA2, CA3 and dentate gyrus, but not the white matter structures of the
alveus and fimbria, as well as the laterodorsal thalamic nucleus (used as a ventral boundary).
The structure of the AM was kept separated from the white matter of the optic tract and a clear
boundary was maintained between the AM and the piriform cortex. Since other dense anatom-
ical structures are around and in contact the EC, the EC was defined to exclude the dorsal
endopiriform nucleus and the piriform cortex. The subiculum was not included in order to
physically maintain a separation between the EC and HC.

Results

Since brain white matter fiber pathways are more complex than the simple examples discuss
earlier (i.e. those in Figs 3 and 4), simulations were performed to estimate the edge weight in
more complicated pathways, as shown in Fig 5. With this approach, the sensitivity of the edge
weight and node strength calculations to geometry and data processing parameters were inves-
tigated. In complicated pathways, the location of seed points strongly influences the selection
of the streamlines used in the edge weight calculation. For example, the effect of seed density
location is shown in Fig 7, where not all 36 seed points from the set of 9 pixels contribute to the
edge weight. As shown in part A, only 5 voxels contribute to the edge weight with a total of 20
possible seed points. Of the 20 possible seed points, only 12 contribute to the edge weight, as
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Fig 6. Human and rat brain networks. (A) Coronal view of a cingulum node. (B) Saggital view of corpus callosum (CC) nodes. (C) Saggital view of cingulum
network shows disk nodes and streamlines connecting them. (D) Coronal view of CC network shows the disk nodes and fibers connecting them. Temporal
lobe (TL) network with tracks connecting nodes (E) at the interpolated resolution of 95 ym, (F) at acquisition resolution of 190 pm, and (G) at the degraded
resolution of 380 ym. (H) Sketch of the TL simple graph; hippocampus (HC), thalamus (TH), amygdala (AM), and entorhinal cortex, (EC). The color scheme is
maintained in all figures. (I) Coronal slice displaying the TL rat nodes.

doi:10.1371/journal.pone.0131493.9006

shown in part B. Therefore the effect on edge weight of seed point density and fiber path length
in a voxelized image was investigated to estimate how placement of seed points within the dis-
crete cubic geometry of voxels affects the calculation of the edge weight and node connection
strength. Then using the results from these simulations as a guide, optimized methods were
applied to edge weight calculations in large and coherent WM tracts in the 10 repeated DWI
acquisitions of the same human subject. Also the connectivity between major structures in the
rat brain temporal lobe network was estimated from the excised rat brain DWI data to investi-
gate the dependence of network parameter calculations on changes in resolution and data
interpolation.

3.1. Simulations

Simulations were performed to study the effect of seed density and edge length (node separa-
tions) on the calculation of edge weights in ideal situations, with and without a noise contribu-
tion to the estimated primary diffusion direction. Without noise, the streamlines will not
deviate as the path length increases. However as shown in Fig 8, the calculated edge weight
value strongly depends on seed density and reaches a horizontal asymptotic value as the num-
ber of seeds per voxel increases, since this increase in seed density essentially allows more
homogeneously sampling of actual streamline pathway defined by region R.

Simulations for the arched streamline (see part A of Fig 5) show this asymptotic behavior,
when the nodes are separated by an arc with a radius of 1.5, 2.5, or 3.5 times the voxel width,
as the seed density is increased to a high value (~ 200 or 6> seed points per voxel) above which
the edge weight reaches a plateau. The asymptotic values of 0.167 equals the expected values of
1/6 for identical cubic nodes fully connected along one face of each node (see the Appendix
A.1). These results suggest that the edge weight values should be relatively independent of edge
length, but the approach to an asymptotic value require a larger number of seed points to
achieve stable edge weight. Edge weight results for the slanted fiber in-plane with the nodes
(part B of Fig 5) reaches a plateau with values of 0.235, when the node separation is 1, 2, or 3
voxels, which is the expected value obtained from the analytical expression in the Appendix

A B
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

Fig 7. System of 2 nodes connected by a streamline at 45° with 4 equally spaced seed points in each
pixel and across pixel boundaries. (A) Nodes (dark gray) are connected by a slanted fiber (light gray) and
dark squares are the seeds points used to perform tractography. (B) After keeping the seed points that lie
within the region, R, only 12 contribute to the edge weight out of 36 original seed points.

doi:10.1371/journal.pone.0131493.g007
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Fig 8. Edge weight calculations, for the arched and slanted streamline paths of Fig 4, as a function of
seed point density. The seed point density is P =n%, wheren=1, 3, 5, .. ., 33. Arched edge weight values
plateaus at a value of 0.167, for all radii, r (d is the voxel width). Slanted in-plane edge weight plateaus at a
value of 0.235, and 3D slant edge weight plateaus at 0.289, when the nodes are separated by 1, 2, or 3
voxels ().

doi:10.1371/journal.pone.0131493.g008

A 2. Similar to the arched fiber, these results suggest that a stable measure of connectivity
requires a larger number of seed points. For this slanted fiber geometry, the streamline enters
two faces of each node. Hence, the edge is covering a larger surface area of the nodes, but the
streamlines occupy a larger volume, so the edge weight is proportionally larger. Edge weight
results for the 3D slanted fiber (part C of Fig 5) reaches plateau values of 0.289, when the node
separation is 1, 2, or 3 voxels, which is the expected value obtained from the analytical expres-
sion in the Appendix A.3. As these simulations imply, a larger number of seed points are
needed to obtain a stable measure.

As the geometry of the fiber path becomes more complex, the number of seed points must
increase to accurately calculate the edge weight for these pathways. In all simulated fibers, a
large seed density is required to reach the plateau in the edge weight value (P > 8000 for value
within 1% of the plateau value for each case). But increasing the number of seeds per voxel dra-
matically increases computation time and data storage requirements. Cheng et al. [29] suggest
that high seed densities reduce variation in calculated brain network parameters, similar to the
results presented here. However, the highest seed density employed in their work was P = 40
[29]. The results presented here for the edge weight of Eq 1 suggest that 40 seed points are not
sufficient to provide an acceptable estimate of the edge weight between nodes. For these simu-
lations, using a seed density of 125 results in a calculated edge weight that is approximately
equal to the expected value for straight or arched streamlines connecting a single face of each
node, while only ~ 90% of the expected value for streamlines slanted in the plane of the nodes,
and ~ 80% of the expected value for streamlines slanted in all three dimensions. However an
entire brain tractography file with P = 125 yielded a file size for human data of ~ 250 GB and
rat data ~ 500 GB. The larger file size of the tractography in the rat data is due to the high spa-
tial resolution obtained in these datasets. These results suggest that P = 125 is an appropriate
compromise between storage capacity and high seed densities that will provide reasonable
results. Therefore a seed density of 125 is used is this study, but the results might be improved
with higher seed density when appropriate computation resources are available.

To simulate the effects of noise in the estimated diffusion directions, the edge weight
between identical nodes for slanted fibers, in-plane with the nodes (part B of Fig 5), was
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Fig 9. Simulation of edge weight values for an arc streamline pathway in the same plane as single
voxel nodes (Fig 5, part A) as random error increases. The nodes closest points were separated by 1, 2,
3,5, and 10 voxels.

doi:10.1371/journal.pone.0131493.g009

calculated as the standard deviation, o, in the diffusion direction at each step increased. With

P =125, the simulated edge weight value increasingly deviated from the expected value (1/6 for
these slanted streamline) as the edge length increased and the noise increased. Since the edge
weight is derived from tractography, which in turn is derived from DWI measurements, appro-
priate levels of SNR are needed to estimate connectivity. Bastin et al. [45] showed that SNR of
20 or higher is necessary to obtain stable tensor measures from DWI. The results illustrated in
Fig 9 indicate that noise levels below o = 0.03 will result in edge weight values close to the
expected value (differences of 7.5% or less) and suggest that measurements with SNR greater
than 30 are needed to obtain a stable estimate of edge weight.

The formulation of the edge weight presented here is normalized to remove the dependence
on seed density and to be size-scale invariant. Therefore a sufficiently high seed density should
be selected to assure that the edge weight is independent of seed density. However the edge
weight is only independent of size scale if the WM fibers of interest are sufficiently resolved. At
a spatial resolution that is low relative to the WM fibers of interest, small fiber pathways may
not be resolved sufficiently to allow the calculation of streamlines, even at extremely high seed
densities, due to volume averaging with other pathways and surrounding tissue. When a WM
pathway is not sufficiently resolved, increasing the seed density will only replicate the same
streamlines and may increase the number of false positives [46]. Therefore to quantify the edge
weight, streamline tracking requires sufficient spatial resolution and an appropriate seed den-
sity, which necessitates a compromise between image measurement time and computational
requirements.
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3.2. Human Brain Cingulum and Corpus Callosum Networks

The edge weight was calculated between disk nodes placed in the cingulum and CC WM tracts in
ten datasets from a single human subject. These tracts were selected because they represent large,
coherent, and fairly homogenous WM structures in the brain. Also the repeated acquisitions
from a single subject provide a good assessment of the variation in edge weight determination
for large WM tracks across image acquisitions from the same individual. For all 10 datasets, the
acquisition parameters were identical and the SNR was constant (~ 52 at b = 100 s/mm?, and

~ 26 atb = 1000 s/mm?). Table 2 shows the calculated average edge weight in these two major
WH regions from the 10 repeated measurements of the human subject and the coefficient of vari-
ation with and without spatial interpolation, and with and without streamline restriction (i.e.
with and without the indicator function). To examine the simplest form of resolution enhance-
ment, the diffusion-weighted images were spatially interpolated, with cubic convolution, by a fac-
tor of 2 in each dimension before the calculation of displacement probability. Although vector
field interpolation of the displacement probability function [47] may produce optimal stream-
lines, the overall results in Table 2 indicate that the calculated edge weight has lower variability
with streamline restriction which is additional improved with cubic convolution interpolation of
the diffusion weighted images.

The percentage difference between edge weights of longer edges compared to those of
shorter edges was calculated to observe discrepancies in the edge weight as a result of node
placement. Since the edge weight is a measure of connectivity strength, the edge weight of the
longer and shorter edges should only vary due to the seed point effects, as long as the stream-
line is completely contained within the edge between the nodes. The proposed method of
streamline restriction showed a difference between long and short CC edges in the 1 mm data
of 16.1% and 30.0%, and the 2 mm data showed 18.7% and 32.2% difference. But including all
streamlines without restriction, the percent difference in edge weight of the long to short edges
was found to be much greater (82.2% and 98.7% for the 1 mm datasets and 91.4% and 105.1%
for the for the 2 mm datasets). The same analysis was performed on the cingulum tract. The
percentage difference in edge weight with streamline restriction between the longer and shorter
edges was found to be 22.3% and 36.7% in the 1 mm data, and 28.7% and 37.0% in the 2 mm
data. Without restriction, the percent difference in edge weight of the longer edge relative to
the shorter edges was found the be 75.2% and 93.2% for the 1 mm data and 81.4% and 92.0%
for the 2 mm data. Therefore, the filtering of streamlines should ensures that only streamlines

Table 2. Edge weight, w(e), for edges, e, in major white matter regions (CC, corpus callosum; Cing, cingulum). Calculated average w(e) value from
the ten human datasets at 1 and 8 mm°® isotropic resolution, along with the associated coefficient of variation, c,, of the edge weight. The results are presented
for the complete edge, CC long and Cing long, as well as two subdivisions (short 1 and short 2, see text) of these long edges (see Fig 6). The calculations
were performed without restriction to the streamlines connecting the nodes (Without Streamline Restriction), and with the inclusion of streamlines fibers
restricted (With Streamline Restriction) to originate from the connecting edge, R.

Edge (e) Without Streamline Restriction With Streamline Restriction to R
1 mm?® 8 mm® 1mm® 8 mm?®

w(e) cv (%) w(e) cv (%) w(e) cv (%) w(e) cv (%)
CC long 9.42E-01 10.44 6.06E-01 15.24 1.33E-01 7.57 9.62E-02 11.13
CC short 1 2.26E+00 13.09 1.62E+00 15.01 1.56E-01 9.29 1.16E-01 9.55
CC short 2 2.77E+00 9.00 1.95E+00 13.29 1.79E-01 8.54 1.33E-01 9.88
Cing long 2.56E-01 12.36 1.50E-01 15.12 6.12E-02 9.52 4.31E-02 12.49
Cing short 1 5.64E-01 9.76 3.57E-01 11.86 7.66E-02 7.74 5.75E-02 10.73
Cing short 2 7.02E-01 9.80 4.06E-01 13.57 8.87E-02 7.80 6.26E-02 8.15

doi:10.1371/journal.pone.0131493.1002
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originating from within the pathway are used when estimating connectivity by eliminating
streamlines that originate from outside the pathway (voxels outside of region R), which might
otherwise contribute to the edge weight calculation.

3.3. Rat Brain Temporal Lobe Network

The major structures in the rat TL network are shown in Fig 6, part E through G, at three dif-
ferent spatial resolutions. The data was acquired with an isotropic resolution of 190 pm (part
F) in 20 hours with acquisition parameters that represent a compromise between SNR, spatial
resolution, and the DWI parameters. In the highest spatial resolution dataset (part E), the TL
network displays a set of long streamlines wrapping around the HC (red node), while the lower
spatial resolution dataset shows much fewer streamlines connecting to the surface area of the
HC (part G). The edge weights are shown in part A of Fig 10 for the six edges in the left and
right side TL network at 95, 190 and 380 pm isotropic resolution.

As discussed in the development Eq A-2 of the Appendix, the edge weight defined in Eq 1
can be conceptualized as the ratio of the edge volume divided by the total edge volume available
(product of the nodal surface-area average and the edge length). Here the edge volume is the
product of voxel volume and the number of streamlines in the edge, since each voxel in an edge
will contribute a streamline to the total number of streamline (see Eqs A-1 and A-2). The
extremes for the concept of volume ratios described in Eq A-2 are shown by the following: The
TH-EC edge has a very low weight (on the order of 107°), since the edge volume is smaller (see
part C of Fig 10) and the edge length is longer (see part E) than the other edges in the TL net-
work. In three of the six rat brains at the lowest resolution of 380 um, no streamlines in the
TH-EC edge met the criteria discussed in the edge weight section. So the TH-EC edge weight
was assigned a value of zero for these three brains at 380 pm resolution. At the other extreme,
the EC-AM has the highest edge weight, since the edge volume is larger and the edge length is
shorter that than the other nodes. As indicated by the simulations, longer streamlines increas-
ingly become more difficult to estimate accurately, due to error propagation in the tractogra-
phy process. The edge weight variation (error bars) for any particular edge was similar at all
resolutions, but the weights of edges to the HC consistently increases with decreasing resolu-
tion in the left and right side networks, whereas the EC-AM edge weight decreases with
decreasing resolution, which is a reflection of the resolution dependence of the edge volume
and edge length.

As shown in part D, the nodal surface areas are relatively independent of resolution and
their variability is similar. Therefore surface area resolution dependence does not contribute
much to the resolution dependence of the edge weight. In addition, the resolution dependence
is minimized because the nodes were segmented using the high-resolution images as a refer-
ence. The HC is the largest and most consistently defined node with surface area variations of
less than 3% at all resolutions. The AM, EC and TH are in close spatial proximity to other ana-
tomical structures with similar contrast, which made the segmentation of these nodes more dif-
ficult than the HC. Ample care was taken to consistently define the TL nodes, which resulted in
the small variation in the surface areas observed.

The node strength (see part B of Fig 10) shows similar results for left and right TL networks
and the low variability suggests some robustness in this metric. But the node strengths of the
HC and TH increase with decreasing resolution, the AM decreases slightly with decreasing res-
olution, and the EC did not show much resolution dependence. The HC and TH are central
nodes connected to the other nodes through longer WM pathways. As the spatial resolution
decreases, the calculated length of the edges connected to the HC and TH nodes decrease and
the edge volume increases to yield larger edge weights as the resolution decreases, which results
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Fig 10. Excised rat brain TL network parameter values at isotropic resolutions of 95, 190 and 380 pm. The edge values are in the left column and node
values in the right column: (A) Edge weights values (TH-EC values are too small to appear at this scale), (B) node strength values, (C) edge volume, (D) node
surface area, and (E) edge lengths. (F) The highest resolution TL network with the edge widths size scaled by the value of edge weight and the node size
scaled by the value of the node connection strength. The TH-EC edge is illustrated at the minimum line width that is still visible.

doi:10.1371/journal.pone.0131493.9010
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in an increase in the connection strength of these nodes as the resolution decreases. The AM
node is located in an inferior part of the TL network (Fig 6) and only connects to other TL
structure through shorter pathways. Lower spatial resolution minimizes the number of voxels
that contribute to the weight of edges connected to the AM, so the estimation of these stream-
lines becomes increasingly difficult without adequate spatial resolution. Finally the EC is situ-
ated such that pathways connecting the EC to the HC are enhanced at low spatial resolution.
While at high spatial resolution, the small pathways connecting the EC to the TH and AM
become better characterized, hence making the EC node strength consistent across changes in
spatial resolution. Therefore in the rat brain, resolution higher than 380 pum is needed to esti-
mate the connectivity in the TL network. These results support the notion that spatial resolu-
tion is a limiting factor in resolving edges between nodes.

Discussion

Using streamline tractography, large-scale fibrous brain structures have been studied in vivo as
binary networks [15-21]. While binary connections provide insight into network structure,
weighted networks are better suited to the study of the connection strength between nodes in
brain networks, particularly smaller local networks, such as the TL. The connectivity of the TL
network corresponds to a completely connected network, as shown in Fig 6. Employing a
binary characterization of this network no new information is obtained, since these nodes are
known to be connected. On the other hand, weighted networks add another degree of freedom
in the characterization of these local networks and create a more realistic representation of the
brain.

As shown in Fig 8, a high seed density is required to reduce the variation in the calculated
connectivity metrics, which is consistent with previous reports [29]. However, with our com-
puting resources, a compromise was necessary between computational requirements (compu-
tational time and data storage) and seed density, to reliably map the streamline connectivity.
The simulations suggest that a seed density of several thousand would be optimal, but this
would require excessive computation resources beyond the capacity available for this study.
Therefore a seed density of 125 is used as a compromise, between the limitations of computa-
tional resources and the optimal seed density, to minimize the effect to roughly 10% or less of
expected values in simulations, but avoids excessively large tractography files. Some of the
computational and storage limitations could be overcome with novel tractography techniques
[48] that take advantage of the increased computing power. In addition, innovative tractogra-
phy algorithms can be used to improve tracking of streamlines used to calculate the edge
weight [49, 50]. The need for large seed densities has been suggested [29] independent of
weighting scheme, but this study is the first time a proposed edge weight has been developed to
address the needs of a higher seed density while maintaining a convergent characteristic as
seed density is increased, and the scale changed.

In Fig 9, the results of the simulations show an increased uncertainty in the edge weight
value as random errors in the estimated diffusion direction and the node separation increase,
as previous reported for fiber tracking [45, 51]. For o levels less than 0.03, the percentage differ-
ence in the edge weight between the shortest and the longest streamlines are less than 11.9%
and the ¢, less than 7.5. Therefore, high SNR in the DWI acquisitions is needed to maintain
accurate fiber estimation [52] and to allow the calculation of a reproducible edge weight
measure.

Using the indicator function to restrict the inclusion of streamlines (see Eq 2), the calculated
corpus callosum and cingulum edge weights are more consistent. Since the number of white
matter fibers should not vary greatly along the length of either structure, so the edge weights
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for the long and short edges should be similar. As shown in Table 2, the difference between the
long and short edges and the coefficient of variability is greatly reduced with streamline restric-
tion. But edge weight does not depend solely on the number of streamlines in the edge. For an
edge of constant cross section, the number of fibers is proportional to the cross sectional area
of the edge. For example in the 8 mm” resolution data, the cross sectional area of the streamline
path between the nodes in the cingulum is approximately 58.4 mm? and for CC is 87.2 mm?,
but the long cingulum edge weight is only 55% of the long CC edge weight. This reflects the
fact that cingulum nodes have roughly 48.5% larger surface area (459.2 mm?) than the CC
nodes (309.2 mm”) and the edge weight is inversely proposal to the average surface area of the
connected nodes. This illustrates that the edge weight depends strongly on the nodal surface
areas (size of the nodes) as well on the number of streamlines connecting the nodes.

For the excised rat brain network (shown in parts E through I of Fig 6), streamlines connect
all four nodes in this four-node TL network and are mainly concentrated near the HC (red
ROI). Segmentation of nodes (see part I of Fig 6) at the lowest resolution was not possible
because no clear node boundaries could be identified. Therefore node segmentation was per-
formed using the high-resolution images, and then nodes in the lower resolution images were
derived by registering high-resolution image nodes to the low-resolution images. This node
segmentation procedure results in low variability of surface area estimates for all spatial resolu-
tions (see part D of Fig 10). However, there is a slight increase in node surface area as resolution
decreases.

At lower resolution, white matter and gray matter may average at the boundary of a node,
so that fewer voxels will yield coherent pathways. As shown in part E of Fig 10, TH-EC edge is
the longest and has the highest variability, while the variation is much less in the other shorter
edges, which is consistent with the findings of Miles and Laidlaw [51], who noted that the effect
of noise on calculated streamline tracts increases with increasing edge length. Also the TH-EC
edge proved difficult to resolve given its small size and long length.

As shown in part C of Fig 10, the number of streamlines in the edge (edge volume) is
strongly dependent on resolution. In this figure, the dependence of the number of streamlines
on seed density is removed by dividing all values by the seed density (of 125 in this case). Then
the direct dependence on resolution is removed by calculating the edge volume. In part A
of Fig 10, the edge weight is also strongly dependent on resolution with the most significant
dependence exhibited by edges connected to the HC. Thus the node strength, shown in part B
of Fig 10, more strongly depends on resolution for the edges to the HC. Because the EC and
AM nodes are close, the edge between them has the shortest length (see part E of Fig 10), but
has the highest edge volume and weight; thus parts E through G of Fig 6 display a coherent
fiber structure connecting the EC and AM nodes. Assuming the result calculated from the
highest resolution image data provides the most accurate results, a final diagram representing
the four-node network is shown in a Part F of Fig 10. For this figure, the edge width is scaled by
the edge weight and the node size by the node connection strength. The TH-EC edge is illus-
trated at the minimum line width that is still visible in the diagram.

Conclusion

Previously brain connectivity studies mostly used binary network descriptions of the cortex
[15-17], but weighted networks provide a more natural description of brain network connec-
tivity [23, 25, 26]. The dimensionless and scale-invariant formulation of the edge weight in
Eq 1 removes the direct influence of seed density and spatial resolution on the estimation of
network characteristics, like edge weight and node strength, which diverge as seed densities
increase for other formulations of edge weight (Fig 1). Therefore, the use of the edge weight,
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defined in Eq 1, clearly demonstrates the need for high seed densities to increase network met-
rics reliability [29]. An appropriate SNR level and sufficient resolution are essential for the
acquisition of optimal data to estimate the fiber paths connecting anatomical structures [45,
51], particularly for subcortical to cortical connections. Errors associated with low SNR affects
the estimated diffusion profiles leading to error propagation in streamline tractography, thus
reducing confidence that the result represents actual long fiber pathways. But even with higher
SNR, improvements in the spatial resolution of diffusion profiles [11], along with optimized
interpolation schemes [47, 53], may improve streamline tractography.

Seed density and volume averaging effects are more important at spatial resolution low rela-
tive to the actual WM tract size, suggesting that high seed densities and higher resolution will
reduce the variability of weighted network metrics. The selection of a high seed density requires
a compromise between accuracy and computation resources, but this may be overcome as
available computation resources improve. However, higher spatial resolution requires a com-
promise between time and SNR. Therefore the ability to reliably quantify streamline tracts
depend on having sufficient SNR with appropriate spatial and angular resolution, which will
ultimately allow the use of tractography to estimate fiber pathways and the creation of weighted
networks in the brain.

Appendix: Analytical Expression for Edge Weight

In this appendix, an analytical expression is developed for the edge weight of Eq 1 in order pro-
vide a prospective on the value of edge weight expected in the idealized geometries shown in
Fig 5. Starting from Eq 1, the following rearrangement of terms,

(LS e

p=1 m=1

suggests an analytical expression for the edge weight of the following form,

1 1
w(e;) = wml av, (A—2)

where the integral over R defines the volume occupied by the streamlines defined by the indica-
tor function, (A) is the mean surface area of the nodes, and I(f, ) is the average length of the
streamlines. Explicitly (A) is given by,

R ROR SR (ORI

where g; is the function describing the surface along the z axis of node i and T is the region of the node

) (A_3)

occupied in the xy plane. The mean length of the streamlines in the edge located within region R is speci-
fied by

2

- 1
= l:
1(fz) N —sl/Sd -

S1

L4 f(x)* dx')dl, (A —4)
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where

SZ/\M ) dY, (A—5)

The function, f(x), is the trajectory of the fiber with slope f, and s is the length of individual
fibers.

In the denominator of Eq A-2, the volume measure, (A)I(f,), can be considered topologi-
cally to represent the total volume available for connection between the nodes, analogous to
the total volume of a cylinder (i.e. cross section area times length), since the surface of the
nodes can be flattened to represent the cylinder base and the mean fiber length to represent the
cylinder height. Since the numerator is the volume occupied by the streamlines in the edge con-
necting the nodes, the edge weight represents a ratio of the edge volume occupied by the
streamlines to the total volume available for streamline connections between the nodes. From
this perspective, the edge weight can be seen to be independent of streamline length.

A.1. Calculation of the edge weight for an in-plane straight or arced edge

Using the concept that the edge weight is the ratio of volume occupied to volume available, the
edge weight value between equivalent cubic nodes, joined along one face of each node, should be
1/6 independent of the streamline path, as illustrated in the examples shown in Figs 3 and 5A.

A.2. Calculation of the edge weight for an in-plane slant edge

The edge weight expression in Eq A-2 can be used to calculate the strength of connectivity
between the two nodes shown in Fig 5B. The surface area of a cubic node with sides d is given by

(A) = 6. (A—6)

The average fiber length, with any number of voxels separating the nodes is given by

1 (M+1)d | (M+1)d 1 P M+1
l:m / /\/1+1dxdl:\/§/x dl:\/§d§
Ma o Ma 10 M (A—7)

(M+1)°-M> .~ 2M+1
=V 2 = vad 2

Alternatively, the average length is the average of the shortest and longest fiber. In this case,
all fibers are distributed evenly in the xy plane, forming a square cross section of fibers connect-
ing the nodes. The mean fiber length obtained by

7:

V2Md +V2(M + Dd _ 5 2M+1

2 2 (A—8)

which is the same result of Eq A-7. For this case, the volume occupied by the fiber in the region
R (volume integral in Eq A-2) is obtained by
R 0<z<d, O<x<d, 0<y<dx+1)
/dV: R, O0<z<d, d<x<dM+1), de<y<d(x+1). (A-9)
R R, =R, +R,
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First, the integral over R; is given by

d [nd [ a d () d S
/dV:/ / /dz dy dx:d/y dx:dz/xdx:cf% :%. (A — 10)
Ry 0 d 0 0o d 0 0

Then, the integral over R, is obtained by

_ W+ [ [ (M+1)d (M+1)d M1
/ av = / / /dz dy |dx=d" / ldx = d* / dx =d*x| =d'M. (A—11)
Ry d xd 0 d d 1

Finally, employing the expression for the entire volume R (Eq A-9) and the solutions of Eqs
A-10 and A-11 yields the volume for the entire region R by the following expression,

/dV:Q[/dV—I—/dV}:2d3{M+%}:d3(2M+1). (A —12)

In conclusion, the edge for the slant on a plane where the nodes’ surface area is specified by
Eq A-6, a mean edge length equal to Eq A-8 and the volume occupied by the fiber obtained by
Eq A-12, yields an edge weight given by

1 1

) 1
=——— _2M+1)d*=—=~0.235 A-13
W(e) 642 \/id(QM;rl)( +1) 3\/5 ) ( )

regardless of the physical length of the edge.

A.3. Calculation of the 3d-slanted edge

The continuous edge weight is now used to calculate the connectivity strength for a fiber
shown in Fig 5C. The surface area of the nodes is given by Eq A-6. The volume occupied by the
fiber yields two long fibers for every short one (Fig 11), forming a triangular cross section
instead of a square cross section as the slant on plane example. As the separation of the nodes,
M, is increased one obtains the following number of fibers,

M, =1 V3+2(2v3)
M, =2 V3 +2(3v3)
M, =3 V3 +2(4v3)

(A—14)
My=M V3+2((M+1)V3)
The mean length at any separation, M, of the voxels is given by
- Md +2v/3(M + 1 M+ 2
l:\/ﬁ d+2v3(M + Jd _ 5y 3M+2 (A 15)

3 3
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Fig 11. Slanted edge. (A) 3D edge sideways. (B) 3D edge at an angle to display the face where it connects to the node. Nodes are not shown to simplify the
visualization. (C-D) Sketch of one of the portions that make up the fiber. (C) Shows that for every short fiber there are two of the long ones. (D) Shows a short
side, which has a length of ,/3 and the longer one is 2,/3. (D) Shows the triangular cross section of the fiber, yielding a higher number of longer fibers

compared to the short ones.

doi:10.1371/journal.pone.0131493.g011

The occupied volume by the fiber on each voxel (Fig 12) is obtained by calculating the fol-

lowing

/deRl, O<z<dy, 0<x<d, 0<y<dx (A —16)

A
Lo
| I

Fig 12. Sketch of the portion of the voxel (dark gray) adjacent to the node that contributes to the edge.
(A) Shows the dark gray corresponding to the voxel above the node voxel on a sideways view. (B) Shows the
voxel above the node voxel on a view along the z axis. (C) Shows to the voxel above the node voxel on a top

view. (D) Sketch of the isolated piece of the voxel contributing to the edge. This volume is repeated along the
fiber length except in middle nodes where the entirety of voxel contributes to the edge weight.

doi:10.1371/journal.pone.0131493.g012

PLOS ONE | DOI:10.1371/journal.pone.0131493  July 14,2015 25/29



@’PLOS ‘ ONE

Dimensionless Tractography Derived Edge Weight

The solution of Eq A-16 yields half of the contribution of each voxel to the edge and is
obtained by,

d [ xd [ d ax M d 1
, [ X0 d?
/de/ / /dz dy dx:d//z dydx=d2/5dx=d“g :E'(A_”)
Ry 0 0 0 0 0 ‘o 0 0
The total volume is twice of Eq A-17, yielding a result given by
d3
/ dv =—. (A—18)
3
Ry
At any separation, M, the number of voxels and the volume each voxel contributes to the
edge weight is given by
separation (numberof d*/3 voxels), numberof d* vozels
M =1 (3,3,6),1
M,=2 (3,3,6,6), 2
(A —19)
M, =3 (3,3,6,6,6), 3
M, =M (3,3,6M), M.
Therefore, the total volume of region R becomes,
a4 A ,
/dV:§(6M+6)+Mal3 = (3M + 2)d". (A —20)
R

Finally, the edge for the slant on a plane with a surface area of the nodes specified by Eq A-
6, a mean edge length equal to Eq A-15 and the volume occupied by the fiber obtained by Eq
A-20, yields an edge weight given by,
1 1

. 1
= (BM +2)d* = ——~0.289, A—21
wie) = /34T (3M +2) e 0.289 ( )

regardless of the physical length of the edge.
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