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Abstract

The incidence of AIDS-defining cancers (ADCs) -- Kaposi sarcoma, primary central nervous 

system lymphoma, non-Hodgkin lymphoma, and cervical cancer -- although on the decline since 

shortly after the introduction of highly active antiretroviral therapy (HAART), has continued to be 

greater even in treated HIV-infected persons than in the general population. While the survival of 

newly infected people living with HIV/AIDS now rivals that of the general population, morbidity 

and mortality associated with non-AIDS-defining cancers (NADCs) such as lung, liver, anal and 

melanoma are significant and also continue to rise. Increasing age (i.e., longevity) is the greatest 

risk factor for NADCs, but longevity alone is not sufficient to fully explain these trends in cancer 

epidemiology. In this review, we briefly review the epidemiology and etiology of cancers seen in 

HIV/AIDS, and in this context, discuss preclinical research and broad treatment considerations. 

Investigation of these considerations provides insight into why malignancies continue to be a 

major problem in the current era of HIV/AIDS care.

Introduction

In late 1995, the first generation of HIV protease inhibitors became commercially available. 

Within a few months, clinicians were combining these novel drugs with nucleoside and non-

nucleoside reverse transcriptase inhibitors. The beneficial effects of what soon became 

known as highly active antiretroviral therapy (HAART) were immediate and profound. In 

just a few years, the number of cases of newly diagnosed AIDS, AIDS-related deaths, and 

AIDS-defining cancers (ADCs), had decreased by greater than 70% [1-3]. However, even as 
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AIDS-related mortality has continued to decline, the rate of new HIV infections has 

remained constant [4-6]. Consequently, the number of people living with HIV/AIDS 

(PLWHA) has increased by a factor of four [4-6]. Although HAART affords PLWHA a 

longer life expectancy, it also leaves them increasingly vulnerable to the same array of 

cancers associated with aging that are seen in the general population [7-12]. These non-

AIDS-defining cancers (NADCs) include those associated with viral infections (e.g., anal 

[Human Papilloma Virus (HPV)], liver [Hepatitis C (HCV) and Hepatitis B Viruses (HBV)], 

head and neck [HPV]) and those not associated with viral infections (e.g., lung and 

melanoma). In industrial nations, the number of cases of NADCs now equals or exceeds the 

number of cases of ADCs, and NADCs are a leading cause of mortality for PLWHA [3, 

7-10, 13-16]. Age and immune status, however, are insufficient to fully explain these trends 

in cancer risk. For PLWHA, even those with normal CD4+ T cell counts, the risk for many 

NADCs remains greater than for their age-matched HIV-sero-negative counterparts [8-10, 

13, 14]. Furthermore, compared to the general population, PLWHA present with more 

aggressive and advanced disease at the time of cancer diagnosis [17-20]. These changes in 

cancer epidemiology are not well understood. We include preclinical research findings and 

discuss the epidemiology and etiology of both NADC and ADCs. We also briefly examine 

cancer treatment in the context of HAART-chemotherapy interactions.

Epidemiology

AIDS-defining Cancers

In 1982, the United States Center for Disease Control and Prevention expanded the case 

definition of AIDS to include HIV-infected individuals diagnosed with Kaposi Sarcoma 

(KS) and primary central nervous system lymphoma (PCNSL) [2]. Cervical cancer and 

intermediate- and high-grade forms of non-Hodgkin lymphoma (NHL) were added to the list 

of ADCs shortly thereafter [2]. The risk of cancer in PLWHA can be defined by the standard 

incidence ratio (SIR) [21]. For malignancies in HIV, the SIR compares the rate of cancers in 

the HIV/AIDS population to the number expected in the general population at any given 

time [2, 7-10, 22, 23]. In the HAART era, the SIR has decreased for all ADCs, with the 

exception of invasive cervical carcinoma [2, 7-10, 22, 23]. However, even now the risk for 

each of the ADCs remains above that of the general population (Table 1) [2, 7-10, 22, 23].

Prior to the emergence of HIV, KS was a rare disorder. Between 1987 and 1993, KS 

incidence increased 66-fold from 0.5 to 33 patients per 100,000-patient years in PLWHA 

[1]. During this period, NHL incidence increased by a more modest three-fold. Based the 

complex epidemiology and histologic interpretation of lymphomas, nine subtypes were 

defined by the World Health Organization as associated with HIV infection (Table 2) [24]. 

Among these nine, all are considered ADCs except low-grade lymphomas, extranodal 

marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT), and Hodgkin 

lymphoma (HL) [2, 21, 24]. The most common AIDS-defining NHLs are of B cell origin, 

present with advanced-stage disease, and follow an aggressive clinical course [25]. These 

AIDS-defining NHLs include PCNSL, Burkitt's lymphoma (BL), diffuse large B cell 

lymphoma (DLBCL), plasmablastic lymphoma, and primary effusion lymphoma (PEL) [24, 

25]. In the pre-HAART era, DLBCL and PCNSL were the most common NHLs in PLWHA, 
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presenting with an incidence of 453 and 233 cases per 100,000 patient-years, respectively 

[23, 25]. Between 2001 and 2007, the most common AIDS-defining NHL remained DLBCL 

although its incidence had decreased to 120 cases per 100,000 patient-years [23]. During this 

same period, and with an incidence of 32 cases per 100,000 patient-years, BL supplanted 

PCNSL as the second most common AIDS-defining NHL [23].

Together, KS and NHL accounted for 99% percent of all ADCs in the pre-HAART era [1]. 

From 1991-1995 to 2001-2005 when ART was introduced, the number of KS cases declined 

by 84% and the number of NHL cases declined by 54%. During this same interval, the 

incidence of all ADCs decreased by 70% [1, 3]. In the HAART era, however, ADCs 

continue to be a major problem. Between 2001 and 2005, more than 2,000 cases per year 

were diagnosed in the United States, and these malignancies currently account for 15-19% 

of all deaths in PLWHA [14, 16]. One of the most important risk factors for NHL and KS is 

immune suppression as reflected by the CD4+ T cell count [7, 26, 27]. In retrospective 

analyses, the SIR for NHL increased from 35.8 to 145 and for KS from 76 to 571 when the 

CD4+ T cell count decreased from 500 to less than 100 cells/mm3. In contrast, the incidence 

of BL increased from 9.6 to 30.7 per 100,000 person-years as the CD4+ T cell count 

increased from less than 50 to greater than 250 cells/mm3 [28-30]. This paradoxical issue is 

further discussed in the Etiology section below.

Non-AIDS-Defining Cancers

In the United States, NADC incidence increased greater than three-fold, from 3,193 cases to 

10,059 cases when comparing the intervals 1991-1995 and 2001-2005 [3]. In resource-rich 

countries in the pre-HAART era, NADCs accounted for approximately 8% to 38% of all 

HIV malignancies [3, 31, 32]. In the HAART era, this number has increased to 50-58% [3, 

13, 22, 31-34]. Depending on the malignancy, the SIR for most NADCs ranges from 2 to 35 

(Table 1) [13, 23, 31-38]. The most important risk factors for NADCs are advancing age and 

the length of time one has been infected with HIV [7, 13, 39]. Additional important factors 

that impact NADC incidence are exposure to cigarette smoke and oncogenic viruses [38, 

40-42]. Less clear risk factors include a low CD4+ T cell count and the use of anti-HIV 

therapy [7, 22, 43, 44]. In a multivariate analysis, two risk factors for NADCs emerge: a 

CD4+ cell count less than 200 cells/mm3 and the use of HAART [10]. However, the link 

between low CD4+ T cell count and NADCs is conflicting and is disease- and time-

dependent. The SIR for anal cancer increases from 22 to 68 when the CD4+ T count remains 

less than 200 cells/mm3 for more than five years compared to two years [42]. In contrast, the 

SIR for HL increases from 5 to 14 as the CD4+ T cell count rises from 50 to 200 cells/mm3 

[3, 35, 38]. When PLWHA are compared to recipients of solid organ transplants, both 

populations have similar risks for KS and NHL as well as certain NADCs including HL, 

anal, liver and lung cancer [43]. In the case of lung cancer, even when correcting for 

cigarette smoking, the incidence remains greater in PLWHA than in the general population, 

although no correlation between low CD4+ T cell count and lung cancer risk has been 

identified [40, 41].

The role of HAART as a possible contributor to malignancy has not been validated by all 

studies [13, 45, 46]. NADCs are prevalent among long-term surviving HIV-infected patients 
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not requiring therapy or in developing countries without access to therapy [47]. Therefore, 

HAART may be a risk factor due to its ability to increase longevity rather than its direct 

carcinogenic or anti-carcinogenic potential. Of interest, statins (like HAART) have, through 

alternative modes of action, anti-inflammatory properties that reduce immune activation. In 

a recent retrospective analysis, they were associated with a 57% decrease in NADCs [48]. 

Additional studies are needed to better understand the role of chronic inflammation as a 

mediator of cancer risk.

The effects of both NADCs and ADCs are profound and 26-30% of PLWHA will die from 

these malignancies [14, 15]. In the United States, more than 4,000 new cases of cancer are 

diagnosed in PLWHA each year [3]. The median age of PLWHA in the United States now 

exceeds 50 years. Developing robust strategies to screen this group for preventable cancers 

will become increasingly important. Unfortunately, standard guidelines for cancer screening 

in this group do not exist. More research and algorithms are needed to improve cancer 

detection rates while also examining behaviors that can influence risk factors for cancer such 

as unsafe sex, heavy alcohol consumption, and cigarette smoking [49, 50].

Etiology

The etiological factors that contribute to both ADCs and NADCs are multifactorial and an 

entire review could be devoted to this topic alone. Thus, we describe the major factors that 

may be most relevant to malignancies in HIV/AIDS, including those that have been less 

described or previously not recognized. Further, as these factors are well-represented across 

the spectrum of lymphomas, we focus on AIDS-defining NHLs and HIV-associated HL as 

models of these factors.

PLWHA are susceptible to infection by oncogenic viruses. Kaposi sarcoma-associated 

herpes virus (KSHV) or human herpes virus 8 (HHV-8), Epstein Barr Virus (EBV), HPV, 

and hepatitis B and C viruses are implicated in various ADCs and NADCs and are more 

prevalent in PLWHA (Table 3) than the general population [28, 29, 51-55]. These viruses 

can alter mechanisms of apoptosis and cell cycle regulation, activate oncogenes, and inhibit 

tumor suppressor genes [56-62]. Viruses associated with ADCs and NADCs can also 

express micro-ribonucleic acids (miRNAs), which are small non-coding RNAs that act as 

negative regulators of protein synthesis by covalently binding to single-stranded mRNA 

[63-66]. HHV-8, HPV, and EBV together express over 40 miRNAs that play varied roles in 

promoting cancer [64, 66-68]. EBV-expressed miRNAs include MiR-BHRF1-1, which 

inhibits the tumor suppressor gene p53 and miR-BART1, which activates BCL-2, an anti-

apoptotic protein [59, 66-69]. HIV, although clearly not a direct oncogenic virus, has also 

been implicated in inhibiting the p53 tumor suppressor gene, altering cell cycle regulation, 

and activating proto-oncogenes that can lead to cellular transformation [56, 62].

In terms of lymphoma, EBV and HHV-8 are the most common viruses associated with 

AIDS-defining NHLs and HIV-associated HL (Table 3) [28, 29, 54, 70, 71]. Forty percent 

of BLs and as many as 80-100% of immunoblastic B cell lymphomas, HLs, and PCNSLs are 

linked to EBV infection in the HIV/AIDS setting [28, 29, 54]. PEL, a rare lymphoma 

subtype with a peculiar tropism for involving serous cavities, is most often associated with 
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both HHV-8 and EBV [28, 29, 54]. Chronic antigenic stimulation of B cells and 

macrophages induced by EBV, HIV, and HHV-8 elicits cytokine and growth factor release 

which promote B cell proliferation and the outgrowth of a monoclonal B cell population [71, 

72]. In addition, AIDS-defining NHLs are often associated with characteristic molecular 

abnormalities. For BL and Burkitt's-like lymphomas this includes a translocation of the 

cMYC gene with the immunoglobulin heavy and light chains [73, 74]. In addition, the tumor 

suppressor genes p53 and BCL-6 are mutated in 30% or more of DLBCL and BL cases. 

Both of these genes, if mutated or overexpressed, contribute to lymphoma genesis by 

preventing cell cycle regulation, inhibiting B cell apoptosis (via p53 mutation), and 

preventing B cell terminal differentiation (via BCL-6 overexpression)[73, 74]. The extent to 

which overexpression of various proteins, translocation of important genes, and oncogene 

activation by various viruses play in this intricate process of lymphoma genesis remains an 

area of active investigation.

PLWHA and persons with low CD4+ cell counts are at greatest risk for DLBCL although in 

the HAART era the absolute CD4+ cell count at diagnosis is greater than in the pre-HAART 

era. In contrast, patients with BL and HL are usually diagnosed with somewhat higher CD4+ 

T cell counts [35, 54, 75]. CD4+ T cells modulate B cells and antibodies directed at 

extracellular organisms, and cell-mediated responses, which involve CD8+ T cell defense 

against intercellular organisms [76-81]. HIV can readily infect these CD4+ T cells and 

without HAART, they are destined to be depleted [76, 79]. CD4+ T cells produce cytokines 

that help regulate B and T cell responses [76, 79]. In addition to immune regulation, these 

cytokines can also influence B and T cell survival [79]. This effect could account for the 

disruption (in patients with chronic HIV infection) of germinal centers, the areas in the 

lymph nodes and lymphoid tissues where B cells proliferate, differentiate, class switch, and 

augment antibody production in response to infection [77, 80, 81]. The B cells that reside in 

the germinal centers but are not exposed to CD4+ T cell survival signals (due to elimination 

of CD4+ T cells by HIV), are destined to undergo premature apoptosis [76-79, 81]. BL is a 

cancer derived from germinal center B cells. If the germinal center is not present or 

disrupted (e.g., due to lack of CD4+ T cells), then BL may not develop. This might help 

explain the paradox of why BL incidence increases as the CD4+ T cell count rises [32].

The cancer cell associated with HL, the Hodgkin Reed Sternberg (hRS) cell, is also of B cell 

origin [82]. Studies of both primary HL cultures and hRS cell lines reveal that these cells 

secrete some of the same cytokines produced by CD4+ T cells, including interleukin-5 

(IL-5), IL-10, IL-12, IL-13 [78, 83-89]. These ILs not only affect B, T, and eosinophil cell 

activation, proliferation, and survival but also act as trophic factors promoting hRS cell 

survival via the Janus Kinase/Signal Transducer and Activator of Transcription (JAK/

STAT) signal transduction pathway [85, 87, 88]. The hRS cell also secretes chemokines that 

attract CD4+ T cells to their “microenvironment,” which further augments hRS survival [72, 

78, 83, 84, 86].

How oncogenic viruses, HIV, and CD4+ T cell lymphocytes interact to promote these 

malignancies remains an area of active investigation. As discussed above, without these 

signals, as is the situation in AIDS, the microenvironment may be inadequate to support the 

genesis of malignancies. Another explanation may be that CD4+ T cell counts may not 
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sufficiently indicate malignancy potential at the time of cancer diagnosis, as by the time that 

CD4+ T cell counts drop, the cancer has been developing for some time undetected. Some 

studies, instead, have linked the nadir CD4+ T cell count to future pro-malignancy potential 

[9, 10]. Lastly, total CD4+ T cell counts (nadir or at the time of cancer diagnosis) alone may 

not adequately provide an indication of the potential of certain CD4+ T cell subsets in 

helping or regulating anti-tumor responses. In HIV/AIDS particularly, CD4+ T cells have 

important dual impact on both anti-HIV and anti-tumor responses. First, CD4+ T cells are 

important providers of CD8+ T cell help and, in their absence, long-term CD8+ T cell 

responses require alternative forms of co-stimulation [90-92]. Second, CD4+ T cells are a 

prime target and reservoir of HIV infection. A growing number of CD4+ T cell subsets have 

been recognized with roles ranging from regulation (inhibition) to propagation of immune 

responses based on their cytokine profile, transcription factor requirements, and immune 

regulatory functions [79, 93-103]. While the role of traditional subsets of CD4+ T cells (T 

helper type 1 [Th1], Th2, Th17, and regulator T [Treg] cells) has been investigated, little to 

no basic science or clinical information exists regarding novel subsets (Th9, Th17, Th22, 

natural [nTreg], inducible Treg, IL-35-producing [Tr35] and IL-35-inducible Treg [iTr35], 

and cytotoxic CD4+ T cells) in HIV/AIDS and/or in the context of malignancies in HIV/

AIDS. In addition while total CD4+ T cell counts are used as a marker of disease 

progression or treatment efficacy (as CD4+ T cell counts recover with HAART), it is 

unknown whether all subsets recover proportionately, or whether certain subsets or 

proportions of subsets leave HIV/AIDS patients resistant to infection but more susceptible to 

malignancies.

Life style choices also clearly impact cancer risk. Cigarette smoking is common in the HIV 

population. Greater than 50% of PLWHA smoke compared to just 18% of the United States 

general population older than 18 years [104, 105]. PLWHA who smoke are at higher risk for 

ADCs and NADCs, including those that involve the lung, esophagus, kidney, bladder, head 

and neck, breast, and cervix [104, 106, 107]. The correlation between smoking and colon 

and hepatocellular cancer is not as strong [107]. Alcohol addiction is also more common in 

PLWHA. Cancer mortality is three times higher in patients who smoke than in non-smokers 

[108]. In addition, when assessing all causes of death, AIDS-related and non-AIDS-related 

mortality rates are five times higher in PLWHA who smoke compared to those who do not 

[136]. In the United States, rates of heavy alcohol consumption among PLWHA are twice as 

great as they are in the general population [106]. Alcohol consumption is also associated 

with cancers of the mouth, esophagus, pharynx, larynx, and liver [109].

Differences in exposure to oncogenic viruses, CD4+ T cell recovery, and lifestyle may 

strongly influence the incidence of certain cancers in PLWHA, but why such individuals are 

often diagnosed with more advanced-stage tumors than the general population requires 

further study [25, 41, 42]. Disparities in health care and how PLWHA access medical care, 

as well as the higher incidence of AIDS and cancer in minority populations, are additional 

important points when considering the incidence of various cancers in PLWHA [110-112].
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Treatment

In the HAART era, HIV-infected patients are increasingly offered chemotherapy options for 

malignancies that were once restricted to non-immunosuppressed patients with cancer or 

cancer patients who were HIV sero-negative. Safer, more convenient, and better-tolerated 

HAART options, improved supportive care strategies, and incremental refinements in cancer 

treatments have all contributed to improvements in overall survival (OS) and a decrease in 

therapy-associated toxicity in select HIV-cancer groups. From the pre-HAART to the 

HAART era, the OS for patients with HL improved from 45% at two years to 76%-81% at 

five years [113-115]. Similarly, DLBCL OS improved from just eight months in the pre-

HAART era to a current five-year OS of 60%-80% [116-119]. HIV-infected patients with 

anal carcinoma now have similar treatment-associated toxicities, including risk of 

colostomy, and OS compared to their non-HIV-infected counterparts [120, 121]. While the 

specific treatments for each cancer type are outside the scope of this review, here we focus 

on the interactions of HIV medications and chemotherapeutic agents and briefly assess 

immunotherapeutic options.

Many chemotherapeutic drugs and HIV medications are metabolized through the 

cytochrome p450 (CYP) enzyme system of the liver. HAART can augment or inhibit the 

clearance of chemotherapy agents by the up regulation or inhibition of the CYP system 

(Table 4) [122-126]. This can lead to either increased chemotherapy-associated toxicity or a 

decrease in treatment efficacy [122-124]. In addition, several HIV medications and 

chemotherapy agents have overlapping toxicities [123-127] (Table 5). Zidovudine can cause 

myelosupression in 8% of treated patients, didanosine and stavudine can cause peripheral 

neuropathy, and HIV protease inhibitors can cause nausea and vomiting. Nucleotide analogs 

can contribute to nephrotoxicity while protease inhibitors and non-nucleoside reverse 

transcriptase inhibitors can cause hepatotoxicity [122-124]. Such known side effects and 

their frequencies need to be considered when combining HAART with specific 

chemotherapy agents that have a high risk of cytopenias, nephrotoxicity, peripheral 

neuropathy, hepatotoxicity, and unwanted gastrointestinal side effects.

The HIV protease inhibitor ritonavir is a particularly potent inhibitor of the CYP system. Its 

effect on CYP3A4 leads to diminished clearance of vinca alcaloids, taxanes, and alkylating 

agents [123, 124, 126]. Consequently, ritonavir is associated with increased toxicity when 

combined with vincristine- and even more so when combined with vinblastine-based 

chemotherapies (used to treat NHL and HL, respectively) [128-130]. Ritonavir should be 

avoided during vinblastine-based HL treatment as the rates of febrile neutropenia, 

neuropathy, and neutropenia are considerably elevated when these agents are combined 

[128-130]. Fluconazole is also associated with increased toxicity (e.g., neutropenia and 

neuropathy) when combined with the vinca alkaloids through a similar mechanism, as it too 

inhibits the CYP3A4 system [130]. Thus, care should be taken to identify chemotherapy-

HAART interactions as well as HAART interactions with other medications that are used to 

treat or to prevent opportunistic infections or to mitigate chemotherapy side effects, 

including anti-emetic agents. In light of these complicated interactions, we recommend 

treating cancer patients in consultation with infectious disease specialists and pharmacists 

who are aware of potential and complicated drug-drug interactions, and if possible, with 
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hematologist/oncologists who have special expertise in the treatment of patients with HIV 

and cancer.

When chemotherapy and HAART are given concomitantly during NHL treatment, CD4+ 

cell counts typically decline by greater than 50% [131]. These values usually return to 

normal at six months to one year post therapy [131]. For anal cancer patients who receive 

pelvic radiation, the CD4+ T cell count may fall even more severely and may not readily 

recover to pre-treatment values [132]. Pelvic radiation is myelosuppressive since the major 

source of bone marrow is also radiated. In addition, scatter of radiation may also affect the 

gut, which is also an important compartment for CD4+ T cells [127, 133, 134]. For HIV 

patients with malignancies, we recommend that Pneumocystis jiroveci prophylaxis be 

initiated regardless of the CD4+ T cell count at the time of chemotherapy initiation. 

Prophylactic medications to minimize the risk of other opportunistic infections, including 

thrush and herpes simplex virus are also warranted during treatment [132]. Granulocyte 

colony-stimulating agents to minimize the effects of chemotherapy-induced neutropenia and 

antibiotic prophylaxis to further reduce infectious complications are also routinely 

implemented during the treatment of HIV/AIDS-related lymphomas and other cancers on a 

risk-assessment basis [113, 116, 118, 119].

In theory, all patients with HIV/AIDS-related malignancies, for whom HAART would be 

prescribed in the absence of cancer, should be maintained on HAART during chemotherapy. 

Reasons for HAART discontinuation during treatment include concerns of drug interactions 

with chemotherapy and poor patient adherence because of nausea or vomiting. Due to 

HAART-chemotherapy interactions, investigators from the National Cancer Institute (NCI) 

have examined the discontinuation of HIV therapy during a short four- to six-month 

treatment period for AIDS-related lymphomas [116, 118]. As anticipated, the HIV viral load 

increased and the CD4+ T cell count declined, but once HIV therapy was reinitiated at the 

completion of chemotherapy, both improved over the following 6 to 12 months [116, 118]. 

At five years, the OS was 68% and appears comparable to results that have been reported 

when HIV-infected patients with AIDS-related lymphomas were treated with concurrent 

chemotherapy and HAART. In the absence of head-to-head comparisons, offering to 

continue HAART or to hold HAART until systemic chemotherapy is completed are both 

reasonable options [116, 118, 119].

The chimeric anti-CD20 monoclonal antibody rituximab offers substantial benefit when 

used with combination chemotherapy for treatment of CD20+ aggressive B cell lymphomas 

[135]. The role of rituximab in the treatment of AIDS-associated lymphomas has been more 

controversial based on findings from two studies, which linked rituximab with a significant 

risk of infection complications [135, 136]. The first study was a phase 3 trial of The AIDS 

Malignancy Consortium (AMC) comparing the chemotherapy regimen cyclophosphamide, 

doxorubicin, vincristine, and prednisone (CHOP) with CHOP plus rituximab (CHOP-R) in 

the treatment of aggressive AIDS-defining lymphomas [136]. In this trial, the rituximab arm 

was associated with a modest benefit in efficacy but patients who received monoclonal 

therapy had a significantly higher incidence of treatment-related infectious deaths (14% 

versus 2%; p=0.027) [136]. This finding was particularly true for those patients who went 

into treatment with CD4+ T cell counts less than 50 cells/mm3. A second study was a 
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retrospective analysis of three phase 2 trials of cyclophosphamide, doxorubicin, etoposide, 

and rituximab (CDE-R) that also showed an 8% elevation in treatment-related infectious 

deaths [135]. More recently, studies of CHOP-R for the treatment of AIDS-associated 

lymphomas demonstrated few infectious complications and a two-year OS rate of 75%. In 

one recent study of 52 evaluated patients, only one death was due to infection [137].

Three subsequent phase 2 studies for AIDS-associated lymphomas, one by the AMC and 

two by the NCI also confirmed the safety and efficacy of rituximab [116, 118, 119]. Based 

on these results, rituximab is now typically combined with chemotherapy, and should not be 

withheld for patients with CD4+ T cell counts less than 50 cells/mm3. Caution should be 

exercised when treating patients with severe immunosuppression however, as these patients 

have an elevated risk for infection. Studies by the AMC are now being undertaken to 

evaluate immunotherapy for HIV-associated HL. Brentuximab vedotin, is an antibody-drug 

conjugate which specifically binds to the hRS cell receptor, CD30, thus initiating targeted 

tumor death. Remarkably, non-HIV infected patients with refractory HL, who participated in 

a phase 1 study of Brentuximab as a single agent, 46% of patients achieved a complete 

response (CR) [138].

Recently other modes of immunomodulation have emerged as successful mainstream 

therapies for cancer. Among these, sipuleucel-T (which utilizes loading of patient dendritic 

cells with prostate tumor antigens fused with an immunomodulatory factor granulocyte 

macrophage colony-stimulating factor [GM-CSF]) and ipilimumab (which blocks T cell 

inhibitory surface protein CTLA-4) are FDA-approved for use in the treatment of castration-

resistant prostate cancer and melanoma, respectively [139, 140]. The major direct or indirect 

end result of these immunotherapies and others in late-stage clinical trials (including 

stimulation with IL-2 and blockade of PD-1) is likely the rescue of CD8+ T cells. Based on 

the critical role of CD8+ T cells in both viral infection and cancer, and the dual dysfunction 

of CD8+ T cell responses against both HIV and malignancies, consideration should be given 

to the use of similar immunotherapy for treatment of malignancies in HIV/AIDS.

Conclusions

More than 30 years after cases of HIV/AIDS were finally globally recognized and more than 

55 years since the first proven case of HIV infection [141], HIV/AIDS continues to be a 

deadly epidemic. Despite medical, social, and political interventions, the number of people 

living with HIV (approximately 34.0 million as of 2011), the number of people newly-

infected each year with HIV (2.5 million in 2011), and the number of people dying of HIV 

(1.7 million people in 2011) continue to increase [5]. While medical interventions (mainly in 

the form of HAART) have resulted in a decrease in AIDS-defining diseases (including 

infections and cancers), longevity of the HIV/AIDS population has also allowed for the 

emergence of aging-related pathologies, including NADCs (Figure 1). However, age alone 

cannot explain the rise in NADCs, especially since NADCs present earlier, more often with 

metastases, and exhibit a more rapidly progressive course even in adequately treated, 

medication-compliant HIV/AIDS patients [142]. The paucity in basic science, translational, 

and clinical research towards an understanding of the etiology and best course of treatment 

for malignancies in HIV/AIDS raises the need for further investment of time, effort, and 
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funds in these fields. Enrolling patients into clinical trials who are diagnosed with HIV/

AIDS is of the utmost importance, as without structured research protocols, questions 

regarding treatment, pharmacology, etiology, and screening will be more difficult to answer. 

We also recommend a multidisciplinary approach to HIV-cancer care, including a primary 

care physician, infectious disease specialist, a hematologist/oncologist, and pharmacist all 

specializing in HIV/AIDS care (see table 6 for general treatment recommendations). Current 

epidemiological and etiological data strongly suggest that HIV/AIDS patients should be 

under increased surveillance not only for ADCs, but likewise for NADCs, even years earlier 

than the general population. In addition, earlier or more monitored treatment of oncogenic 

viruses and avoidance of cancer-associated lifestyles must be considered. The HIV/AIDS 

population appears to be more susceptible to almost all cancers. While great strides have 

been made towards increasing the longevity and survival of patients with HIV/AIDS and of 

patients with malignancies, new considerations must be made and new actions taken to 

overcome the challenge of preventing and treating malignancies in HIV/AIDS.
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Figure 1. Summary of AIDS-defining cancers (ADC) and non-AIDS-defining cancer (NADC) 
etiology in the context of HIV and HAART
Colored panels comprise concepts that are closely related: lower blue panel includes 

concepts related most closely to HIV infection (HIV), upper yellow panel indicates concepts 

related most closely to HAART treatment in HIV (HIV + HAART), and middle green panel 

indicates concepts related to both HIV and HIV + HAART. ADCs: AIDS-defining cancers; 

BL: Burkitt's lymphoma; IV: intravenous; NADCs: Non-AIDS-defining cancers; NPs: non-

progressors.

1. HIV infection results in the depletion of CD4 cells leading to ineffective CD4-

unhelped CD8+ T effector and B cells, which results in decreased anti-tumor 

responses and a resultant increase in ADCs.

2. Lack of CD4 help leads to a lack of responses against oncogenic infections, leading 

to cellular and molecular dysregulation and a resultant increase in ADCs and 

NADCs.

3. HIV infection results in a state of chronic inflammation leading to a subsequent 

increase in ADCs and NADCs through mechanisms that are not sufficiently 

understood.

4. Behaviors increased in HIV/AIDS (e.g., smoking and alcohol overconsumption) 

lead to an increase in ADCs and NADCs.

5. Despite normal CD4 counts in non-progressors (NPs; i.e., HIV patients not 

requiring treatment while maintaining low/undetectable HIV viral loads for 

extended periods of time), NADCs continue to be increased above the level found 

in the non-HIV infected population.
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6. CD4 counts recover in HIV patients treated with HAART, and a resultant decrease 

in ADCs is observed, but ADCs remain increased above the level found in the non-

HIV infected population.

7. Despite recovery of total CD4 counts, the CD4+ T cell subset distribution (Th1, 

Th2, Th9, Th17, Th35, Treg cells, etc.) may not return to normal proportions, and 

increased numbers of CD4+ T cells allow for outgrowth of CD4-involved/

dependent cancers.

8. Increased survival with HAART results in extended longevity in the context of 

infection leading to increased age (i.e., time for NADC outgrowth).

9. Increased survival with HAART results in extended time involving behaviors 

associated HIV/AIDS (e.g., smoking, alcohol overconsumption, IV drug use, and 

unsafe sex leading to oncogenic infections) and resulting in a subsequent increase 

in ADCs and NADCs.
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Table 1
Standard incidence ratios for common AIDS-defining and non-AIDS-defining cancers in 
the early and later HAART era and in the context of tumor-associated oncogenic viruses

HIV-associated Malignancies SIR Pre-HAART (1990-1995) SIR Early-HAART ERA 1996-2002)

ADCs

Kaposi Sarcoma 22,100 3,640

PCNSL 5,000 >1,020

Burkitt's Lymphoma 52 49

DLBCL 64 29.6

All NHLs 79 22.6

Cervical Carcinoma 4.2 5.3

NADCs

Hodgkin Lymphoma 8.1 14

Anal Carcinoma 18.3 33

Lung Carcinoma 2.5 2.2-6.6

Head and Neck Carcinoma 1.2 1-4

Prostate Cancer N/A 4

Hepatocellular Carcinoma 19 7-35

Melanoma N/A 3

ALL NADCs 1.8 1.7-2

ADCs (AIDS-defining cancers), DLBCL (diffuse large B cell lymphoma), EBV (Epstein-Barr virus), HPV (human papillomavirus), N/A (not 
available), NADCs (non-AIDS-defining cancers), NHL (non-Hodgkin lymphoma), PCNSL (primary central nervous system lymphoma), SIR 
(standard incidence ratio)
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Table 2
WHO classification of lymphoid malignancies associated with HIV infection

Lymphoma Type Comments

Burkitt's Lymphoma
Burkitt's-like Lymphoma

Presents with a higher CD4+ T cell count; 100% associated with cMYC 
translocation

Diffuse Large B Cell Lymphoma Centroblastic 
Immunoblastic (associated with PCNSL)

Centroblastic 30% EBV [28, 29] Immunoblastic 90% EBV and associated with 
primary CNS lymphoma [28, 29]

Extranodal MALT Lymphoma Non-AIDS-defining cancer; rare

Peripheral T Cell Lymphoma Rare

Primary Effusion/Body Cavity Lymphoma Rare; presents in patients in the late stages of HIV; associated 100% with HHV-8 
and EBV [28, 30]

Plasmablastic Lymphoma of the Oral Cavity Rare; associated with HHV-8 50% and EBV 50% [29]

Polymorphic B cell Lymphoma (PTLD-like) Rare

Hodgkin Lymphoma Non-AIDS-defining lymphoma; may presents in patients with elevated CD4 + T cell 
count; EBV 80-100% [54]

DLBCL (diffuse large B cell lymphoma); EBV (Epstein-Barr virus), HHV-8 (human herpesvirus 8), MALT (marginal zone lymphoma of mucosa-
associated lymphoid tissue), PCNSL (primary central nervous system lymphoma), PTLD (post-transplant lymphoproliferative disorder), WHO 
(world health organization).
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Table 3
Common AIDS-defining and non-AIDS-defining and tumor-associated oncogenic viruses

HIV-associated Malignancies Associated Oncogenic Virus

Kaposi Sarcoma 100% HHV-8 [61]

PCNSL 100% EBV [29]

Burkitt's Lymphoma 20-40% EBV [29]

DLBCL Centroblastic 30% EBV [29]
Immunoblastic 90% EBV [29]

PEL 100% HHV-8 [30]
100% EBV [28, 30]

Plasmablastic [28, 29] 50% HHV-8
50% EBV

Cervical 100% HPV [61]

Hodgkin Lymphoma 80-100% EBV [28, 29]

Anal Carcinoma 100% HPV [55]

Head and Neck Carcinoma HPV [61]
EBV [61]

Hepatocellular
Carcinoma

HBV [61]
HCV [61]

DLBCL (diffuse large B-cell lymphoma), EBV (Epstein-Barr virus), HBV (hepatitis B virus), HCV (hepatitis C virus), HHV-8 (human herpesvirus 
8), HPV (human papillomavirus), NADC (non-AIDS-defining cancer), NHL (non-Hodgkin lymphoma), PCNSL (primary central nervous system 
lymphoma), PEL (primary effusion lymphoma).
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Table 4
Interactions between chemotherapeutics and antiretroviral agents

Chemotherapeutic Agents P450 System 
Responsible for 
Metabolism

Antiretroviral Inhibitor1 Antiretroviral Inducer2 Associated Cancers 
(being treated)

Vinblastine
Vincristine

CYP 3A4 Delavirdine, Ritonavir, 
Amprenavir, Atazanavir, 
Indinavir Lopinavir Nelfinavir, 
Saquinavir

Nivarapine Efavirenz HL, NHL, ALL

Paclitaxel
Docetaxol

CYP 2C8
CYP 3A4

Same as above Nivarapine Efavirenz KS, Breast, Lung, 
Cervical

Etoposide CYP 3A4
CYP 2E1

Same as above NHL, Lung

Ifosphamide cyclophosphamide CYP 3A4
CYP 2C9
CYP 2B6

Efavirenz Amprenavir Nivarapine Efavirenz NHL, Lung, Breast, 
Sarcoma

Dacarbazine CYP 2E1 Ritonavir HL

ALL (acute lymphocytic leukemia), cytochrome P450 (CYP), HAART (highly active antiretroviral therapy), HL (Hodgkin lymphoma), KS 
(Kaposi Sarcoma), NHL (non-Hodgkin lymphoma),

1
Inhibitors increase the concentration of the active metabolite,

2
Inducers decrease the concentration of the active metabolite.
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Table 5
Major overlapping toxicities observed with HIV medications and chemotherapy

Chemotherapy Agent Adverse Events HIV Medication/Class

Common with most chemotherapeutic classes. (i.e., Anthracyclines, 
Taxanes Vinca Alkaloids, Platinums Alkylating agents, 
camptothecans, etoposide, and antimetabolites [methotrexate and 
5FU])

Myelosupression Zidovidine

All Taxanes
All Vinca Alkaloids
Oxaliplatin
Bortezomib

Neuropathy (motor 
and/or peripheral)

Didanosine
Stauvadine

Cisplatin
Carboplatin

Nephrotoxicity Tenofovir
Indinavir

Common with most chemotherapeutic classes. Nausea/Vomiting Protease Inhibitors Zidovidine

Vinca Alcaloids Constipation

Common with most chemotherapeutic classes. (Chemotherapeutic 
agents that can be administered without any dose reductions in the 
setting of liver toxicity include cisplatin, gemcitabine, and 
bleomycin) [143]

Hepatotoxicity Protease Inhibitors
Nucleoside and Non-nucleoside Reverse 
Transcriptase Inhibitors

Irinotecan
Topotecan
Flurouracil

Diarrhea Nelfinovir
Lopinavir
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Table 6
General guidelines for the treatment of HIV-associated cancers

Optimal treatment of patients with HIV-associated malignancies includes input from a multidisciplinary team consisting of a pharmacist, an 
infectious disease specialist, and a hematologist/oncologist.

HIV medications can inhibit the Cyt p450 system, potentially augmenting toxicities by preventing chemotherapy metabolism (see Table 4 as a 
guide).

Multiple overlapping toxicities are seen with HIV medications and chemotherapy agents (see Table 5 as a guide).

Supportive care medications can also augment chemotherapy toxicities (i.e., azole antifungals and vincristine).

Avoid the use of ritonavir when combined with vinblastine in the setting of Hodgkin's lymphoma.

Rituximab offers substantial benefit when used with combination chemotherapy for treatment of CD20+ aggressive B cell lymphomas. 
Rituximab should not be withheld for patients with CD4+ T cell counts less than 50 cells/mm3. But care should be taken, as patients with low 
CD4+ T cell counts are more prone to infectious complications..

CD4+ T cell counts can decrease during chemotherapy and or in the setting of pelvic radiation. Thus prophylaxis during therapy for 
opportunistic infections is often warranted despite a normal CD4+ T cell count at therapy onset.

Granulocyte colony-stimulating agents and antibiotic prophylaxis are strongly encouraged to minimize the effects of chemotherapy-induced 
neutropenia during the treatment of AIDS-related lymphomas.
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