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Abstract

“Friends come and go but enemies accumulate.”

Arthur Bloch

Mitochondrial networks in eukaryotic cells are maintained via regular cycles of degradation and 

biogenesis. These complex processes function in concert with one another to eliminate 

dysfunctional mitochondria in a specific and targeted manner and coordinate the biogenesis of 

new organelles. This review covers the two aspects of mitochondrial turnover, focusing on the 

main pathways and mechanisms involved. The review also summarizes the current methods and 

techniques for analyzing mitochondrial turnover in vivo and in vitro, from the whole animal 

proteome level to the level of single organelle.
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Introduction

The endosymbiotic event that occurred billions of years ago between the SAR11 clade 

Rickettsiales and the microorganism which accepted them up sparked the evolution of all 

eukaryotic life on the planet [1]. These bacteria, which over time transformed into organelles 

we now call mitochondria, play a crucial role in maintaining all cellular functions as the 

most efficient and abundant source of adenosine triphosphate (ATP), essential for meeting 

the energetic demands of eukaryotic cells. For example, in the heart, mitochondria are by far 

the most abundant organelle and the main source (∼90%) of ATP (via oxidative 

phosphorylation) required for contraction of the organ [2]. Furthermore, mitochondria 

regulate calcium stores [3], fuel utilization [4], intracellular signaling [5] and apoptosis [6]. 

Due to this wide spectrum of cellular functions that mitochondria are involved in, the 

organelles play a pivotal role in mediating cellular homeostasis. As a result, maintenance of 
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a healthy population of mitochondria is essential for cell survival. This is especially 

important due to the fact that mitochondria in a cell produce ATP at differential rates, 

comprising a heterogeneous population [7]. Those organelles which are quiescent, 

inefficient at ATP production or producing high levels of reactive oxygen species (ROS) 

combine to contribute to an extremely heterogeneous network. Impaired mitochondrial 

quality control results in accumulation of damaged mitochondria that may release more 

reactive oxygen species [8], produce less ATP [9], have a lower threshold for cytochrome c 

release resulting in apoptosis [10], undergo mitochondrial permeability transition pore 

(MPTP) opening resulting in necrosis [11], or may release mitochondrial components 

(mtHSP60, oxidized mitochondrial DNA) into cytosol where its recognition by receptors for 

damage-associated molecular patterns (DAMP) activates inflammation [12]. Mitochondrial 

turnover is therefore an integral aspect of quality control in which dysfunctional 

mitochondria are selectively eliminated through autophagy (mitophagy) and replaced 

through expansion of preexisting mitochondria (biogenesis) [13]. In this review, we focus on 

the mechanics of mitochondrial turnover and the techniques currently employed to measure 

and monitor the dynamic network, constantly kept in balance by two arms of mitochondrial 

quality control: mitophagy and mitochondrial biogenesis.

Mitophagy

In order to maintain an efficient supply of energy to the cell, mitochondria must constantly 

perform maintenance on a molecular and network level. On a protein level, this is absolutely 

crucial due to the fact that oxidative phosphorylation (OX-PHOS) leads to oxidative damage 

to mitochondrial proteins over time [14]. Furthermore, the vast majority of mitochondrial 

proteins are encoded in the nucleus, and accumulation of respiratory chain subunits can lead 

to an imbalance in respiratory chain complexes. To address this problem, mitochondria 

contain a number of proteases responsible for targeted protein quality control (UPRmt, the 

mitochondrial unfolded protein response): most prominently by the Lon protease and other 

AAA+ family proteases (ATPases associated with a variety of cellular activities) [15]. These 

proteases degrade the superfluous subunits into small peptides and act like chaperones to 

extract unfolded proteins from the inner mitochondrial membrane and target them for 

degradation via the proteasome [16]. Although the mechanism of removal of these peptides 

from the mitochondria into the cytosol is unclear, in mammals the responsible transporter is 

believed to be ABCme10, a homolog of the C. elegans protein Haf1 which removes peptide 

fragments generated by the C. elegans protease ClpP [17]. The extruded peptides are 

recognized by transcription factors CHOP, C/EBPβ, and cJun/AP1, which upregulate the 

expression of UPRmt factors such as mitochondrial chaperone hsp60, ClpP, Yme1L1, and 

MPPβ, Tim17A, NDUFB2, and EndoG. [18]. Finally, in response to the unfolded 

mitochondrial proteins, PKR (double-stranded RNA-activated protein kinase) 

phosphorylates eIF2α and cJun, thereby suppressing the translation and import of nuclear-

encoded mitochondrial proteins [19].

However, this targeted approach is not sufficient for rapid removal of whole dysfunctional 

mitochondria or a large number of damaged components. To accomplish this, cells employ 

the process of selective mitochondrial autophagy (mitophagy), which eliminates damaged 

and dysfunctional mitochondria permitting the synthesis of new mitochondrial components 
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and their insertion into the remaining functional mitochondria. Using the heart as an 

example again, mitochondria turn over with a half-life of 14 days [20]. Rat cardiomyocytes 

have roughly 1000 mitochondria per cell, suggesting that under basal resting conditions, one 

mitochondrion per cell is replaced every 40 minutes. Intriguingly, a number of enzymes 

involved in oxidative phosphorylation (OX-PHOS) are expressed with diurnal variation, 

suggesting that mitochondrial turnover is regulated by the circadian cycle. This seems likely 

given that a period of fasting occurs during sleep; therefore mitochondrial elimination may 

alternate with regeneration on a daily basis in a manner resembling a sine wave, with 3-4% 

of the mitochondrial population replaced each day. However, this may be much higher: in 

the cultured mouse atrial cell line HL-1 subjected to nutrient deprivation, the number of 

mitochondria is reduced by 70% within 3.5 hours [21].

Eukaryotic cells generally rely on two processes to eliminate and recycle components to 

maintain homeostasis working in concert: the ubiquitin proteasome system (UPS) and 

autophagy. Autophagy is a cellular degradation system in eukaryotic cells that allows for the 

bulk recycling of unwanted cytoplasmic aggregate proteins or dysfunctional organelles in a 

lysosome-dependent manner [22]. In order to facilitate and initiate mitophagy, 

mitochondrial dynamics (fusion and fission) play a critical role in mitochondrial turnover, 

favoring fission and suppressing fusion, enabling engulfment by autophagosomes. Fission of 

reticulate mitochondria into smaller fragments is a crucial requirement for mitophagy to 

occur [23, 24]. The key regulator of this process is dynamin-related protein 1 (Drp1), a 

GTPase in the dynamin super family of proteins recruited to the mitochondria, which in 

concert with proteins Fission 1 (Fis1), mitochondrial fission factor (Mff), and mitochondrial 

dynamics proteins of 49 (MiD49) and 51 kDa (MiD51) is responsible for mitochondrial 

fragmentation [25-28]. While the importance of Fis1 as a fission partner of Drp1 is unclear 

and may be cell-type dependent, the role of the other three proteins appears essential: Mff 

assists in the assembly of Drp1 and MiD49 and MiD51 may play a regulatory role by 

recruiting Drp1 and maintaining it in inactive state until fission is required, stimulated by 

cell signaling [29]. Proteins that promote OMM fusion such as Mitofusin 1 and 2 (Mfn1 and 

2) are ubiquitinated and eliminated by the UPS, while other proteins such as Optic atrophy 

protein 1 (OPA, regulator of fusion of the inner mitochondrial membrane), are degraded 

during mitophagy by the inner membrane zinc metalloprotease OMA1 and AAA proteases 

[30-32].

The best-characterized pathway of mitophagy depends on the recruitment of E3 ubiquitin 

ligase Parkin. Mitophagy in this context is triggered by cellular stresses such as ischemia, 

which trigger depolarization of the outer mitochondrial membrane (OMM) (best induced by 

utilizing chemical uncouplers of mitochondria such as carbonyl cyanide 4-

(trifluoromethoxy) phenylhydrazone (FCCP) or carbonyl cyanide m-chlorophenylhydrazone 

(CCCP)) [33]. The depolarization results in stabilization of the serine/threonine kinase 

phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) on the outer 

mitochondrial membrane (OMM) and recruitment of the E3 ubiquitin ligase Parkin, which 

attaches ubiquitin moieties to OMM proteins [34-37]. The interplay between PINK1 and 

Parkin is a crucial step in mediating the clearance of dysfunctional mitochondria [38, 39].
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PINK1 is constitutively made and continuously degraded by the mitochondria-specific 

proteases presenilin-associated rhomboid-like protein (PARL) and mitochondrial processing 

peptidase (MPP). These proteases are inactivated by the loss of membrane potential across 

the inner mitochondrial membrane through an as yet uncharacterized mechanism; this 

inactivation results in the accumulation of PINK1 on the OMM where it can phosphorylate 

the OMM proteins through its kinase domain which faces the cytosol and facilitates the 

targeting of said proteins to Parkin [40-42]. The targets of PINK1 include Parkin itself [43, 

44], mitofusin 2 (Mfn2) [45], and mitochondrial rho 1 (MIRO) [46], a component of the 

microtubule-associated motor complex that anchors kinesin to mitochondria. More 

controversially, Voltage-dependent anion channel 1 (VDAC1) has been suggested to be a 

Parkin target essential for mitophagy [34], although this finding is in dispute [47]. Of those 

targets, Mfn2, which under basal conditions functions in mitochondrial fusion events and 

links endoplasmic reticulum to mitochondria, acts as a Parkin receptor during mitophagy 

following phosphorylation by PINK1, recruiting Parkin to the mitochondria where it 

ubiquitinates the OMM targets. Ubiquitination and proteasomal degradation of MIRO, 

Mfn2, and Mfn1 prevent the targeted mitochondria from rejoining the mitochondrial 

network through fusion [45, 46] [48-50]. Further, the presence of ubiquitin on the OMM 

proteins facilitates recruitment of autophagy adapter proteins such as neighbor of BRCA1 

(NBR1) or sequestosome-1 (p62/SQSTM1). These adaptor proteins have an ubiquitin 

binding domain (UBA) and microtubule-associated protein 1 light chain 3 (LC3) interacting 

region (LIR) which serves as an anchor for the developing autophagosomal membrane in 

proximity to the tagged mitochondrion in a zipper-like process [51, 52]. Other possible 

actors in Parkin-dependent mitophagy include SMAD-specific E3 ubiquitin ligase 1 

(SMURF1), although its E3 ubiquitin ligase function appears to be superfluous to its ability 

to facilitate mitophagy [53]. Yet another player in promoting Parkin-dependent mitophagy is 

Activating molecule in Beclin 1-regulated autophagy (Ambra1), which dissociates from 

mitochondrial Bcl-2 to bind Beclin1 to initiate autophagy [54, 55]. Ambra1 interacts with 

Parkin to promote mitophagy, but is not a substrate of Parkin [56].

Recently, a number of groups have reported a novel mode of Parkin activation by PINK1, 

through the phosphorylation of ubiquitin at its Serine 65 residue (ubiquitinPhospho–Ser65) 

[57-59]. The E3 ubiquitin ligase function of Parkin is autoinhibited under basal conditions, 

and is activated by PINK1 via direct phosphorylation of the conserved Ser65 residue in the 

Ubl domain and the direct phosphorylation of ubiquitin. The studies point to a two-step 

activation mechanism of Parkin in which an initial phosphorylation of residue Ser65 by 

PINK1 within the Ubl domain following mitochondrial depolarization results in a 

conformational change that disrupts the interaction of said domain and the C-terminus of 

Parkin. This “open” conformation primes Parkin for optimal binding of 

ubiquitinPhospho–Ser65 that results in the active E3 form of the protein which then targets 

mitochondrial membrane proteins for proteasomal degradation.

In addition to the PINK1/Parkin/ubiquitin axis, Parkin-independent mitophagy can be 

initiated through atypical members of the Bcl-2 homology domain 3 (BH3) family members 

such as BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) and BCL2/

adenovirus E1B 19 kDa protein-interacting protein 3-like protein (BNIP3L aka NIX). These 

proteins insert into the OMM and facilitate engulfment by the autophagosome through a LIR 
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domain that can interact with LC3 isoforms, including gamma-aminobutyric acid receptor-

associated protein (GABARAP) and GABARAP-like 1 (GABARAPL1) [60, 61]. However, 

Bnip3 can also work in conjunction with Parkin, by recruiting Drp1 and Parkin to the 

mitochondria to promote fission and mitophagy [62]. In hypoxic conditions mitophagy has 

been reported to be mediated by the OMM protein FUN14 domain containing 1 (FUNDC1) 

which contains a LIR [63] (Fig. 1).

While mitophagy is responsible for bulk degradation of mitochondria, turnover of individual 

components may proceed at asynchronous rates through redistribution of components via 

fusion events, selective degradation of proteins via mitochondrial proteases, and 

proteasomal elimination of some OMM proteins. Even in the case of Parkin-dependent 

mitophagy, some outer membrane proteins are recycled through transfer to the ER [64]. 

Proteomic studies using heavy isotope labeling [65] revealed that proteins of the IMM turn 

over with rates that are similar to mitochondrial turnover based on historic radiolabeling 

studies [66, 67], suggesting that IMM proteins (primarily OXPHOS constituents) may be 

primarily cleared via mitophagy. This also corresponds to studies which showed that matrix 

and OMM were readily redistributed across the mitochondrial network when fusion and 

fission were intact; however, IMM constituents redistributed much more slowly [24].

Mitochondrial Biogenesis

Over the course of evolution, mitochondrial protein expression and translation was 

transposed to the DNA of the host cell, leaving a residual circular genome of 16 kb, which in 

mammals encodes only 13 protein subunits required for aerobic respiration. Furthermore, 

mitochondrial genomes replicate in a manner that is radically different from the mammalian 

DNA replication mechanisms, utilizing the “bootstrap” method in which processed 

transcripts (bootlaces) hybridize with the displaced parental strand as the replication fork 

advances [68]. This mechanism minimizes the occurrence and impact of single-strand 

breaks that threaten genome stability, limit the occurrence of replication-dependent deletions 

and insertions, and defend against invading elements such as viruses. Mitochondrial 

biogenesis, the second arm of mitochondrial turnover, therefore hinges on coordination of 

nuclear and mitochondrial-encoded gene expression.

The key transcription factor that directly and indirectly regulates the expression of 

mitochondrial nuclear-encoded proteins is the Peroxisome proliferator-activated receptor 

gamma coactivator-1 alpha (PGC-1α) [69]. First identified for the increase in its 

transcriptional activity in the context of thermogenesis and as the binding partner of 

peroxisome proliferator-activated receptor γ (PPARγ), PGC-1α is a member of the nuclear 

receptor superfamily, proteins responsible for assembling macrocomplexes into functional 

transcriptional machinery at specific DNA sequences [70, 71]. As such, PGC-1α is 

responsible for the main thrust of mitochondrial biogenesis in the nucleus by controlling the 

expression of nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2), transcription factors 

which themselves control the expression of mitochondrial transcription factor A (Tfam) 

[72]. Tfam is a mitochondrial resident transcription factor responsible for expression of 

mitochondrial genes (tRNAs, rRNAs and 13 subunits of respiratory chain) from the heavy 

and light mitochondrial DNA (mtDNA) [73]. Several studies have also confirmed the central 
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role of PGC-1α in mitochondrial biogenesis, by demonstrating that increased expression of 

PGC-1α in response to stimuli such as cold and exercise leads to increased expression of 

mitochondrial enzymes such as ATP synthetase ((β-subunit), COX (cytochrome c oxidase) 

subunits (COX II and COX IV) and δ-aminolevulinate synthase (δ-ALAS) [74, 75]. In all, 

overexpression of PGC-1α leads to upregulation of 151 genes that encode mitochondrial 

proteins involved in many metabolic functions of mitochondria such as fatty acid β-

oxidation (FAO), tricarboxylic acid cycle and oxidative phosphorylation, as well as 

mitochondrial ribosomal machinery and mitochondrial membrane transport proteins [76]. In 

addition, the PGC-1α isoform PGC-1β is thought to control increased mitochondrial 

biogenesis and basal oxygen consumption, but is not induced by cold or exercise, suggesting 

alternate pathways to induction of mitochondrial biogenesis [77].

Beyond directing the transcription of respiratory chain mRNAs, PGC-1α also interacts with 

and increases the expression of downstream transcription factors such as peroxisome 

proliferator-activated receptors (PPARs), hormone receptors for estrogen and thyroid 

hormone, as well as ERRs (estrogen-related receptors) α and γ [78]. ERRs are a set of 

nuclear receptors that lack an associated ligand and are closely linked with mitochondrial 

biogenesis in general and PGC-1α in particular. [79] In fact, ERRs may be a key co-

activator of PGC-1α activity, as the effect of over-expression of PGC-1α can be inhibited by 

siRNA targeted to ERRα, or mimicked by overexpression of ERRα, demonstrating the close 

relationship between PGC-1α activation and ERRα [76]. Another family of nuclear 

receptors that plays a role together with PGC-1α in mitochondrial biogenesis are the PPARs, 

which in heterodimerization with members of retinoid X receptor (RXR) drive the 

transcription of nuclear genes encoding mitochondrial FAO enzymes [80].

Cell signaling cascades are the driving force behind the activation of PGC-1α. Two 

pathways of transcriptional activation have been well characterized: through calcineurin A 

(CnA) and Ca2+/calmodulin-dependent protein kinase IV (CaMKIV). CnA interacts with 

and activates myocyte enhancer factors 2C and 2D (MEF2C and MEF2D), which regulate 

the transcription of PGC-1α directly [81, 82]. MEF2C and 2D are upregulated by PGC-1α, 

which results in a feed forward loop that allows PGC-1α to continue to drive its own 

upregulation [83]. CaMKIV activates PGC-1α by phosphorylating the transcription factor 

cAMP response element (CRE)-binding protein (CREB); once phosphorylated, CREB binds 

to promoter elements on the PGC-1α gene and strongly drives its expression [81]. The p38 

mitogen-activated protein kinase (p38 MAPK) and AMP-dependent Kinase (AMPK) have 

also been implicated as regulators of PGC-1α expression. p38 MAPK activity is increased 

following exercise, leading to the activation of MEF2 and activating transcription factor 2 

(ATF2), both of which upregulate the expression of PGC-1α [84, 85].

The activity of PGC-1α is further highly regulated by post-translational modifications: direct 

phosphorylation by signaling kinases and acetylation/deacetylation. A number of kinases 

have been implicated in control of PGC-1α activity: AMPK and Akt during starvation and 

p38 MAPK after endurance exercise [86-88]. The activation of AMPK in response to 

glucose depletion results in direct phosphorylation of PGC-1α on threonine-177 and 

serine-538, crucial for activation of PGC-1α-dependent transcription from the PGC-1α 

promoter [86]. In a similar fashion, p38 MAPK increases the activity of PGC-1α by directly 
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phosphorylating threonine-262, serine-265, and threonine-268, resulting in stabilization of 

the protein and the disruption of the interaction between PGC-1α and its inhibitor p160MBP 

[87, 89]. Conversely, insulin inhibits the activity of PGC-1α through Akt, which can directly 

phosphorylate the serine-570 residue on PGC-1α, or indirectly through phosphorylation of 

the Clk2 kinase which then in turn phosphorylates the C-terminal serine- and threonine-rich 

regions of PGC-1α, decreasing its co-transcriptional activity [90, 91].

Other post-translational control of PGC-1α involves glycogen synthase kinase 3β (GSK3β), 

which has been shown to inhibit PGC-1α activity in response to acute oxidative stress by 

increasing its proteasomal degradation and inhibiting the activity of Sirt1, an NAD-

dependent deacetylase thought to activate PGC-1α [92]. The deacetylation is crucial for the 

activation of PGC-1α, as the protein is heavily acetylated by acetyltransferase GCN5, 

inhibiting its activity and sequestering it in the nuclear foci rather than the promoter regions 

of its target genes [93]. Sirt1 activity is dependent upon the coenzyme nicotinamide adenine 

dinucleotide (NAD+), and it is highly sensitive to the changes in energy requirements of the 

cell; as the ratio of NAD+/NADH changes in response to fasting, exercise or redox stress, 

Sirt1 increases the deacetylation PGC-1α, resulting in an increase in transcription of 

PGC-1α targets, leading to mitochondrial biogenesis [94-96]. AMPK, which directly 

modulates the activity of PGC-1α by phosphorylation, may also control its activity 

indirectly by increasing NAD+ levels in the cell by fatty acid oxidation, increasing the 

activity of Sirt1 [96]. Ubiquitination and methylation have also been demonstrated to play a 

role in regulating the activity of PGC-1α in response to energy demands and oxidative 

stress, states that require mitochondrial biogenesis [97].

Beyond transcription of nuclear and mitochondrial encoded messages, protein synthesis, 

import, and assembly must occur. The mRNAs in mitochondria are translated by the 

mitochondrial ribosomes in the matrix, while nuclear-encoded mRNAs are translated in 

polyribosomes closely associated with the mitochondrial outer membrane, facilitating co-

translational import [98]. Protein import machinery is complex, and defects in the process, 

whether inborn or acquired, can lead to a range of diseases (reviewed in [99]). Assembly of 

OXPHOS subunits depends upon coordination of protein import and mitochondrial protein 

synthesis. An imbalance triggers the mitochondrial unfolded protein response which can 

culminate in mitophagy [100].

Mitochondrial biogenesis is intimately linked to mitophagy. mTOR, a central regulator of 

autophagy, is a serine/threonine kinase that directly controls mitochondrial biogenesis 

through activation of PGC-1α and its gene targets. mTOR also upregulates biogenesis 

through the mTOR complex 1 (mTORC1), which prevents the binding of the eukaryotic 

translation initiation factor 4E (eIF4E)-binding proteins (4E-BP) to their targets, stimulating 

the translation of nuclear encoded mitochondrial proteins including members of complex V, 

complex I, and Tfam [101, 102]. In addition to activation of biogenesis and mitophagy, 

repressors of biogenesis are important players controlling mitochondrial turnover. One of 

the more recently discovered direct repressors of PGC-1α is the protein Parkin-interacting 

substrate, PARIS (ZNF746) [103]. PARIS is a target of Parkin ubiquitin ligase, which 

controls the levels of Paris via the ubiquitin proteasome pathway. Accumulated PARIS in 

the nucleus leads to direct inactivation of PGC-1α transcription and inhibition of PGC-1α-
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dependent genes. Other repressors of mitochondrial biogenesis operate in less direct manner. 

Another repressor, nuclear co-repressor 1 (Ncor1) acts as a transcriptional repressor of 

PPARγ, PPARδ and ERR as well as an inhibitor of their activity by docking with histone 

deacetylases such as HDAC3 and SIRT1 thereby curbing the expression and activity of 

MEF2, PPARδ, and ERR and their downstream transcriptional targets involving 

mitochondrial oxidative metabolism [104] (Fig. 2).

Mitochondrial Lipid Turnover

Mitochondria possess two lipid bilayer membrane structures, and the outer mitochondrial 

membrane (OMM) and inner mitochondrial membrane (IMM) differ radically in their 

composition. Much of the lipid for both membranes derives from the endoplasmic reticulum 

(ER). Importantly, phosphatidic acid derived from the ER is transferred to the inner leaflet 

of the IMM where it is enzymatically converted to cardiolipin [105]. Cardiolipin is essential 

to maintain the high degree of proton impermeability of the IMM, and defects in its 

biosynthesis and remodeling lead to severe mitochondrial defects and myocardial 

dysfunction [106, 107]. Additional lipids are synthesized in the ER and transported to the 

mitochondria by direct membrane interactions and by diverse shuttle systems. Of note, 

phosphatidylserine, synthesized in ER, is converted in IMM to phosphatidylethanolamine 

and exported back to ER for conversion to phosphatidylcholine [108]. Sphingolipids are 

synthesized in the ER but when ceramides are delivered to the OMM, they serve as 

important binding sites for LC3-II, thereby mediating mitophagy [109]. Mitochondrial 

membranes have also been suggested as a source for autophagosome membrane lipids, 

particularly as the mitochondria are the key site for synthesis of phosphatidylethanolamine 

needed for lipidation of LC3 [110, 111]. During mitophagy, most of the membrane lipids are 

degraded in the lysosome, liberating free fatty acids [112]; this process may be disrupted in 

the presence of lipid peroxides, leading to accumulation of lipofuscin [113].

Experimental Methods for Examining Mitochondrial Turnover

Pulse-chase labeling—Classic approaches to monitoring mitochondrial turnover 

involved the use of radioactive isotope labeling of mitochondrial proteins [67], 

phospholipids [114], and heme groups [66]. Studies of cardiac mitochondria revealed an 

average half-life of 17 days under steady state conditions [115]. This has been confirmed 

more recently by non-radioactive isotope labeling and proteomic analysis [65, 116]. Many 

of the mitochondrial inner membrane/matrix components exhibited coordinated turnover, 

suggesting autophagic degradation, whereas outer membrane components had more variable 

rates of turnover. Subcellular distribution (subsarcolemmal vs. interfibrillar) also influenced 

turnover rates [116].

Proteomics—Until quite recently, much of the work on the rate of mitochondrial turnover 

was performed through proteomic approaches. For example, Major et. al, made use of 2-D 

PAGE analysis to identify changes in protein abundance in mitochondria isolated from yeast 

grown on a nonfermentable carbon source and then incubated in a buffer containing an 

ATP-regenerating system [117]. Using this approach, the group was able to isolate and 

identify 60 proteins which exhibited a change by matrix-assisted laser desorption ionization-

TOF (MALDI-TOF) mass spectrometry, covering roughly 11% of yeast mitochondrial 
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proteins listed in the MitoP2 database. Further use of this technique allowed for 

identification of changes in mitochondrial protein levels when yeast cells were subjected to 

different temperature conditions. The authors were able to identify several groups of 

proteins with differential stability under stress conditions, and presented a mechanism by 

which mitochondrial turnover in yeast under conditions of stress involves mitochondrial 

resident proteases. The drawbacks to using 2-D PAGE are the limitations presented by the 

difficulty of resolving low-abundance or hydrophobic proteins, reproducibility and the low-

throughput nature of the method [118].

An alternate, and more elegant approach to analyzing the mitochondrial turnover on a 

proteome-wide level has been developed by Kim et al. [65]. The approach makes use of the 

fact that heavy water (2H2O) intake is a safe, cost efficient and effective way to induce the 

incorporation of 2H into biomolecules. Combined with liquid-chromatography mass 

spectrometry (LC-MS), this technique allows for straightforward and accurate measurement 

of protein half-life in mouse organs. By combining the technique with post-collection data 

analysis, the group was able to observe kinetics of 458 liver and heart mitochondrial 

proteins, allowing for comparison of wholesale mitochondrial dynamics comparison 

between the two organs. The data revealed that mouse heart mitochondrial proteins had a 

much longer half-life (slower turnover) than their analogs in the liver (approximately four 

times higher). Deeper analysis of the data revealed that in both tissues, proteins responsible 

for protein folding had a much shorter half-life than those involved in redox reactions. In 

contrast, proteins responsible for biosynthesis had a much faster turnover rate in the heart 

than in the liver, suggesting tissue-specific turnover rates for mitochondria in mammals. 

Furthermore, the variable turnover rate in proteins from isolated mitochondria gives further 

support to the previously stated hypothesis, whereby mitochondria segregate dysfunctional 

proteins for clearance by autophagy during cycles of fission and fusion. The study also 

emphasizes the significant role that mitochondrial resident proteases must play in order to 

clear dysfunctional protein components and maintain homeostasis in the organelle. The 

drawback of this approach is the fact that in this case protein turnover is analyzed on a 

global level, from a population of mitochondria; furthermore, posttranslational modifications 

of mitochondrial proteins, which may be important in segregating newly-synthesized from 

older mitochondria, may be missed by this approach. On a more practical level, this 

approach requires access to stable isotopes and mass spectrometry equipment, and may be 

cost prohibitive for many laboratories.

Imaging mitophagy with GFP-LC3—Kim and Lemasters used hepatocytes from GFP-

LC3-transgenic mice for confocal imaging of autophagosomes as they formed around 

mitochondria labeled with TMRM (tetramethylrhodamine methyl ester) [119]. In response 

to nutrient deprivation, autophagosomes formed around polarized mitochondria which 

retained the dye until the autophagosome fully enclosed the mitochondrion. This form of 

mitochondrial autophagy appears to be independent of mitochondrial membrane potential, in 

contrast to Parkin-dependent mitophagy, which is initiated by membrane depolarization and 

stabilization of PINK1 [37]. Use of mitochondrial colocalization with GFP-LC3 for a 

quantitative readout of mitophagy is challenging, because mitochondrial engulfment takes 

less than 10min, followed by loss of GFP-LC3 fluorescence soon after acidification. 
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Catching such a dynamic process “in the act” makes quantitation difficult. A related imaging 

approach was used by Twig et al. [24] to examine mitophagy under steady state conditions 

in Ins1 cells. They noted that mitochondrial fission resulted in asymmetric daughter 

mitochondria; the depolarized mitochondrion was less likely to undergo subsequent fusion 

events but rather was engulfed by an autophagosome within 40 minutes. These contrasting 

observations of mitophagy may reflect different processes: one dependent on mitochondrial 

depolarization and PINK1 for Parkin and p62-dependent mitophagy, and another mediated 

by increased ROS as described by Scherz-Shouval et al. [120]. Bnip3, an adaptor for LC3 

[121], is induced to dimerize by ROS [122] and may participate in starvation-induced 

mitophagy.

mt-Keima—An alternate approach to studying mitochondrial turnover involves utilizing 

mitochondria-targeted fluorescent proteins. A study by Katayama et al. utilized a coral 

fluorescent protein that is resistant to lysosomal proteases, Keima, which exhibits a green 

fluorescence at neutral pH and red fluorescence at acidic pH (inside autolysosomes) [123]. 

The authors fused the protein with a mitochondrial signal sequence to localize it to the inner 

membrane of the mitochondria (mt-Keima). By co-transfecting cells with mt-Keima and 

EGFP-Parkin, they were able to quantitatively observe discrete autophagic events following 

the induction of mitophagy by incubation with Carbonyl cyanide m-chlorophenyl hydrazone 

(CCCP) (mitochondrial membrane uncoupling agent) and oligomycin (ATP synthase 

inhibitor). Over a time course, the green fluorescence of mt-Keima shifted from green to red 

as mitochondria (or mitochondrial inner membrane components) were delivered to the 

lysosomes. Although a powerful tool for studying autophagy in general and mitophagy in 

particular, mt-Keima does not address the mitochondrial biogenesis arm of the turnover, nor 

does it provide information on the “age” of the particular mitochondria it is expressed in.

MitoTimer (inducible expression)—In order to study mitochondrial turnover at the 

level of a single mitochondrion, our laboratory has developed the MitoTimer protein. Timer 

is a mutant of DsRed fluorescent protein developed by Terskikh et al. [124]. The Timer 

protein transitions from green fluorescence to a more stable red conformation as it matures 

over a span of 48 hours. Furthermore, the protein is very stable under physiological 

conditions, insensitive to variations in ionic strength, and changes in pH between 7.0 and 

8.0. Timer or Timer-fusion proteins are widely used to monitor cellular processes including 

gene expression, intracellular protein recycling, cell survival, and the kinetics of viral 

infection [125-128]. We fused the Timer protein with the N-terminal mitochondrial signal 

sequence from the cytochrome c oxidase subunit VIII (COX8) to target the protein to the 

inner membrane of the mitochondria. The protein can be monitored as it matures from green 

to red over 48 hours (Fig. 3A), and it is retained in the mitochondria for a number of days 

(presumably corresponding to mitochondrial half-life). We cloned MitoTimer into a 

construct with a tetracycline-inducible promoter in conjunction with the reverse tetracycline 

transactivator (rtTA) to allow for synchronized and time-restricted expression of MitoTimer. 

A short (2 hours) pulse with tetracycline, followed by removal of any residual tetracycline, 

is sufficient to achieve MitoTimer expression across the mitochondrial population of the 

cell. In order for mitochondrial fusion to occur, mitochondria must maintain a high 

membrane potential [24] and express mitofusin-1 or -2 (Mfn1/2) [129]. A study by Ferree et 

Stotland and Gottlieb Page 10

Biochim Biophys Acta. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



al. utilized MitoTimer to show that it is evenly distributed across the mitochondrial network 

in wild type cells under basal conditions; in contrast, mouse embryonic fibroblasts (MEFs) 

derived from Mfn1/2 double knockout mice displayed a heterogeneous distribution of green 

vs. red MitoTimer, demonstrating that fusion events enable mixing of old and new proteins 

within the mitochondrial network [129]. High membrane potential is required for 

mitochondrial protein import [130]; thus MitoTimer will not be imported into dysfunctional 

mitochondria with low membrane potential [131].

Previous work demonstrated that the rate of diffusional exchange of contents across the 

mitochondrial network is fastest for outer membrane constituents, intermediate for matrix 

contents, and slowest for inner membrane proteins [132]. Consistent with evidence 

indicating that turnover of mitochondrial inner membrane and matrix proteins depends upon 

mitophagy [133, 134], inhibition of autophagy enhanced the accumulation of red (older) 

MitoTimer [129], demonstrating the utility of the construct for the assessment of mitophagy.

Biogenesis could be assessed after a second Dox pulse to induce another round of 

expression, (readily evident as green MitoTimer), and which can reveal mitochondrial 

subpopulations that are more actively engaged in protein import, a hallmark of 

mitochondrial biogenesis. Interestingly, MitoTimer import during biogenesis in C2C12 cells 

is not uniform, but is enriched in a perinuclear zone (Fig. 3B). While this may be simply due 

to mRNA proximity, it is possible that the subpopulation of mitochondria enriched for green 

MitoTimer are specialized for mitochondrial regeneration. A perinuclear distribution of 

newly-synthesized MitoTimer was also noted in neuronal cells, while mature MitoTimer 

predominated in the distal portion of the neurites [131]. This finding is consistent with 

previous work suggesting that autophagosomes initiate distally in neurons (near the oldest 

mitochondria) and then migrate towards the soma, where they fuse with lysosomes [135].

MitoTimer (constitutive expression)—It is also possible to obtain information about 

mitochondrial turnover by expressing MitoTimer in a constitutive, rather than a conditional 

manner, in animal models. By expressing constitutive MitoTimer in Drosophila heart tube, 

Laker et al. demonstrated that exercise training resulted in an increase in the number of 

green mitochondria, corresponding to increased mitochondrial biogenesis [136]. 

Furthermore, the authors demonstrated the utility of MitoTimer for monitoring 

mitochondrial turnover in mice, where MitoTimer delivered by electroporation was 

constitutively expressed in skeletal muscle. The ratio of red to green MitoTimer in the 

skeletal muscle was increased in mice on a high fat diet compared to normal chow-fed 

animals, consistent with loss of lysosomal function needed for mitophagy [137]. 

Suppression of autophagy results in accumulation of mitochondria with lower membrane 

potential and increased oxidative damage [138]. Conversely, Laker et al. observed an 

increase in the green:red ratio of MitoTimer in mice subjected to exercise training, even in 

the presence of a high fat diet [136]. Exercise upregulates autophagy (enhancing clearance 

of older mitochondria) [139] and also stimulates mitochondrial biogenesis [140], providing 

two drivers for the green-shifted ratio of MitoTimer in their model.
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Conclusions

Derangements of mitochondrial turnover are recognized in a growing number of disorders. 

The field is poised for important new discoveries, with the advent of new technologies 

including deuterium oxide labeling with high resolution mass spectrometry analyses in 

humans [141] and the ability to image mitophagy and biogenesis in cells and tissues. 

Medicine, which has traditionally focused on organ pathophysiology, may well have to 

adjust its focus to include organelle pathology as an aspect of human disease.
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Highlights

• Mitochondria come and mitochondria go, always from the one befo'

• Knowledge grows, we can refine, since new tools have come on line

• MitoTimer and mKeima give a lovely glow, and mass spectrometry with D2O

• Reveal biogenesis and mitophagy as the key to organismal longevity
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Figure 1. Overview of Mitophagy
Inactivation of mitochondria-resident proteases in depolarized mitochondria leads to an 

accumulation of PINK1 on the outer mitochondrial membrane. The phosphorylation of outer 

membrane proteins such as Mfn1/2 leads to their ubiquitination by Parkin. The fission 

machinery separates the dysfunctional mitochondrion from the network, and the 

ubiquitinated proteins serve as binding sites for autophagy adaptor proteins such as p62. 

These proteins contain LC3 binding sites, leading to encapsulation of the organelle in an 

autophagic vesicle, which is delivered to the lysosome for degradation.
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Figure 2. Overview of Mitochondrial Biogenesis
The bulk of biogenesis is controlled by the transcription factor PGC-1α. External stimuli 

such as cold, exercise or nutritional deprivation activate signaling cascades which lead to 

activation of PGC-1α. PGC-1α activates the transcription of other transcription factors such 

as NRF1, which are responsible for driving the transcription of nuclear-encoded 

mitochondrial proteins.
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Figure 3. MitoTimer
(A) C2C12 cells expressing Tet-inducible MitoTimer, exposed to Dox for 1 h, and then 

imaged at 4, 8, 12, 24, 48 and 72 h. Merged images of green and red channels are shown; 

smaller insets show the expression levels of MitoTimer green and MitoTimer red 

fluorescence. (B) Heterogeneous expression of MitoTimer fluorescence, indicating 

mitochondria with differential rates of import.
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