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Abstract

Mood disorders are highly heritable and have been linked to brain regions of emotion processing. 

Over the past few years, an enormous amount of imaging genetics studies has demonstrated the 

impact of risk genes on brain regions and systems of emotion processing in vivo in healthy 

subjects as well as in mood disorder patients. While sufficient evidence already exists for several 

monaminergic genes as well as for a few nonmonoaminergic genes, such as brain-derived 

neurotrophic factor (BDNF) in healthy subjects, many others only have been investigated in single 

studies so far. Apart from these studies, the present review also covers imaging genetics studies 

applying more complex genetic disease models of mood disorders, such as epistasis and gene–

environment interactions, and their impact on brain systems of emotion processing. This review 

attempts to provide a comprehensive overview of the rapidly growing field of imaging genetics 

studies in mood disorder research.
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Introduction

Depression is among the four leading causes of disease burden throughout the world and is 

associated with medical morbidity and mortality across the lifespan (Wong and Licinio, 

2001). Since depression is highly heritable (Wong and Licinio, 2001), there has been intense 

interest in candidate genes related to this behavioral phenotype. As the genetic architecture 

of depression is complex and genes are not directly encoding for psychiatric diagnoses or 

psychiatric symptoms, scientific progress was hindered by weak or contradictory results 

(Meyer-Lindenberg and Weinberger, 2006). The emergence of imaging genetics (Hariri and 

Weinberger, 2003) as a strategy for mapping neural phenotypes as a function of genotype 
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has fostered new enthusiasm in depression research, because this approach allows for 

assessing the neural impact of candidate genes in vivo and thus provides for a new level of 

evidence. Although imaging genetics was initially proposed as a research tool (Hariri and 

Weinberger, 2003), it has by now evolved into a new field of research, which is reflected in 

a dramatic increase of publications over the past few years. Efforts thus undertaken address 

several questions, such as neural effects of single genes, gene–gene (epistasis) and gene–

environment interactions as well as the impact of chromosomal aberration disorders and 

small deletion syndromes on systems neurobiology.

Despite the genetic complexity of mood disorders, imaging genetics studies corroborate the 

assumption that effects of risk genes are converging at brain systems of emotion processing 

(Canli et al., 2009) comprising regions involved in the identification of stimulus-related 

emotional significance as well as the initiation and regulation of affective states, emotional 

response, and subsequent behavior (Phillips et al., 2003a,b). Furthermore, they inherently 

point toward the exploitation of those quantitative imaging traits (QTs) that are thought to 

more directly index biology than behavioral phenotypes of depression, and hence will likely 

be helpful in shaping mood disorder diagnostics (Meyer-Lindenberg and Weinberger, 2006).

The growing evidence of gene effects on brain systems of emotion processing is 

accompanied by a more thorough understanding of the anatomical interconnections between 

regions of emotion processing (Price and Drevets, 2009), highlighting the crucial role of the 

orbital and medial prefrontal cortex (OMPFC) for mood disorders. The OMPFC comprises 

two major networks (Price and Drevets, 2009): (1) the orbital network, which is more 

sensory-related and acts as a system for integrating multi-modal stimuli as well as a system 

for assessing the value of those stimuli, is therefore connected to olfactory, gustatory, visual, 

and somatic sensory cortical areas; (2) the medial prefrontal network, which is a more 

output-related system that can modulate visceral function in relation to emotion as well as 

several other factors, is connected to important structures in the context of mood disorders, 

such as the amygdala, cingulate cortex and hippocampus.

Given the emerging genetic and anatomical knowledge of mood disorders, this review 

attempts to provide a comprehensive summary of available imaging genetics studies 

including reports on single genes (see Tables 1 and 2, and Fig. 1) as well as gene–gene and 

gene–environment interactions with regard to key structures being involved in emotion 

processing within the OMPFC networks. Only studies available in PubMed have been 

considered and following inclusion criteria have been applied: (1) studies have been 

conducted in adult samples of healthy subjects or mood disorder patients, (2) genes have 

been linked to MDD by at least one association study, and (3) only functional and structural 

MRI imaging genetics studies have been eligible for inclusion. Age and imaging methods 

restrictions have been chosen, because those topics are extensively elaborated within this 

special issue elsewhere (Durston, 2010; Willeit and Praschak-Rieder, 2010).

Key regions of mood disorders

Amygdala—The amygdala is a complex neural hub critically involved in both normal 

behavior and mental illness (LeDoux, 2007). Its almond-shaped body encompasses several 

nuclei receiving inputs from cortical and subcortical regions, such as the hippocampus, 
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sensory thalamus, sensory and association cortices, sensory brainstem, olfactory regions as 

well as medial prefrontal cortex. Two nuclei – the central and the basal nucleus – act as 

effector organs and project to a variety of brain regions, such as the ventral striatum 

involved in controlling actions (running to safety) and brainstem areas critical for 

controlling emotions (freezing) (LeDoux, 2007). In addition, other regions such as prefrontal 

cortical as well as association cortices are important projection targets. On a behavioral 

level, the amygdala has been predominantly associated with fear conditioning and reaction, 

but evidence for other behavioral correlates, such as an important role in reward processing 

and the generation of emotional states associated with aggressive, maternal, sexual and 

ingestive behaviors, exists as well (Costafreda et al., 2008; LeDoux, 2007; Sergerie et al., 

2008). Although most concepts evolved from animal experiments, human imaging studies 

support their validity in humans (Stein et al., 2007).

Due to its prominent role in emotion processing, the amygdala has also been implicated in 

pathological states such as major depressive disorder (MDD) (Phillips et al., 2003b) along 

with anxiety disorders (Domschke and Dannlowski, 2010). Functional magnetic resonance 

imaging (fMRI) and positron emission tomography (PET) studies predominantly report 

increased amygdala activation in patients with acute MDD (Savitz and Drevets, 2009). With 

regard to volumetric alterations of the amygdala in MDD, studies are contradictory; it would 

be thus premature to draw final conclusions (Drevets et al., 2008a; Hamilton et al., 2008).

As MDD is frequently treated with drugs selectively inhibiting serotonin (5-HT) uptake 

(SSRIs), genetic variation of the serotonin transporter (5-HTT) and its coding gene 

(SLC6A4) has become a focal theme for the neuroscientific community. Since a variable 

number of tandem repeats (VNTR) polymorphism in the promoter region (5-HTTLPR) of 

SLC6A4 has been related to neuroticism (Lesch et al., 1996) and is thought to be a risk factor 

of MDD (Schinka et al., 2004; Sen et al., 2004), a whole area of study of 5-HTTLPR in the 

context of emotion processing and MDD (Canli et al., 2009) has emerged. Further 

enthusiasm regarding 5-HTTLPR stems from a study of MDD patients (Caspi et al., 2003). 

This study was able to demonstrate that the lower-expressing S allele, which is thought to be 

the risk allele for MDD, becomes disease-relevant in the context of environmental adversity 

in a manner similar to animal studies (Barr et al., 2004). However, those initially 

enthusiastic findings linking 5-HTTLPR to neuroticism as well as underlining the 

importance of environmental interactions have been questioned by recent meta-analyses 

(Flint and Munafo, 2008; Munafo et al., 2009a,b; Risch et al., 2009). Such contradictory 

study results highlight the difficulties in unraveling genetically complex disorders that have 

been attributed to clinical, neurobiological and genetic heterogeneity as well as the problems 

regarding the sample size necessary to detect such effects (Flint and Munafo, 2008). 

Specifically, variable penetrance, epistasis, imprinting, epigenetics, pleiotropy (Murphy and 

Lesch, 2008) as well as further functional genetic variability in SLC6A4, such as a single 

nucleotide polymorphism (A–G substitution, rs25531) within the L allele (Hu et al., 2006) 

and a VNTR in the second intron (Hranilovic et al., 2004), are probable other contributors 

toward this inconsistency.

Despite these divergent findings in genetic studies attempting to link SLC6A4 function to 

clinical phenotypes, imaging genetics studies investigating the impact of 5-HTTLPR on 
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amygdala reactivity in normal subjects exhibit a more homogeneous picture (Brown and 

Hariri, 2006; Munafo et al., 2008). With the exception of one study (Surguladze et al., 

2008), numerous studies suggest that S allele carriers of European ancestry show 

exaggerated amygdala activation in the presence of fearful or negatively valenced stimuli as 

compared with subjects with L/L genotype (Bertolino et al., 2005; Brown and Hariri, 2006; 

Canli et al., 2005b; Dannlowski et al., 2010; Dannlowski et al., 2008; Friedel et al., 2009; 

Hariri et al., 2005, 2002; Heinz et al., 2005; Perlis et al., 2008; Pezawas et al., 2005; Smolka 

et al., 2007; Williams et al., 2009), a finding that does not necessarily apply to other 

ethnicities (Lee and Ham, 2008b). It is noteworthy that this difference might also exist 

during resting state (Canli et al., 2006; Rao et al., 2007), and hence baseline periods may 

have an impact on those results (Canli et al., 2005b; Heinz et al., 2007). Those findings are 

in accordance with animal studies showing high levels of 5-HT that are accompanied by 

blood-level oxygen-dependent (BOLD) signal increases (Preece et al., 2009), which is 

assumed to apply to adult S allele carriers. Only a few studies so far have investigated the 

effects of 5-HTTLPR on brain development in humans, although 5-HT is one of the best-

studied brain developmental factors available today (Gaspar et al., 2003). Three voxel-based 

morphometry (VBM) studies in large samples of healthy subjects indicate that S allele 

carrier status implies a smaller relative amygdala volume (Frodl et al., 2008a; Pezawas et al., 

2005; Pezawas et al., 2008), whereas two studies investigating smaller samples either 

reported the opposite (Scherk et al., 2009) or did not detect any genetic impact on amygdala 

volume (Canli et al., 2005b). With regard to studies of 5-HTTLPR effects on amygdala 

function or development in acute MDD, results are sparse, and further replications are 

needed. Authors have reported S-allele-associated increases in amygdala activation 

(Dannlowski et al., 2008, 2007; Friedel et al., 2009) as well as, counterintuitively, increases 

of amygdala volume in a small-scale study of bipolar patients (Scherk et al., 2009).

Overwhelming evidence provided by imaging genetics studies today argues in favor of a 

specific role of SLC6A4 in amygdala regulation and development in healthy subjects. Thus it 

is not surprising that other genes involved in clearing 5-HT from the synaptic cleft have 

been identified as significant contributors. One example is the X-chromosome linked 

monoamine oxidase A gene (MAOA). MAOA is expressed in the outer mitochondrial 

membrane of monoaminergic neurons and is a key enzyme in the degradation of 5-HT. A 

functional VNTR polymorphism in the promoter region of the MAOA gene has been found 

to impact gene expression by genetic variability of its highly active MAOA-H and less 

active MAOA-L allele (Sabol et al., 1998). Similar to 5-HTTLPR, this polymorphism is also 

believed to interact with environmental factors in order to contribute to the formation of 

complex behaviors, such as antisocial behavior, which is less likely to occur in maltreated 

children with MAOA-H allele status (Caspi et al., 2002). MAOA has frequently been related 

to aggressive and impulsive behavior; however, studies have also singled out an association 

with MDD (Schulze et al., 2000; Yu et al., 2005). Regarding amygdala regulation, one study 

recorded increased amygdala reactivity and decreased amygdala volume in healthy 

Caucasian MAOA-L carriers (Meyer-Lindenberg et al., 2006), a finding that was replicated 

in an Asian sample (Lee and Ham, 2008a). Similarly, it has been suggested that the MAOB 

gene is related to amygdala volume (Good et al., 2003). This assumption has been made in 

connection with X-monosomal Turner syndrome patients exhibiting functional (Skuse et al., 
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2005) and volumetric (Cutter et al., 2006; Good et al., 2003; Kesler et al., 2004) amygdala 

alterations, which can also be found in Turner patients with partial X-chromosome deletions 

only lacking the genetic locus Xp11.3 containing MAOB (Good et al., 2003). 

Complementary findings indicating X-chromosomal effects on amygdala volume exist for 

Klinefelter syndrome (Patwardhan et al., 2002; Shen et al., 2004).

So far we have discussed genes impacting amygdala function and structure that are critically 

involved in the elimination of 5-HT, such as SLC6A4 and MAOA. In contrast, the tryptophan 

hydroxylase 2 gene (TPH2) is critical for the synthesis of 5-HT, and several functional 

variants with an impact on TPH2 expression have been identified (Haghighi et al., 2008). 

The T allele of G(−703)T TPH2 (rs4570625) has been associated with increased amygdala 

reactivity in two studies of healthy subjects (Brown et al., 2005; Canli et al., 2005a), 

whereas the opposite was ascertained in an Asian sample, once more suggesting the 

significance of ethnic background (Lee and Ham, 2008b).

The importance of the serotonergic system in the context of amygdala activation is further 

highlighted by imaging genetics studies, suggesting an important role of 5-HT receptor 

genes, such as the 5-HT1A auto-receptor gene (HTR1A) crucially involved in the regulation 

of 5-HT signaling (Lemonde et al., 2003). G allele carriers of C(−1019)G HTR1A (rs6295), 

a functional SNP in the promoter region of HTR1A, have been associated with diminished 

transcriptional repression, leading to increased 5-HT1A density and decreased amygdala 

reactivity in healthy subjects as compared with the C/C genotype (Fakra et al., 2009), a 

finding that has not been replicated in a Korean sample (Lee and Ham, 2008b). Similarly, a 

PET study reported an inverse correlation between 5-HT1A auto-receptor binding in the 

dorsal raphe nuclei and amygdala reactivity (Fisher et al., 2006). With regard to MDD, 

increased amygdala activation has been identified in G allele carriers (Dannlowski et al., 

2007). Some evidence exists for other genes regulating postsynaptic 5-HT receptor 

expression, such as HTR2A and HTR3A. A promoter polymorphism (rs6311) within the 5-

HT2A receptor gene (HTR2A) has been linked to aggressive behavior (Giegling et al., 2006) 

as well as to increased amygdala activity in healthy subjects (Lee and Ham, 2008b). 

Furthermore, C(178)T HTR3A of the 5-HT3A receptor gene (HTR3A) has been related to 

harm avoidance and altered amygdala reactivity in healthy subjects (Iidaka et al., 2005).

In addition to 5-HT, dopamine (DA) has been implicated in depression since anhedonia is a 

prominent clinical symptom of depression, and euphoria can be induced by dopaminergic 

drugs. Due to a lack of cortical DA transporters, the monoamine-degrading enzyme 

catechol-O-methyltransferase (COMT) is specifically important for DA catabolism and has 

been linked to a variety of psychiatric disorders including MDD (Craddock et al., 2006). The 

Met allele of Val158Met COMT (rs4680) has been associated with significantly lower 

enzymatic activity than the Val allele (Chen et al., 2004) putatively affecting tonic and 

phasic dopamine level relations (Bilder et al., 2004). Although several other variants have 

been shown to profoundly affect COMT expression (Nackley et al., 2006), with respect to 

imaging genetics studies Val158Met COMT has been shown to be more informative than 

haplotype analysis likely due to a reduction of complexity (Puls et al., 2009). With regard to 

Val158Met COMT effects on amygdala volume and function in healthy subjects, results 

suggest Met-allele-associated volume increase (Cerasa et al., 2008b; Ehrlich et al., 2010; 
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Taylor et al., 2007) and amygdala hyperreactivity (Smolka et al., 2007; Smolka et al., 2005; 

Williams et al., 2010), while a minority of studies reported contrary (Kempton et al., 2009) 

or even lacking effects (Drabant et al., 2006), which might in part be explained by sexual 

dimorphism (Harrison and Tunbridge, 2008).

It is noteworthy that 5-HT might impact BDNF expression via induction of the cyclic 

adenosine monophosphate response element-binding protein gene (CREB1), which by itself 

has been related to altered amygdala activation in a single study (Perlis et al., 2008). This 

relationship between monoamines and neurotrophins has resulted in the controversially 

discussed (Groves, 2007) neuroplasticity hypothesis of depression (Castren, 2005), which 

pushed BDNF into the spotlight of mood disorder research (Berton et al., 2006; Krishnan et 

al., 2007). Cultured neurons transfected with Met BDNF of Val66Met BDNF (rs6265), 

which has been related to anxious behavior in animal models and antidepressant drug 

resistance (Chen et al., 2006), show reduced depolarization-induced secretion and fail to 

localize BDNF to secretory granules and dendritic processes (Egan et al., 2003). In 

accordance with these molecular mechanisms, the Met allele has been related to a smaller 

amygdala volume (Montag et al., 2009) possibly dependent on aging effects (Sublette et al., 

2008); however, most studies have been unable to detect effects on amygdala volume (Frodl 

et al., 2007; Matsuo et al., 2009; Nemoto et al., 2006; Pezawas et al., 2004; Schofield et al., 

2009). Counterintuitively, the Val allele has mostly been associated with increased trait 

anxiety (Lang et al., 2005; Sen et al., 2003; Willis-Owen et al., 2005), and similarly to 

morphological studies, activation studies are inconclusive, with authors reporting increased 

amygdala reactivity associated with the Val allele (Gasic et al., 2009) or the Met allele 

(Montag et al., 2008), while most studies have been unable to produce any relevant proof 

(Egan et al., 2003; Hariri et al., 2003; Hashimoto et al., 2008; Schofield et al., 2009).

Most imaging genetics studies have hitherto been conducted within the framework of 

“classical” depression concepts, such as the monoamine and neuroplasticity hypothesis; 

however, many more gene candidates have been suggested as important for MDD and hence 

likely for amygdala regulation as well (Kato, 2007). Several imaging genetics studies have 

focused on these candidates, such as C (−385)A FAAH (rs324420) of the fatty acid amid 

hydrolase gene (FAAH), which plays a role in the catabolism of endogenous ligands of the 

cannabinoid receptor and has been shown to alter amygdala reactivity in healthy subjects 

(Hariri et al., 2009). Analogous results were produced by a study investigating the 

cannabinoid receptor 1 gene (CNR1) in MDD (Domschke et al., 2008). Another candidate, 

is, rs333229 of the choline transporter gene 1 (SLC5A7), that indicates increased amygdala 

reactivity and has been associated with depression and autonomic variability in heart rate 

(Neumann et al., 2006). Furthermore, a microsatellite 312 bp variant (RS1) near the 

promoter region of the arginine vasopressin receptor 1A gene (AVPR1A) was related to 

decreased harm avoidance and increased amygdala reactivity in healthy subjects (Meyer-

Lindenberg et al., 2008). Another neuropeptide – neuropeptide Y (NPY), which is released 

by stress – presented robust amygdala activation and increased trait anxiety via lower 

haplotype-driven NPY expression in healthy subjects (Cotton et al., 2009; Zhou et al., 2008). 

Moreover, markers of the gene encoding regulator of G protein signaling 2 (RGS2) – linked 

to anxious behavior in rodents – have been associated with introversion and increased 
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amygdala activation (Smoller et al., 2008). A(10398)G mitochondrial DNA (mtDNA), 

which is important for calcium regulation in neurons and probably mental illness, has been 

related to volumetric alterations within the amygdala (Yamasue et al., 2008). Finally, 

variation in two loci of D-amino acid oxidase activator G72 (DAOA), a gene associated with 

schizophrenia and bipolar disorder as well as MDD and neuroticism (Rietschel et al., 2008), 

has been linked to alterations in amygdala gray matter density in patients with bipolar 

disorder (Zuliani et al., 2009).

Advances in genetics highlight the importance of gene–gene and gene–environment 

interactions for understanding the complex depression phenotype. Recently, imaging 

genetics studies have been launched with the aim of applying such complex models derived 

from in vitro or animal studies to humans. Epistasis – gene–gene interaction – in particular 

reflects this sort of complex relationship. Animals genetically engineered to be hypomorphic 

at BDNF and SLC6A4 have shown epistatic effects (Murphy et al., 2003), a finding 

supported by a genetically humanized mouse model demonstrating that anxiety behavior in 

animals carrying Met BDNF alleles is unresponsive to SSRIs and can be viewed as a 

pharmacological analog of 5-HTTLPR S alleles (Krishnan et al., 2007). Recently, an 

imaging genetics study investigating epistasis between 5-HTTLPR and Val66-Met BDNF in 

healthy subjects reported that the Met allele reduces the volumetric effect of the S allele on 

amygdala volume (Pezawas et al., 2008). With regard to amygdala activation, additive 

effects of the Met allele of Val158Met COMT and S/LG alleles of 5-HTTLPR and rs25531 

(Smolka et al., 2007) as well as the T allele of G(−703)T TPH2 and the S allele of 5-

HTTLPR (Canli et al., 2008) were identified in healthy subjects, whereas additive effects of 

C(−1019)G HTR1A, 5-HTTLPR and rs25531 have been reported in a sample of MDD 

patients (Dannlowski et al., 2007). Furthermore, gene–environment interactions impacting 

amygdala activity have been demonstrated between 5-HTTLPR (Canli et al., 2006) as well 

as Val66Met BDNF (Gatt et al., 2009) and life stress.

Cingulate cortex—The cingulate cortex (CC), a belt-shaped cortical area wrapped around 

the corpus callosum, is of critical importance for both emotion processing and depression 

models and has become an outstanding example of the powerful convergence of brain 

imaging and numerous other neuroscientific disciplines (Vogt, 2009). Based on structural, 

circuitry-related, imaging and pharmacological studies, the CC can be split up into four 

distinct anatomical regions: anterior cingulate (ACC, primary limbic cortex), midcingulate 

(MCC, premotor limbic cortex), posterior cingulate (PCC, limbic association cortex) and 

retrosplenial cortex (RCC, memory access) (Palomero-Gallagher et al., 2009). One of the 

primary reasons for differentiating between ACC and MCC lies in the profound connections 

with the amygdala, which is a unique trait of the ACC and highlights the specific importance 

of this region for emotion processing (Vogt, 2009). Furthermore, these four regions are 

subdivided into eight subregions encompassing several cytoarchitectonic areas frequently 

reflected in imaging studies (Vogt, 2009). With regard to emotion processing, both ACC 

regions – the subgenual ACC (sACC) implicated in autonomic control and the perigenual 

ACC (pACC) implicated in emotional and autonomic integration – as well as the anterior 

MCC (aMCC) implicated in approach/avoidance processing are of primary importance 

(Vogt, 2009). It is noteworthy that the sACC, the rostral parts of the pACC as well as the 
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medial orbitofrontal cortex (mOFC) are sometimes also referred to as the ventromedial 

prefrontal cortex (vmPFC), a large region encompassing the ventral area of the medial 

prefrontal cortex primarily associated with decision-making (Koenigs and Grafman, 2009).

Since the first reports of increased metabolism (Drevets et al., 1997) and decreased tissue 

volume in the sACC of MDD patients (Ongur et al., 1998), a tremendous amount of clinical 

research has been dedicated to this field (Drevets et al., 2008b). The sACC, which exhibits 

the highest 5-HTT and 5-HT1A density of the human cortex (Gaspar et al., 2003), has been 

related to the processing of negative mood, treatment response to SSRIs, deep brain 

stimulation, electro-convulsive therapy as well as cognitive behavioral therapy (Drevets et 

al., 2008b) and thus qualifies as a primary research target for MDD (Ressler and Mayberg, 

2007).

Abnormalities in the sACC have frequently been reported to be more pronounced in subjects 

with a family history of mood disorders (Boes et al., 2008; Hajek et al., 2008; McDonald et 

al., 2004; Ongur et al., 1998), suggesting a profound genetic background for the 

characteristics thus observed. Given the high expression of 5-HTT within the ACC, studies 

investigating 5-HTTLPR in healthy controls reported S-allele-associated increases of basal 

metabolism (Graff-Guerrero et al., 2005) and blood-flow in response to visceral pain 

(Fukudo et al., 2009) as well as decreases of cerebral blood-flow under resting-state 

conditions (Rao et al., 2007). Despite the lack of any fMRI paradigm robustly engaging the 

ACC and specifically the sACC, several studies showed increased activation in S allele 

carriers of 5-HTTLPR (Dannlowski et al., 2008; Friedel et al., 2009; Passamonti et al., 2008; 

Roiser et al., 2009; Smolka et al., 2007), whereas only one study reported opposing effects 

(Shah et al., 2009). Hence, MRI studies primarily focused on the impact of SLC6A4 on ACC 

anatomy, as suggested by the well-known and important role of 5-HT during brain 

development (Gaspar et al., 2003). A structural imaging study in a large sample of healthy 

subjects revealed S-allele-moderated gray matter volume loss in the ACC, exhibiting 

maximum effects within the sACC (Pezawas et al., 2005), similarly to other human studies 

recording S-allele-associated volume loss in the ACC or sACC (Canli et al., 2005b; Frodl et 

al., 2008a) as well as a non-human primate study with a rhesus macaque orthologue of 5-

HTTLPR (rh5-HTTLPR) (Jedema et al., 2010). Despite current evidence in healthy humans 

and non-human primates, patient studies are as yet inconclusive, with authors reporting S-

allele-driven increases of ACC activation in mood disorder patients under (Benedetti et al., 

2007) and without (Dannlowski et al., 2008) treatment conditions, while others found 

decreased activation (Shah et al., 2009) or have been unable to detect any difference (Friedel 

et al., 2009; Frodl et al., 2008a). In addition, other monoaminergic genetic variants, such as 

the MAOA-L allele of MAOA, have been related to volume loss (Meyer-Lindenberg et al., 

2006) as well as decreased activation in fMRI studies (Meyer-Lindenberg et al., 2006; 

Passamonti et al., 2008) in the ACC, and specifically the sACC in healthy controls. 

However, negative or opposing volumetric findings exist in underpowered (Cerasa et al., 

2008a) or gender-restricted non-Caucasian (Lee and Ham, 2008a) samples. Furthermore, 

studies suggest monoaminergic genetic impact of Val158Met COMT with decreased 

activation in Val allele carriers (Smolka et al., 2007; Williams et al., 2010), whereas in a 

small sample the Val allele has been associated with a failure of deactivation (Pomarol-
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Clotet et al., 2010). In addition, the C allele of C(178)T HTR3A of the 5-HT3A receptor 

gene (HTR3A) has been found to increase ACC activation (Iidaka et al., 2005).

In addition, a few other human imaging studies have reported nonmonoaminergic genetic 

effects on ACC development and function. One study showed a volume decrease of the 

ACC in Met allele carriers of Val66Met BDNF in a sample of healthy subjects and bipolar 

patients (Matsuo et al., 2009), while another study reported this type of volume decrease in 

Japanese Cys allele carriers of Ser704Cys (rs821616) of the disrupted-in-schizophrenia 1 

gene (DISC1) (Hashimoto et al., 2006), which has been linked to MDD as well as 

schizophrenia by various markers (Hashimoto et al., 2006; Schosser et al., 2010). Further 

genetic variants of genes, such as SLC5A7 (Neumann et al., 2006), TREK1 (KCNK2) 

(Dillon et al., 2010), and Period 3 (PER3) (Vandewalle et al., 2009), have been found to 

impact on cingulate activation in healthy controls; the same holds for CLOCK (Benedetti et 

al., 2008) in patients. Finally, genes of the Wnt signaling pathway, which regulate aspects of 

neurodevelopment and neuroplasticity, have been shown to be associated with volume 

alterations in the ACC (Inkster et al., 2010).

Similar to the amygdala, epistatic effects have also been investigated in the ACC. One 

author reported that Val66Met BDNF interacts epistatically with 5-HTTLPR, presumably 

affecting the development and integrity of this neural system (Pezawas et al., 2008). 

Specifically, this study found that the Met BDNF allele protects against the adverse 

developmental effects of 5-HTTLPR S alleles, which the ancestral Val BDNF allele 

potentiates. With respect to activation studies, one author reported that MAOA-H leads to an 

increase of S-allele-associated activity in the ACC (Passamonti et al., 2008), whereas 

another author detected additive effects of 5-HTTLPR and Val158Met COMT on ACC, 

MCC and PCC (Smolka et al., 2007). Finally, gene–environment interactions have been 

identified for Val66Met BDNF, but not for 5-HTTLPR (Gatt et al., 2009).

Orbitofrontal cortex—The OFC, which receives numerous sensory inputs and is heavily 

interconnected with the amygdala, ventral striatum and ACC, mirrors reward or affective 

values of primary reinforcers and integrates representations of other stimuli in order to 

estimate expected reward, therefore acting as a key structure in emotion processing and 

decision-making (Rolls and Grabenhorst, 2008). Interestingly, the OFC and ACC have a lot 

of similarities, as both structures are implicated in reinforcement-guided decision-making, 

emotion and social behavior, share connections to the ventral striatum and the amygdala, 

and might therefore be involved in similar tasks (Rushworth et al., 2007). Similar to the 

ACC in mood disorder patients, volume loss and metabolic increases have also been 

reported for the medial and lateral posterior OFC (Drevets et al., 2008a).

Genetic impact of monoaminergic genes has also been shown for 5-HTTLPR, reporting S-

allele-induced increases of OFC perfusion by visceral pain induction (Fukudo et al., 2009) 

as well as S-allele-induced volume loss (Canli et al., 2005b). Further evidence stems from 

MAOA, demonstrating an increase of OFC volume in healthy male MAOA-L allele carriers 

and a decrease of activation of the lateral OFC in both genders (Meyer-Lindenberg et al., 

2006), similarly to volumetric (Cerasa et al., 2008a) and functional (Passamonti et al., 2008) 

replication studies. By the same token, it has been suggested by studies in Turner syndrome 
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patients (Cutter et al., 2006; Good et al., 2003) that the MAOB gene is related to OFC 

volume. With respect to Val158Met COMT, increased OFC activation (Bishop et al., 2006; 

Pomarol-Clotet et al., 2010) and volume (Cerasa et al., 2008b) have been reported for the 

Val allele, whereas one functional study reported the opposite (Dreher et al., 2009). Taq1A 

(rs1800497), a D2-receptor-linked polymorphism located in ankyrin repeat and kinase 

domain containing 1 gene (ANKK1), has demonstrated diminished lateral OFC activation in 

healthy carriers of the A1 allele (Cohen et al., 2005; Jocham et al., 2009), a region 

associated with increased response to aversive stimuli in the Val/Val genotype of Val66Met 

BDNF (Gasic et al., 2009). Furthermore, an increased OFC response has been found in 

healthy carriers of the low risk haplotype of TREK1 (KCNK2) (Dillon et al., 2010).

Epistasis of 5-HTTLPR and Val66Met BDNF has also been shown for the OFC, which was 

related to a significant BDNF effect in S allele carriers, leading to OFC volume decrease in 

the presence of a Met allele for a sample of healthy individuals at high risk for alcohol 

dependence (Hill et al., 2009). Another study investigated interactions between Val158Met 

COMT and a VNTR polymorphism in the dopamine transporter 1 gene (SLC6A3), which 

detected maximum OFC activation in healthy subjects with 9-repeat DAT1 allele and 

COMT Met/Met genotype, a finding putatively related to high dopamine levels (Dillon et 

al., 2010; Dreher et al., 2009).

Hippocampus—Located in the medial temporal lobe, the ‘seahorse’-shaped hippocampus 

is a macroscopic structure that is composed of distinct histological subregions and is 

interconnected with the entorhinal cortex, the parahippocampal cortex and the perirhinal 

cortex, receiving input from the ends of many cortical processing streams, such as the 

cerebral association cortex including visual and auditory temporal lobe association cortical 

areas, the prefrontal cortex and the parietal cortex. Moreover, the hippocampus receives 

inputs from the amygdala and orbitofrontal cortex, which suggests a specific role in emotion 

processing (Rolls, 2007). With regard to cognitive functions, the hippocampus has been 

predominantly associated with explicit memory functions (Burwell, 2000; Rolls and Kesner, 

2006) as well as with stress responsivity (Lopez et al., 1999). Similar to the abovementioned 

regions, the hippocampus is also a key region in mood disorder research (Phillips et al., 

2003a,b), since hippocampal volume loss has frequently been reported in MDD and can be 

reversed with antidepressant drug therapy in animal models (Kasper and McEwen, 2008). 

As MDD development has been clinically related to stress exposure and the hippocampus is 

among the brain regions most sensitive to the deleterious effects of stress (McEwen, 2001), 

extensive work has focused on the interplay between neural stress response and 

hippocampal function and development (de Kloet et al., 2005).

Although monoamines exert an impact on adult hippocampal neurogenesis (Lledo et al., 

2006), only a few authors reported an increase of hippocampal activation (Smolka et al., 

2007) or blood-flow (Fukudo et al., 2009) as well as volume loss (Frodl et al., 2008a) 

associated with the S allele of 5-HTTLPR, while the vast majority of studies investigating 5-

HTTLPR neglected alterations in the hippocampus or reported negative results in healthy 

subjects (Frodl et al., 2004, 2008b). Similarly, little is known about 5-HTTLPR effects in 

MDD patients, and, counterintuitively, reports showing L-allele-associated hippocampal 

volume loss exist (Frodl et al., 2008a,b, 2004). However, addressing the likely relationship 
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between 5-HTTLPR and hippocampal aging one study comparing early with late-onset 

depression found an L-allele-driven volume reduction only in the late-onset group (Taylor et 

al., 2005), whereas another study reported lacking effects (Hickie et al., 2007). With regard 

to MAOA, two studies demonstrated increased hippocampal activation in healthy MAOA-L 

carriers (Lee and Ham, 2008a; Meyer-Lindenberg et al., 2006). Furthermore, studies 

investigating Val158Met COMT effects in healthy subjects have shown Val-allele-

associated decreases in hippocampal volume (Cerasa et al., 2008b; Ehrlich et al., this issue; 

Honea et al., 2009; Taylor et al., 2007) and activation (Drabant et al., 2006; Krach et al., this 

issue; Smolka et al., 2007; Smolka et al., 2005); the latter bears similarities to several studies 

of prefrontal regions supporting the “worrier/warrior” hypothesis of Val158Met COMT 

(Mier et al., 2009). However, morphological alterations could not be replicated in healthy 

Japanese (Ohnishi et al., 2006). In addition, one author demonstrated that healthy Tyr 

carriers of His452Tyr (rs6314) within the 5-HT2A receptor gene (HTR2A) exhibit smaller 

hippocampal volumes (Filippini et al., 2006).

However, the major bulk of evidence regarding hippocampal development and function in 

imaging genetics studies is available for BDNF, which was shown to modulate hippocampal 

plasticity and hippocampal-dependent memory and learning (Egan et al., 2003) and is 

considered being related to hippocampal stress sensitivity as well as the emergence of mood 

disorders (Berton et al., 2006). Healthy carriers of the defective Met allele of Val66Met 

BDNF have been associated with decreased hippocampal volume (Bueller et al., 2006; 

Chepenik et al., 2009; Frodl et al., 2007; Matsuo et al., 2009; Montag et al., 2009; Nemoto et 

al., 2006; Pezawas et al., 2004; Schofield et al., 2009; Szeszko et al., 2005) and neuroticism-

dependent effects (Joffe et al., 2009), whereas only a minority of studies reported lacking 

effects (Jessen et al., 2009; Koolschijn et al., in press). Functional studies in healthy subjects 

demonstrating the impact of Val66Met BDNF on hippocampal activation found an 

association of the Val allele with increased hippocampal activity (Hariri et al., 2003; 

Hashimoto et al., 2008), while others presented contrary results (Egan et al., 2003; Schofield 

et al., 2009). With regard to patient studies, hippocampal volume reduction has also been 

reported for Met carriers, independent of clinical diagnosis (Chepenik et al., 2009; Frodl et 

al., 2007), whereas one author was unable to replicate those findings (Jessen et al., 2009).

Besides BDNF, several other genes have been related to hippocampal alterations in the 

context of mood disorders. Genetic variation (Ser704Cys) in DISC1 exhibited increased 

hippocampal response in Ser allele carriers (Callicott et al., 2005; Di Giorgio et al., 2008), 

whereas, with regard to morphology, studies are inconclusive (Callicott et al., 2005; Di 

Giorgio et al., 2008; Hashimoto et al., 2006). Another genetic variation (rs58575285) in the 

ionotropic kainate 4 glutamate receptor gene (GRIK4), which has been associated with 

bipolar disorder, demonstrated increased hippocampal activation in healthy participants 

carrying the Del allele (Whalley et al., 2009a,b). Similar findings have been reported by 

studies investigating NPY (Zhou et al., 2008), PER3 (Vandewalle et al., 2009), and the 

neurotrophin receptor 3 gene (NTRK3) (Otnaess et al., 2009). Researchers have further 

demonstrated that a genetic variant (rs6438552) in GSK3B (Inkster et al., 2009) as well as 

other Wnt pathway-related genes (Inkster et al., this issue) impact on hippocampal volume 

in MDD patients, but not in healthy controls. Furthermore, two genetic variants (rs833070, 
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rs2146323) in the vascular endothelial growth factor gene (VEGF), which is of importance 

for adult hippocampal neurogenesis, have revealed some morphometric impact (Blumberg et 

al., 2008). Finally, genetic alteration in DAOA has been linked to altered activation in the 

parahippocampal gyrus (Jansen et al., 2009) and hippocampus (Goldberg et al., 2006) in 

healthy subjects.

Reports on hippocampal alterations resulting from epistatic effects of mood disorder genes 

are limited. Two studies suggest epistatic effects of Val158Met COMT and a VNTR 

polymorphism of the dopamine transporter (SLC6A3) with hippocampus activation 

correlating positively with the number of COMT Met alleles and SLC6A3 10-repeat alleles 

(Bertolino et al., 2008) as well as additive effects of Val158Met COMT and 5-HTTLPR 

showing the highest response in carriers of both Val/Val and LA/LA genotype (Smolka et al., 

2007). Furthermore, reports on gene–environment interactions are available for 5-HTTLPR, 

showing a modulation of S allele effects on hippocampal connectivity, resting activation as 

well as hippocampal volume by life stress (Canli et al., 2006), whereas Met carriers of 

Val66Met BDNF exposed to greater early-life stress exhibited smaller hippocampal volumes 

(Gatt et al., 2009).

Neural systems of mood disorders

The development of tools to study imaging data on a brain systems level, which has become 

a standard procedure within the neuroimaging community over the last couple of years 

(Rubinov and Sporns, in press), triggered a new era in understanding the complexity of brain 

function and its relationship to human behavior and mental illness (Ramnani et al., 2004). 

The importance of a brain systems level understanding of brain function is highlighted by 

the fact that behavior is orchestrated by the engagement of a variety of specialized and 

interconnected brain regions. Such a systems level view of human behavior is specifically 

important for the understanding of emotion processing, since the limbic system is among the 

anatomically most complex brain systems. Due to the large number of interconnections 

between structures of the limbic system, it has been necessary in imaging studies to dissect 

this system into smaller neural systems, which has been proven to be a promising approach 

for imaging genetics studies (Meyer-Lindenberg, 2009).

One of these subsystems is the amygdala–ACC circuitry (Ressler and Mayberg, 2007), 

which has been postulated to be composed of feedforward projections from the amygdala to 

the sACC and feedback projections from the pACC/aMCC back to the amygdala (Pezawas 

et al., 2005). This circuitry being implicated in depressive illness (Wang et al., 2009) likely 

corresponds to anatomical interconnections such as the uncinatus and cingulum bundle 

(Pezawas et al., 2005). Since 5-HT probably impacts the formation of growth cones (Gaspar 

et al., 2003) and cell migration (Riccio et al., 2009) in humans, it has been hypothesized that 

5-HTTLPR exerts an impact on the development and function of this neural circuitry 

(Pezawas et al., 2005). In a large-scale imaging study in healthy subjects, it has been 

demonstrated that the S allele leads to a decrease in structural covariance and functional 

connectivity between amygdala and sACC (Pezawas et al., 2005). Since those findings are 

commonly interpreted as aspects of neural wiring, it has been suggested that the S allele 

putatively decreases anatomical connections between the amygdala and sACC, leading to a 
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diminished functional coupling between those two structures and hence resulting in a 

disinhibition of the feedback loop being reflected in increased amygdala activity (Pezawas et 

al., 2005). These results are in accordance with other functional (Dannlowski et al., 2007; 

Friedel et al., 2009; Heinz et al., 2005; Roiser et al., 2009) and anatomical studies (Pacheco 

et al., 2009) of patients or healthy subjects reporting S allele effects on amygdala–mPFC 

coupling, which has been related to trait anxiety via functional connectivity (Pezawas et al., 

2005) and fractional anisotropy (Kim and Whalen, 2009). It is noteworthy that it has been 

suggested that S-allele-induced amygdala hyperreactivity can be down-regulated by 

cognitive control mechanisms affecting this circuitry during non-automatic processing of 

threatening stimuli (Schardt et al., this issue). Notably, the anatomical impact of the S allele 

has also been reported for orthologous rh5-HTTLPR in rhesus monkeys in the 

corresponding brain regions (Jedema et al., 2010). Furthermore, effects of epistasis between 

5-HTTLPR and Val66Met BDNF have been studied in a large sample of healthy subjects, 

demonstrating that the Met allele counteracts S-allele-induced structural reductions of 

amygdala–sACC coupling (Pezawas et al., 2008). Furthermore, some evidence exists for 

gene–gene interaction between SLC6A4 and HTR1A (Dannlowski et al., 2007). While 

studies investigating this specific circuitry in patients are still scarce (Houenou et al., 2007), 

it has been reported by studies of acute MDD that connectivity between amygdala and 

mPFC varies depending on the genotype and is associated with depressive symptomatology 

(Friedel et al., 2009) as well as global functioning, duration of episodes and lifetime 

hospitalization (Dannlowski et al., 2007).

Further studies highlight that this circuitry is affected by functional variation of multiple 

genes, such as the MAOA-L-allele of MAOA uVNTR, which was shown to be associated 

with increases in sACC-mediated vmPFC–amygdala connectivity, a finding that correlates 

positively with harm avoidance and negatively with reward dependence (Buckholtz et al., 

2008). Decreases of amygdala–pACC and amygdala–aMCC connectivity have also been 

reported in a smaller sample of healthy MAOA-H subjects, whereas MAOA-H MDD 

patients showed the weakest amygdala–prefrontal coupling, indicating a longer and more 

severe course of disease (Dannlowski et al., 2009). Finally, C(178)T HTR3A of the 5-HT3A 

receptor gene (HTR3A) (Iidaka et al., 2005) and rs1344706 in ZNF804A that has been 

related to bipolar disorder, were found to profoundly affect the functional connectivity 

(Esslinger et al., 2009) of the amygdala–ACC circuitry, whereas DISC1 was reported as 

being related to reduced white matter tracts comprising this circuitry (Hashimoto et al., 

2006).

Knowledge of genetic impact on other mood circuitries is limited, but some evidence exists 

that the MAOA-L genotype of MAOA uVNTR reduces functional coupling of the 

amygdala–OFC circuitry in healthy males (Meyer-Lindenberg et al., 2006), which appears 

to also apply to the Val allele of Val158Met COMT for both genders (Drabant et al., 2006).

Conclusions

Since the introduction of imaging genetics as a research tool (Hariri and Weinberger, 2003), 

a dramatically increasing number of scientists are applying this approach to mood disorder 

studies, thereby facilitating the understanding of how genes and interacting factors affect the 
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OMPFC and interconnected structures, such as the amygdala, OFC, ACC and hippocampus 

(Price and Drevets, 2009).

Imaging genetics studies corroborate the crucial role of monoaminergic genetic variation as 

functional or developmental regulators of the amygdala (e.g. SLC6A4, TPH2, HTR1A, 

COMT), OFC (e.g. MAOA, COMT), ACC (e.g. SLC6A4, MAOA, COMT), AMY–mPFC 

circuitry (e.g. SLC6A4, MAOA) and hippocampus (e.g. MAOA, COMT) in healthy subjects 

(see Fig. 1). However, the hippocampus appears to be under strong direct genetic control of 

further and non-monoaminergic genes, such as BDNF and DISC1, likely reflecting its 

specific role in memory formation (see Fig. 1). As detailed above, many more genes have 

been reported to affect OMPFC structures and networks in single studies, and doubtlessly 

more evidence will emerge over the next couple of years. Thus, further replications will be 

necessary in order to draw final conclusions. In addition, imaging genetics studies have 

emphasized the validity of complex disease models of depression, including epistasis as well 

as gene–environment interactions, which are likely more suitable to reflect the highly 

complex neurobiology of mood disorders. Such models may be considered more appropriate 

for studies in patient populations, which are currently sparse and inconclusive.

So far, candidate gene selection has been primarily based on a priori assumptions derived 

from preclinical and association studies, and imaging genetics studies have repeatedly 

shown small effect sizes, which was frequently attributed to the genetic complexity of mood 

disorders. This raises the question of whether genes with significantly stronger effects on the 

OMPFC than the currently known candidates exist, which might be conceivably more 

important for emotion processing and, consequently, for mood disorders. Recent advances in 

‘agnostic’ genome-wide association (GWA) studies (Baum et al., 2008; Ising et al., 2009; 

The Wellcome Trust Case Control Consortium, 2007) promise such insights, and imaging 

genetics studies have begun to adopt these new GWA techniques optimized for gene 

discovery (Potkin et al., 2009a,b,c,d; Stein et al., 2010) and are starting to investigate new 

candidate genes derived from GWA studies (Esslinger et al., 2009). While GWA imaging 

genetics studies are still in their infancy, a clear weakness with regard to statistical 

confirmation exists, and strategies on how to deal with problems of multiple testing in 

connection with such enormous data sets are still under development, this approach will 

likely be helpful for drawing final conclusions regarding expected effect sizes in imaging 

genetics studies and might equally contribute to the discovery of new candidate genes for 

mood disorders.

Imaging genetics studies have provided a proof of concept in mood disorder research by 

indicating and detailing how “classical” candidate genes impact brain circuitries of emotion 

processing in vivo in humans. These results support major hypotheses of depression and 

moreover suggest alternative mechanisms. Further progress in the field of imaging genetics 

research is on the horizon given the large number of genes being currently under 

investigation along with the development of more sophisticated techniques, which will be 

helpful in unraveling the uncertainties of mood disorder neurobiology.
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Fig. 1. 
Summary of the genetic impact of mood disorder risk genes on volumetric and BOLD 

measures in healthy subjects and mood disorder patients. BOLD, blood-oxygen level 

dependent. ○, only studies in mood disorder samples available; ●, only studies in healthy 

samples available; +, only gene–gene interaction reported; *, gene–environment interaction 

reported; three classes of color opacity display available evidence (from light to dark): 30% 

single study or support index <0.5; 60% support index 0.5–0.75; 100% support index N0.75; 

further details on the calculation of the support index can be found in Supplementary data; 

ACC, anterior cingulate cortex; OFC, orbitofrontal cortex; AMY–ACC, amygdala–anterior 

cingulate cortex circuitry; AMY, amygdala; HIPP, hippocampus. Gene nomenclature 

corresponds to OMIM (Online Mendelian Inheritance in Man).
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