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Abstract

identifying novel transcription units.

defined by newly annotated enhancer transcripts.

Background: Global run-on coupled with deep sequencing (GRO-seq) provides extensive information on the location
and function of coding and non-coding transcripts, including primary microRNAs (miRNAs), long non-coding RNAs
(IncRNAs), and enhancer RNAs (eRNAs), as well as yet undiscovered classes of transcripts. However, few computational
tools tailored toward this new type of sequencing data are available, limiting the applicability of GRO-seq data for

Results: Here, we present groHMM, a computational tool in R, which defines the boundaries of transcription units de
novo using a two state hidden-Markov model (HMM). A systematic comparison of the performance between groHMM
and two existing peak-calling methods tuned to identify broad regions (SICER and HOMER) favorably supports our
approach on existing GRO-seq data from MCF-7 breast cancer cells. To demonstrate the broader utility of our approach,
we have used groHMM to annotate a diverse array of transcription units (i.e, primary transcripts) from four GRO-seq
data sets derived from cells representing a variety of different human tissue types, including non-transformed cells
(cardiomyocytes and lung fibroblasts) and transformed cells (LNCaP and MCF-7 cancer cells), as well as
non-mammialian cells (from flies and worms). As an example of the utility of groHMM and its application to
questions about the transcriptome, we show how groHMM can be used to analyze cell type-specific enhancers as

Conclusions: Our results show that groHMM can reveal new insights into cell type-specific transcription by identifying
novel transcription units, and serve as a complete and useful tool for evaluating functional genomic elements in cells.

Keywords: GRO-seq, groHMM, Transcription, Transcription unit, Primary transcript, Gene regulation, Peak calling, Cell type
specificity, Enhancer, Primary miRNAs, Long non-coding RNAs (IncRNAs), Enhancer RNAs (eRNAs), ChiP-seq

Background

Recent breakthroughs in high-throughput DNA sequen-
cing technologies have changed our view of the intricate
nature of eukaryotic transcriptomes. For example, with
adequate sequencing depth, short read RNA-seq can
provide a reasonably complete and unbiased identifica-
tion of protein-coding mRNA isoforms, as well as many
types of non-coding RNAs, which can be improved with
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the use of long read lengths [1-3]. However, RNA-seq
enriches for stable mRNAs, which accumulate to steady-
state levels in cells. Recent reports indicate that a large
number of transcribed regions are rapidly degraded by
the exosome [4—6] and are therefore unlikely to be iden-
tified by RNA-seq. Therefore, mapping functional ele-
ments in cells (i.e, genes, promoters, enhancers, etc.)
requires the integration of data from large numbers of
genomic assays, including ChIP-seq, RNA-seq, DNase-
seq, and others [7, 8] (Fig. 1). As a result, complete anno-
tation projects such as ENCODE require a tremendous
convergence of resources, vastly exceeding those available
to individual labs. Yet large-scale projects such as EN-
CODE have reported extreme cell type-specificity at many
classes of functional elements [7, 9-11], highlighting the
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Fig. 1 Aligning annotated transcription units with genomic data. Genome browser tracks of various types of genomic data (GRO-seq; polyA+
RNA-seq; Pol Il, H3K4me3, and H3K36me3 ChIP-seq) from MCF-7 cells, an estrogen receptor alpha (ERa)-positive human breast cancer cell line.
GRO-seq and Pol Il ChIP-seq mark the entire transcription unit of actively transcribed genes (“Expressed”). PolyA+ RNA-seq marks exons, 5" UTRs, and
3" UTRs of actively transcribed genes. H3K4me3 and H3K36me3 mark the promoters and gene bodies, respectively, of actively transcribed genes.
Transcription units called by groHMM using GRO-seq data are shown in comparisons to RefSeq annotations
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need to continue annotating functional elements in new
types of cells.

The advent of genomic approaches has allowed de-
tailed characterization of the transcriptomes of mam-
mals and other metazoans. Not surprisingly, such
analyses have revealed an enrichment of RNA polymer-
ase II (Pol II) at the promoters and gene bodies of
expressed coding and non-coding RNA genes, which
correlates with the expression of the cognate RNAs
[12-16] (Fig. 1). Unexpectedly, however, recent studies
have shown that many other functional elements in the
genome, including enhancers, overlap with sites of Pol II
loading and active RNA pol II transcription [5, 17-24].
Thus, Pol II marks a surprisingly large number of classes
of functional elements across the genome, which together
provides an extensive, deep picture of active regulatory
and gene expression programs. Mapping sites of active
transcription across the genome has been facilitated
greatly by a recently developed technology called global
run-on sequencing (GRO-seq) [25], which provides a
comprehensive ‘map’ of the location and orientation of
all three RNA polymerases (Pol I, II, and III) in cells
[17, 20, 25].

Given that GRO-seq is a direct measure of transcrip-
tional output, it is well suited for calling active transcrip-
tion units. However, other approaches, such as RNA-seq
and ChIP-seq can be used as well. RNA-seq, which mea-
sures steady-state accumulation of RNA, is limited with
respect to the calling of transcription units because most
mRNAs and IncRNAs are processed to mature forms
lacking introns, thus generating sequencing reads that

do not cover the entire transcription unit (Fig. 1). ChIP-
seq for RNA polymerase II or histone modifications typic-
ally associated with the promoters (e.g., H3K4me3) or
bodies (e.g., H3K36me3) of actively transcribed genes can
also be used for calling transcript units (Fig. 1) [26, 27],
but they are surrogates for actual transcriptional output.
In contrast, GRO-seq data can robustly identify transcrip-
tion units (i.e., mRNA and IncRNA genes) [17, 20, 25], as
well as the location of distal regulatory elements such as
enhancers [17, 18, 21, 24], because it detects the process
of transcription before the degradation of unstable
RNAs. However, the identification of transcription units
from GRO-seq data poses significant new bioinformatic
challenges.

Here, we introduce groHMM, a complete pipeline for
the (1) accurate identification of the boundaries of tran-
scriptional activity across the genome using GRO-seq
data and (2) classification of these transcription units
using a database of available annotations, which is pro-
vided as an R package in Bioconductor [28]. In addition,
we describe novel metrics for the accuracy of transcription
unit annotation, which show that groHMM substantially
outperforms alternative approaches for identifying both
coding and non-coding transcription units. To demon-
strate the utility of our approach, we use groHMM to
annotate four GRO-seq data sets derived from cells
representing a variety of different human tissue types,
as well as non-mammalian cells. Our analyses using
groHMM, a complete and useful tool for evaluating
functional elements in cells, reveal new insights into cell
type-specific transcription.
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Implementation
groHMM, a computational tool for calling transcription
units de novo
Transcription units can be identified from various types of
genomic data, including GRO-seq, RNA-seq, and ChIP-seq
for RNA Pol II, H3K4me3 (promoters), and H3K36me3
(gene bodies) (Fig. 1). We developed an unbiased approach
to identify transcription units de novo from GRO-seq data
using a two-state hidden Markov model (HMM). Our tool,
which we call groHMM, is available as an R package in Bio-
conductor [28]. GroHMM takes as input information about
read counts from GRO-seq data in 50 bp windows mapping
to the plus and minus strands separately, and then divides
the plus and minus strands into states representing “tran-
scribed” and “non-transcribed” regions (Fig. 2a). We used
uniquely mapped reads with minimal mismatches allowed
as input because multimappers can introduce ambiguity in
the HMM (see Methods).

Our HMM is parameterized by probability distributions
representing the number of GRO-seq reads each hidden state
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emits across the genome and by a 2x2 matrix of transition
probabilities between the hidden states (Fig. 2a). We used a
gamma distribution to model GRO-seq read counts due to its
flexibility for representing a variety of probability distributions
depending on the values of its parameters, shape (k) and scale
(0). The gamma distribution parameters representing read
counts in the transcribed state (kp, 61) and the transition
probability from the non-transcribed to the transcribed state
(N) were trained using the Baum-Welch expectation
maximization (EM) algorithm. Because GRO-seq has a low
background level, we constrained the gamma distribution for
the non-transcribed state such that the mean of the distribu-
tion became 1 after adding pseudocounts to every window.
Self-transition parameters for the transcribed and non-
transcribed states are, by definition, 1-T'and 1-N, respectively.
Two parameters of the HMM, representing the transi-
tion probability of the transcribed state to the non-
transcribed state (T) and the variance of the non-
transcribed state (02) were held out for tuning using
known gene annotations (Fig. 2a). We chose the first
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Fig. 2 Calling transcription units from GRO-seq data using groHMM. a Schematic representation of the groHMM hidden-Markov model approach.
The emission probabilities of each state (ie, transcribed and non-transcribed) were modeled with gamma distributions. Red arrows represent two
reserved tuning parameters for the model; 7, the transition probability of the transcribed state to the non-transcribed state and o? the variance of the
non-transcribed state in a constrained gamma distribution. [(a?, 1/0%), constrained gamma distribution of the non-transcribed state; (ky, 8y), gamma
distribution of the transcribed state; N, the transition probability of the non-transcribed to the transcribed state. Gray arrows, self-transition probabilities
(ie., transcribed to transcribed or non-transcribed to non-transcribed), which are, by definition, 1-T and 1-N, respectively. b Genome browser tracks of
GRO-seq data from MCF-7 cells (top) with transcription units called by groHMM, SICER, and HOMER (middle), and corresponding RefSeq annotations
(bottom). € Zoomed in view of the browser tracks for the RPS6KCT gene from (b)
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tuning parameter, 7, as a penalty to control the length of
the called transcription units. We chose the second tuning
parameter, 6 to control the variance of the GRO-seq back-
ground signal (note that GRO-seq does not have input data,
unlike ChIP-seq). Between the two tuning parameters, chan-
ging T has a larger effect on the length of transcription units
than the variance of the constrained gamma distribution
(see below). In most of the analyses shown herein, these two
tuning parameters were set for mammalian genomes. For
non-mammalian genomes with smaller genome sizes and
higher gene densities (e.g., D. melanogaster and C. elegans), a
higher range of probabilities for the transition of the tran-
scribed state to the non-transcribed state were more effective
(see below). Also, in the groHMM package, users can
optimize the tuning parameters by comparing to existing an-
notations. Details for optimizing the parameters are
provided in the tutorial associated with the groHMM
tool in Bioconductor [28].

After optimizing the values of the tuning parameters,
we used the Viterbi algorithm to obtain a set of called
primary transcription units across the genome. Browser

Page 4 of 16

track representations of raw strand-specific GRO-seq
data from MCE-7 breast cancer cells [17] showing a se-
lected region of the genome, as well as the correspond-
ing transcripts called by groHMM (and two other tools;
see below), show that groHMM calls transcripts that
align well with RefSeq annotations (Figs 1, 2b, and c).

Evaluation of transcripts called by groHMM

The quality of the boundaries of transcription units called by
groHMM from the MCE-7 cell GRO-seq data was evaluated
by comparison to known gene annotations. For these analyses,
we assumed that the transcripts called by groHMM should
largely be in agreement with annotations, when available.
Two types of error are naturally defined in this comparison,
including cases in which (1) distinct neighboring annotations
are merged into a single transcription unit (“merged annota-
tion error”) and (2) a single annotation is broken up into mul-
tiple distinct transcription units (“dissociated annotation
error”) (Fig. 3a). GroHMM selects the combination of tuning
parameters that minimize the sum of these errors after run-
ning several settings in an iterative manner.

transcripts were bootstrapped (n = 100) with annotations of EDR =1
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Fig. 3 Performance of transcript unit callers. a Schematic representation of TUA metrics. We divided non-overlapping gene annotations into three
distinct regions: (1) upstream of the transcription start site (TSS), (2) within the gene body, and (3) downstream of the transcription termination site
(TTS). We scaled all genes to a uniform length and plotted the frequency with which the called transcription units overlap each position near the gene
annotations (see Methods for details). Asterisks represent two possible errors of transcript calling * ‘dissociated annotation error’ and ** ‘merged
annotation error.’ The terms are as follows: 5'FP (5’ false positive; upstream region), TP (true positive; gene body), and PostTTs (downstream of
the TTS). b Transcript density plot of called transcripts for well-expressed genes (n = 2,060), where expression (i.e., GRO-seq reads) was observed
in 100 evenly divided regions (EDR). Transcript density is defined as the number of called transcripts divided by the number of annotations per
each genomic location. Ten percent of the transcripts were bootstrapped with replacement (n = 100). ¢ TUA metrics for (B), comparing three
transcript callers: groHMM, SICER, and HOMER. d Coverage of called transcripts compared with actual expression in genic and intergenic regions
using a window size of 100 bp for groHMM, SICER, and HOMER. Ten percent of the annotations were bootstrapped with replacement (n = 100).
e TUAs of called transcripts grouped by annotation widths: short, <20 kb (n = 3,919); medium, 20-50 kb (n = 3,339); and long, >50 kb (n = 4,740) for
groHMM, SICER, and HOMER. Annotations with EDR = 10 were used. Ten percent of the transcripts were bootstrapped with replacement (n = 100).
f TUAs for various sequencing depths for groHMM, SICER, and HOMER. The same optimal values for each method were used. Ten percent of the
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To compare transcription units called by groHMM
with previously annotated genes more rigorously, we de-
vised a measure of mismatch between transcription units
and gene annotations where: (1) overlap between the
called transcription unit and the annotated gene body,
and (2) a lack of overlap between the called transcription
unit and the upstream or downstream regions of the an-
notated gene, provide information on the accuracy of
the transcription unit predictions. We divided non-
overlapping gene annotations into three distinct regions,
all scaled to a uniform gene size: (1) upstream of the
transcription start site (TSS), (2) within the gene body,
and (3) downstream of the transcription termination site
(TTS) (Fig. 3a). For each region, we calculated the pro-
portion (i.e., area) of overlapped transcription units rela-
tive to the area of expressed annotations by associating
each gene with a best matched groHMM-called tran-
scription unit. We represented these areas as 5'FP (5’
false positive), TP (true positive) and PostTTS, respect-
ively (Fig. 3a). We assumed that called transcription
units overlapping the region upstream of annotated
genes are false positives, and that called transcription
units overlapping annotated gene bodies are true posi-
tives, which provide a measure of sensitivity. The down-
stream region, however, was not used to define TUA
since RNA polymerase II (Pol II) is known to continue
transcribing beyond the polyadenlylation site. TUA is a
scalar value formally defined as:

TP+5TN
TP+ FEN+5FP+5TN

Where FN (false negative) = 1 - TP for gene bodies. We
further restricted TUA to satisfy 5FP+5TN (5 true
negative) = TP, so that the upstream region contributes to
TUA only if there is positive number of transcription units
in the gene body (i.e., TP > 0). Consensus annotations
(i.e.,, non-redundant annotations from RefSeq and GEN-
CODE), which have non-overlapping genomic coordi-
nates, were used for comparing called transcripts with
annotations (see Methods).

Table 1 Parameters of each transcript-calling algorithm tested
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Results Performance comparison of groHMM with other
transcription unit-calling tools

We selected three additional publically available gen-
omic data analysis tools, SICER, HOMER, and RSEG,
and compared the results from these tools to the results
from groHMM using the quality metrics described above.
All comparisons were done using GRO-seq data from
MCEF-7 cells [17] (Additional file 1: Table S1). SICER ver.
1.1 [29] was originally designed as a ‘peak caller’ for de-
tecting diffuse enriched regions, such as broad peaks of
histone modifications, from ChIP-seq data. It assigns a
score for non-overlapping windows, assuming the sequen-
cing reads are distributed under a Poisson model, and
combines high scoring windows to form a cluster where
gaps are allowed up to given threshold value, which is a
user-adjustable free parameter (Table 1). HOMER ver. 4.6
[30] is a method that identifies a sudden increase in GRO-
seq signal to denote the start of a transcription unit. The
signals are considered artificial spikes if they fail to last
over a large distance (Table 1). RSEG ver. 0.4.8 [31] is an
HMM-based tool for calling broad peaks of histone modi-
fications from ChIP-seq data (our comparison with RSEG
herein are more limited). A fourth tool, Vespucci [32],
which defines primary transcription units by assembling
reads archived in a relational database, was not evaluated
in our comparison. We were unable to get the system
working due to technical factors, including its dependence
on an external database, PostgreSQL, a commercial cloud
environment, and high computational processing times,
making it infeasible to test the various free parameters
used in the system.

When comparing approaches for calling transcription
units from GRO-seq data using tools designed for
ChIP-seq data, one must consider the following: First,
transcription units are more akin to broad features (e.g.,
domains of histone modifications, such as H3K36me3;
Fig. 1) rather than punctate features (e.g., transcription
factor binding sites) that are typically identified in
ChIP-seq data. Most ChIP-seq peak callers (e.g., HPeak;
[33]) are designed to identify punctate features, although
some (e.g., SICER and RSEG; [29, 31]) can identify broad
features. Second, most tools designed for use with ChIP-
seq data require sequencing data from input samples (i.e.,

Method Algorithm Explored parameters Tested values
groHMM Hidden-Markov Model -LtProbB (7): Log probability of the transcribed state to non-transcribed state 50.500
UTS (%) variance in read counts of the non-transcribed state 5.50
SICER Clustering approach windowsSize: size of the windows to scan the genome width 200.2000
gapSize: minimum gap size allowed between windows 1x.10x
HOMER Transcription model minBodysSize: size of region for transcript body detection 500..5000
bodyFold: fold enrichment for new transcript detection 2.20
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bulk chromatin prior to immunoprecipitation). No such
input exists for GRO-seq data due to the nature of the
assay [25]. Third, unlike GRO-seq data, ChIP-seq data do
not specify the DNA strand (plus or minus). Thus, tools
designed for use with ChIP-seq data are not designed to
handle genomic data with strand information. Likewise,
groHMM is not designed to handle genomic data without
strand information. In Additional file 1: Table S2, we pro-
vide a list of HMM and non-HMM based broad peak cal-
lers and their potential utility for analyzing GRO-seq data.

To compare the performance of each method with
groHMM, we ran all methods using the default parameter
values (Additional file 1: Table S3). GroHMM returned
results with fewer errors and greater transcription unit
accuracy. Next, we optimized the tuning parameters of
groHMM, SICER, and HOMER independently by ex-
ploring 100 parametric models each (see Methods;
RSEG has too many parameters to allow efficient fine
tuning) (Additional file 1: Figure S1). We determined the
overall error, merged annotation error, and dissociated an-
notation error, as well as called transcript features (e.g.,
number of transcripts, median transcript length), for
groHMM, SICER, and HOMER. Over the range of pa-
rameters tested, SICER tended to generate longer and
fewer transcripts, while HOMER tended to gener-
ate shorter and more numerous transcripts, with
groHMM generally falling in between (Additional file 1:
Figure S1, A and B). These outcomes are reflected in the
errors from each transcription unit caller over the range
of parameters tested, with groHMM yielding low overall
error rates with the least variance (Additional file 1: Figure
S1C), and HOMER yielding the least merged annotation
error and the most dissociated annotation errors (Table 2;
Additional file 1: Figure S1, D and E).

To evaluate the quality of the called transcription units
(i.e., the fidelity of boundaries for gene annotations) for
each method, we selected 2,060 highly-expressed mRNAs
from the consensus annotations based on a filtering criter-
ion that we call EDR (“Evenly Divided Regions”, defined as
the number of equally-sized segments in a gene where at
least one GRO-seq read is observed in all the segments.
EDR is a measure of robustness and smoothness of gene
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expression (higher EDR values correspond to more ro-
bustly and smoothly expressed genes). Using the optimal
parameters for each transcription unit caller (see Methods;
Table 2 and Additional file 1: Figure S1) and EDR =100
for the highly expressed mRNA set, groHMM returned
higher TUA values than SICER and HOMER (Figure 3, b
and c). Assuming a predicted transcription unit should be
in good agreement with a gene annotation only if the gene
is transcribed robustly throughout the entire gene body,
we expected the TUA values would be positively corre-
lated with the smoothness of expression (i.e., higher EDR
values). We found that the TUA values were monotonic-
ally increased for groHMM, but not SICER and HOMER,
which reached a plateau at EDR =10 or EDR = 20, re-
spectively (Additional file 1: Figure S2A). Similar results
were obtained for a set of highly expressed annotated
long non-coding RNAs (IncRNAs) (Additional file 1:
Figure S2, B and C). These results suggest that transcrip-
tion unit boundaries are captured with greater fidelity
using groHMM.

Next, we investigated how the called transcription
units overlap with expressed consensus annotations by
dividing the genome into non-overlapping windows of
100 bp for genic and intergenic regions, and counting
the number of windows covered by the called tran-
scripts. The groHMM-called transcription units had bet-
ter coverage of both genic and intergenic regions than
SICER and HOMER (Fig. 3d). We also examined the
TUAs with respect to the annotation length (EDR = 10).
Whereas HOMER performed slightly better for very
short annotations (<20 kb in size), groHMM had a much
better performance for both medium (20-50 kb) and
long annotations (>50 kb) (Fig. 3e). This was expected
because groHMM is tuned using previously annotated
genes, which have a median length of 23 kb. There is a
more distinctive trade-off between transcript length and
performance in SICER and HOMER, while groHMM
minimizes this trade-off, robustly covering both short
and long transcripts.

Finally, we determined the effect of sequencing depth.
We simulated GRO-seq libraries of different sizes by
randomly sampling from all chromosomes from the

Table 2 Optimal parameter values and error rates for each transcript-calling algorithm tested using GRO-seq data from MCF-7 cells

Method Parameters Optimal Number of Median transcript Error
value transcripts length (bp) Merged annotation Dissociated annotation Rate
groHMM -LtProbB (7) 350 29,639 7,750 1,956 745 0.065
UTS (0% 30
SICER windowsSize 1,200 26,066 13,200 1,602 2,099 0.097
gapSize 3,600 (3x)
HOMER minBodySize 2,500 25,542 4,240 731 1029 0.047

bodyFold 12
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MCE-7 data set up to a total sampled library size of
60 M reads. We then determined the TUA for each tran-
scription unit caller using the optimal values determined
above (Fig. 3f). Of the three transcription unit callers,
groHMM exhibited the highest sensitivity at the lowest se-
quencing depths, and the sensitivity was consistent
throughout all simulated library sizes. Collectively, our re-
sults demonstrate that groHMM is a more versatile, ro-
bust, and better-performing tool than SICER and
HOMER for calling transcription units.

Calling transcription units using GRO-seq data from
non-mammalian genomes

GRO-seq is a genomic approach that can be used in non-
mammalian organisms, such as flies (D. melanogaster)
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[34] and worms (C. elegans) [35]. We used groHMM to
call transcription units from publicly available GRO-seq
data sets from the fly and worm [35, 36]. As with the ana-
lyses using data from human cells, we optimized the pa-
rameters (Additional file 1: Tables S4 and S5). Unlike the
analysis of data from human cells, we had to explore a lar-
ger range of values for the transition probability of the
transcribed state to the non-transcribed state (7) because
of the high gene density in D. melanogaster (~76 genes
per Mb) and C. elegans (~200 genes per Mb) compared to
humans (11 genes per Mb) (Fig. 4a). We plotted transcript
density as described above for the human data analyses
(Fig. 4b). In addition, we determined the number of
called transcripts and the error rates (Additional file 1:
Tables S4 and S5). Our analyses revealed that groHMM
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Fig. 4 Transcription units called by groHMM using GRO-seq data from D. melanogaster and C. elegans. a Average gene densities for humans (H. sapiens),
flies (D. melanogaster), and worms (C. elegans). b Transcript density plot for well-expressed transcription units identified by groHMM using
optimal parameters. The number of well-expressed genes was 265, 4,524, and 2,060 for D. melanogaster, C. elegans, and H. sapiens, respectively.
¢ Sample GRO-seq browser tracks for D. melanogaster. Transcription units called by groHMM using GRO-seq data are shown in comparison to
RefSeq annotations. d Sample GRO-seq browser tracks for C. elegans. Transcription units called by groHMM using GRO-seq data are shown in
comparison to RefSeq annotations. The gene density is much higher in worms compared to human and flies, resulting in longer groHMM-called
transcription units, which merge several gene annotations
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performs well with fly GRO-seq data, but relatively
poorly with worm GRO-seq data (Fig. 4, b-d; Additional
file 1: Tables S4 and S5). With the fly data, the
groHMM-called transcripts matched well with the an-
notations, while with the worm data, the groHMM-
called transcripts typically merged together many anno-
tations (Fig. 4, ¢ and d). The latter is likely due to the
high gene density in worms (17-fold greater than humans)
(Fig. 4a) and some poorly annotated transcription units
for gene clusters, which makes it difficult for groHMM to
distinguish distinct genes in gene-dense regions. Overall,
we believe groHMM can be useful for the study of some
non-mammalian genomes.

Analyzing and classifying the MCF-7 cell transcriptome

Many transcriptomic applications require defining the
specific ‘biotype’ of the primary transcripts from pre-
dicted transcription units. To illustrate how groHMM
can be applied to this task, we classified transcription
units called from MCF-7 GRO-seq data [17] (Additional
file 1: Table S1) into a set of ten functional classes based
on gene annotations, including those producing protein-
coding messenger RNAs (mRNAs), non-coding RNAs,
IncRNAs, enhancer RNAs, divergent RNAs, antisense
RNAs, repeat RNAs, other genic-sense RNAs, other
genic-antisense RNAs, and intergenic RNAs, as previ-
ously defined [17]. GroHMM predictions were first re-
fined into 31,159 transcription units using a heuristic
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procedure that reconstructs the boundaries of annotated
genes (Additional file 1: Table S1). The non-overlapping
annotation pipeline then assigned the cognate tran-
scripts into ten functional classes by comparison to data-
bases of known protein-coding transcripts (including
RefSeq GENCODE, and UCSC Genes), IncRNAs (LNCipe-
dia), and transcripts from DNA repeats (RepeatMasker in
the UCSC genome browser) (Fig. 5a). Transcripts ori-
ginating from putative enhancers (i.e., “enhancer tran-
scripts”) were defined as those that are short (<9 kb),
bidirectional (i.e., transcribed from both strands of DNA),
and partially overlapping, with transcription units whose
TSS is located >10 kb from the TSSs or TTSs of annotated
genes, as described previously [18]. Although not all bidir-
ectional transcription away from known TSSs indicates an
enhancer, since bidirectional transcription that is short in
one direction and long in the other may originate from an
unnannotated gene [18], short bidirectional intergenic
transcription is a good indicator of an active enhancer
[18]. This analysis revealed that the most common types
of transcription units are those that produce protein-
coding RNAs (39 %), divergent RNAs (13 %), intergenic
RNAs (13 %), and IncRNAs (12 %) (Fig. 5, b and ¢).

Mining public GRO-seq data sets using groHMM

We systematically compared the transcriptomes of four
different cell types, adding three additional publically
available GRO-seq data sets to the MCE-7 cell analysis,
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including data sets from non-transformed cells (cardio-
myocytes and lung fibroblasts) and transformed cells
(LNCaP prostate cancer cells) (Additional file 1: Table
S1). The GRO-seq data from these additional cell lines
were processed using groHMM, resulting in distinct sets
of transcript for each cell type (Additional file 1: Table
S1). The transcriptome profiles were compared across
all transcripts or across cell type-specific transcripts
(Fig. 6, a and b). Although the total number of tran-
scripts was different for each cell type, the fraction of
transcripts within each functional class (e.g., protein-
coding, enhancer, intergenic, etc.) was similar across the
four cell types (Fig. 6a and b). However, the fraction of
cell type-specific transcripts in IMR90 cells (~7 %; 1,705
out of 25,154) was significantly lower than in the other
three cell types (26 % ~28 %; p<22 x 107, Fisher’s
exact test), indicating differences in biology or groHMM
sensitivity across cell types. In addition, protein-coding
transcripts were significantly depleted from the cell type-
specific fraction of the transcriptome in all cell types (p <
2.2 x 107! Fisher’s exact test), whereas enhancer tran-
scripts were significantly enriched (p < 1.7 x 10*2, Fish-
er’s exact test) (Fig. 6a and b). These observations fit
well with the known biology of these transcript types
(i.e., enhancers tend to be more cell type-specific than

Page 9 of 16

proteins; see the browser tracks in Fig. 6¢, for example).
As expected, a significant fraction of called enhancer
transcripts overlap sites of DNase I hypersensitivity, as
determined in analyses of GRO-seq and DNase-seq data
from MCEF-7 cells (>90 % of the 1,240 enhancer tran-
scripts called; data not shown) (see Fig. 6¢, “enhancer”).
These results fit well with the known requirement of an
open chromatin architecture for enhancer function [19,
37, 38].

Analysis of cell type-specific enhancers defined by
enhancer transcription

Identifying and analyzing cell type-specific enhancers
can provide important biological insights. We have pre-
viously shown that enhancer transcription detected by
GRO-seq is an effective means of identifying and anno-
tating putative enhancers [18]. As noted above, we
mined GRO-seq data from MCF-7, LNCaP, IMR90, and
AC16 cells using groHMM to identify a universe of
1,889 enhancers (defined by short bi-directional tran-
scription; [18]) across the four cell lines (Fig. 7a). Of
these, 56% were cell type-specific (i.e., identified in one
cell type only), while the remaining enhancers were de-
tected in two or more cell lines (Fig. 7b). Heat map rep-
resentations of the relative transcription (Fig. 7c) and

Fig. 6 Analysis of cell type-specific transcription using groHMM. a Bar plot showing the fraction of transcript types among all transcripts called
from GRO-seq data using groHMM in four different cell types (MCF-7, LNCaP, IMR90, AC16). b Bar plot showing the fraction of cell type-specific
transcripts called from GRO-seq data using groHMM in four different cell types. Blue or yellow dots show the fraction of non-cell type-specific
transcripts of each type, which is greater than (blue dots) or less than (yellow dots) the fraction of cell type-specific transcripts. € Genome browser
tracks showing examples of a cell type-specific enhancer transcript (MCF-7, marked with brackets) and a non-cell type-specific mRNA tran-
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( (See figure on previous page.)

AC16-specific enhancers in MCF-7 cells) (bottom)

Fig. 7 Analysis of cell type-specific enhancers defined by enhancer transcription. a Fraction of cell type-specific (n = 1,052) and non-cell type-specific
(n=837) enhancer transcript pairs in the universe of all enhancer transcript pairs called from GRO-seq data using groHMM across four different cell
lines (MCF-7, LNCaP, IMR90, AC16). b Distribution of enhancer transcript pairs from (A) in one or more cell types. Transcript pairs in one cell type that
overlapped a transcript pair in one or more other cell types by at least 20% of their length were counted and summed. ¢ Heatmaps showing
the relative expression of 1,052 cell type-specific enhancer transcript pairs (top) and 837 non-cell type-specific enhancer transcript pairs (bottom)
after hierarchical clustering analysis. The hierarchical clustering analysis was performed on both the rows and columns using GRO-seq reads on
both strands for each enhancer (Ward’s method; [57]). d Heatmaps showing normalized GRO-seq read counts for 1,052 cell type-specific enhancer
transcript pairs (top) and 837 non-cell type-specific enhancer transcript pairs (bottom). The order of the enhancers from top to bottom is the same as
in (O). Two hundred and fifty bp windows within 10 kb regions from the center of the enhancers are shown. e Metagene representations showing the
average GRO-seq read distributions + 4 kb around the center of the enhancer transcript pair overlap for cell type-specific enhancers in their cognate
cell type (e.g., MCF-7 cell-specific enhancers in MCF-7 cells) (top) or cell type-specific enhancers in other cell types (e.g., LNCaP-, IMR90-, and

the GRO-seq reads within 10 kb of the center of the en-
hancer transcript pair (Fig. 7d) illustrate clearly the cell
type-specificity of many of the enhancers. Metagene
plots of the transcription at cell type-specific enhancers
in the cognate cell type (i.e., the cell type in which the
enhancer is active) versus the other cell types (i.e., those
in which the enhancer is inactive) also illustrate the cell
type-specificity of many of the enhancers (Fig. 7e).

In order to infer the function of the cell type-specific en-
hancers that we identified above, we used Gene Set Enrich-
ment Analysis (GSEA) [39]. To do so, we determined the
correlation of the transcription of each protein-coding gene
with the transcription of each of the 1,052 cell type-specific
enhancers. We then ranked the protein-coding genes based
on the strength of their correlations and used these rank-
ings to assign enrichment scores for all GSEA categories
(i.e., gene ontology, or GO terms) for each enhancer. Next,
we performed hierarchical clustering analysis, displaying
the normalized GSEA enrichment scores for each enhancer
(Additional file 1: Figure S3A; each row is a GO term with
its associated normalized GSEA enrichment scores and
each column represents an enhancer). This 'guilt-by-associ-
ation' analysis identified seven clusters (Additional file 1:
Figure S3, A and B). A similar analysis of 837 non-cell type-
specific enhancers yielded fewer clusters and failed to group
the enhancers from each cell type (Additional file 1: Figure
S3C). Additionally, the GO terms in the clusters from the
cell type-specific analysis in Additional file 1: Figure S3A
represent the characteristics of the cell type in which the
enhancers are active (Additional file 1: Figure S3, D and E).
Finally, we examined how activation of signaling pathways
might affect the cell type-specific enhancers. The data
from the MCF-7, LNCaP, and AC16 cells gave us a unique
opportunity to address this question, given the availability
of GRO-seq data sets from hormone-treated cells (MCF-7,
estradiol; LNCaP, dihydrotestosterone; AC16, tumor
necrosis factor alpha). When compared to the basal (un-
treated) condition, the treatments affected (either up-
regulated or downregulated) the transcription of between
25 % and 65 % of the cell type-specific enhancers and
putative target genes within a given cell type (Additional

file 1: Figure S3, F and G). Collectively, these analyses
show that transcripts called by groHMM from GRO-seq
data can be used to identify putative cell type-specific
enhancers and infer their possible biological functions.

Discussion

GRO-seq data provides a wealth of information about the
cellular transcriptome. Accurately defining various types
of transcripts and systematically assigning these transcripts
into functional categories poses a great challenge to the re-
search community. In this study, we describe groHMM, a
transcription unit identification software package designed
for GRO-seq data. In addition, we describe novel metrics
for determining the accuracy of transcription unit annota-
tion, which show that groHMM substantially outperforms
alternative approaches for identifying both coding and
non-coding transcription units. Finally, to demonstrate the
utility of our approach, we used groHMM to annotate four
GRO-seq data sets derived from cells representing a var-
iety of different human tissue types, focusing on enhancer
transcription. Our analyses reveal new insights into cell
type-specific transcription.

Performance of groHMM, a transcription unit
identification tool

We used the TUA metric, which compares the overlap
of predicted transcription units to protein coding genes,
to evaluate the accuracy of groHMM and two alternative
transcription unit identification tools. We found that
groHMM achieved superior performance compared to
both SICER and HOMER when using optimized models
for each method. For both mRNA and IncRNA tran-
scription units with lower levels of expression, groHMM
was the only method among those tested that showed
monotonically increasing performance as a function of
the ‘smoothness’ of expression, indicating a high correl-
ation of the groHMM model with gene expression pat-
terns determined from GRO-seq data. A full comparison
with HOMER was challenging because of the large num-
ber of free parameters that were difficult to explore
completely. Therefore, it is possible that parameters
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which were not fully explored might produce a better
outcome. However, adjusting many parameters may not
be ideal for typical users since it could easily lead to
overfitting. We successfully annotated many transcript
types from GRO-seq data sets generated by different labs
under a various conditions, including GRO-seq data
from non-mammalian cells, further validating the useful-
ness and generality of groHMM. Together, these results
demonstrate that groHMM is the most versatile and ac-
curate of the tools currently available for transcription
unit identification using GRO-seq data. There are limita-
tions however; groHMM struggled with the gene dense
genome of C. elegans, frequently merging separate anno-
tations into a single called transcription unit.

Annotating and characterizing cell type-specific transcription
from GRO-seq data using groHMM

Cell type-specific transcription can be a useful indicator
of the biology of different cell types or states, and can
even be used to classify cell types into groups with re-
lated biology. Our analysis of GRO-seq data across four
different human cell lines revealed a considerable amount
of cell type-specific transcription for both coding and non-
coding transcription units. Cell type-specific transcription
was particularly enriched for IncRNA genes, repeat se-
quences, other genic — antisense sequences, intergenic
regions, and enhancers. The cell type-specific transcription
of repeat sequences, other genic-antisense sequences, or
intergenic regions suggests a further layer of regulatory
complexity in the genome that should be explored further.
The cell type-specific transcription of enhancers is consist-
ent with observations made in previous studies [5, 11].

A strength of GRO-seq is that activation of gene ex-
pression can be measured within the same assay in
which one assesses the function of regulatory elements,
like enhancers (e.g., by comparing enhancer transcrip-
tion with protein-coding gene transcription). We used
this feature of GRO-seq to assess the functional role of
cell type-specific enhancers in the GSEA analysis shown
in Additional file 1: Figure S4. Our results suggest that
the cell type-specific transcription of regulatory elements
and their target genes are tuned to the biology of the
particular cell types. Taken together, our analyses of
GRO-seq data using groHMM have provided new in-
sights into the function of regulatory elements and the
outcomes of cell type-specific gene expression.

Analysis of cell type-specific enhancers using GRO-seq

Recent studies have placed great emphasis on the identi-
fication of cell type-specific enhancers, since they likely
control most of the cell type-specific transcription in the
cell, including protein-coding and regulatory RNAs (e.g.,
mRNAs and IncRNAs, respectively). One approach for
identifying candidate enhancers is to use DNA sequence
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features, such as sequence conservation or transcription
factor binding motifs [40, 41]. Enhancer prediction based
solely on DNA sequence information, however, is chal-
lenging since transcription factor binding motifs are
short and, thus, occur at many more sites in the genome
than are stably bound [42]. Alternatively, features of
chromatin, such as chromatin accessibility, histone mod-
ifications, or locations of nucleosomes, can be used to
identify candidate regulatory sequences [9, 43-45]. All
of these genomic approaches for enhancer identification
perform better in combination. Other genome-wide ap-
proaches use unbiased functional assessment of genomic
regions to identify potential enhancer elements [46—48].

We have previously shown that enhancer transcrip-
tion, as detected by GRO-seq, can be a powerful tool for
identifying putative active enhancers [17, 18, 20]. GRO-
seq can be a useful tool for detecting the effects of acti-
vated cellular signaling pathways (e.g., from hormone
treatment) on enhancers [17, 18, 20, 21, 49]. In comparison
to other genomic features that have been used to identify
“active” enhancers (e.g., transcription factor binding, core-
gulator recruitment, H3K27ac, DNasel hypersensitivity,
looping to target gene promoters), enhancer transcription
may be the most stringent and may give the most robust
predictions. In fact, these other enhancers features may be
present even when the enhancer has been inactivated and
enhancer transcription has been inhibited [18]. Given that
enhancer transcription may be the most stringent genomic
criterion for calling an active enhancer, it is not surprising
that enhancer identification from GRO-seq data yields
fewer hits than other genomic approaches. Collectively,
our results indicate that analysis of GRO-seq data using
groHMM provides a robust approach for identifying puta-
tive active enhancers and exploring their functions.

Conclusions

GRO-seq provides extensive information on the location
and function of coding and non-coding transcripts, in-
cluding primary miRNAs, long non-coding RNAs
(IncRNAs), and enhancer RNAs (eRNAs), as well as yet
undiscovered classes of transcripts. However, few com-
putational tools tailored toward this new type of sequen-
cing data are available, limiting the applicability of GRO-
seq data for identifying novel transcription units.
GroHMM, a computational tool in R, which defines the
boundaries of transcription units de novo, performs fa-
vorably when compared to two existing peak-calling
methods tuned to identify broad regions (SICER and
HOMER). To demonstrate the broader utility of our ap-
proach, we have used groHMM to annotate a diverse
array of transcription units (i.e., primary transcripts)
from four GRO-seq data sets derived from cells repre-
senting a variety of different human tissue types, includ-
ing non-transformed cells (cardiomyocytes and lung
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fibroblasts) and transformed cells (LNCaP and MCF-7
cancer cells). In particular, we have used groHMM to
analyze cell type-specific enhancers as defined by newly
annotated enhancer transcripts. Collectively, our results
show that groHMM can reveal new insights into
cell type-specific transcription by identifying novel tran-
scription units, and serve as a complete and useful tool
for evaluating functional genomic elements in cells.

Methods

groHMM

The groHMM package was developed in house and is
available for download from Bioconductor [28]. The tool
was run using both default parameters and tuned pa-
rameters as described herein according to the tutorial
provided with the groHMM package.

Mappability

The groHMM tool does not automatically take read mapp-
ability into an account. It uses mapped reads from any read
mapping tool, with parameters (e.g, number of mis-
matches) set by the tool. The analyses presented herein
manuscript do not take mappability in account for two rea-
sons: (1) the performance gain in transcript calling when
considering mappability was minimal (data not shown)
and (2) SICER does not consider mappability, so to put the
comparisons on equal footing, we did not consider mapp-
ability for groHMM and HOMER. To consider mappability
in groHMM, one can use existing genome mappability
files to mask reads that fall in unmappable regions. The
remaining reads can then be used as input to groHMM.

Data curation and preparation

Publicly available GRO-seq data sets from MCEF-7,
LNCaP, IMR90, and AC16 cells were downloaded from
the NCBI GEO repository using the following accession
numbers: MCF-7: GSM678535, GSM678536, GSM678537,
GSM678538, GSM678539, GSM678540, GSM678541,
GSM678542; LNCaP: GSM686948, GSM686949, GSM68
6950; AC16: GSM1240738, GSM1240739, GSM1240740,
GSM1240741, GSM1240742, GSM1240743, GSM1240744,
GSM1240745; and IMR90: GSM340901, GSM340902
(Additional file 1: Table S1). All data except those from the
ACI16 cells were lifted over to hgl9 using the UCSC lift-
Over’ tool before the analysis. MCF-7 DNasel-seq data
were downloaded using accession number GSM1024784.
Non-mammalian GRO-seq data sets were downloaded
using the following accession numbers: D. melanogaster:
GSM1020091, GSM1020092, GSM 1020093, GSM1020094;
C. elegans: GSM1056279, GSM1056282, GSM1056283.
The dm3 and cel0 genome assemblies were used for
unique mapping of reads in D. melanogaster and C.
elegans data, respectively.
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Additional GRO-seq data analysis tools and tuning
parameters

SICER v. 1.1 and HOMER v. 4.6 were downloaded from
http://home.gwu.edu/~wpeng/Software.htm and http://
homer.salk.edu/homer/download.html, respectively. In
order to compare the methods on equal terms, we used
two tuning parameters around the default values for
each method, thus resulting in one hundred parametric
models for each method (Additional file 1: Table 1). The
transcription units of each model varied in terms of the
number of transcripts detected or the length of the de-
tected transcripts (Additional file 1: Figure S1, A and B).
In order to select the optimal model for each transcript
caller, we first filtered the models by the median length
of the transcripts (within IQR) and subsequently by the
number of transcripts (>1.25x and < 1.5x of the consen-
sus annotation). Then, optimal parameters were chosen
based on the overall error rate, which is a fraction of
the sum of the aforementioned ‘merged annotation
error’ and ‘dissociated annotation error’ (Additional file
1: Table 2). For a more precise measure of the dissoci-
ated annotation error, we used a well-expressed set of
transcripts (n=11,998) from the consensus annotation,
where expression was observed in all 10 evenly divided
regions (EDR) of the annotation.

Consensus annotations

For calculation of the TUA metrics, we used a “consen-
sus” annotation approach where overlapping isoforms of
a single annotation are represented by a single genomic
interval, using only the interval shared by two or more
isoforms. Using shared genomic intervals for isoforms
provides representative intervals for each gene, but this
approach alone does not resolve all annotation ambigu-
ities because some genes still overlap each other on the
same strand (e.g., in the case of redundantly annotated
overlapping genomic intervals with different gene sym-
bols). Thus, further overlapping intervals were trimmed
at the 3" end in order to preserve the 5’ transcription
start site (TSS) of the interval. The protein-coding genes
of RefSeq hg19 (n =37,560), GENCODE v. 19 Basic (n =
57,584), and UCSC Genes (n = 60,397) were downloaded,
combined, and collapsed into a set of 19,834 non-
overlapping consensus annotations for all unique gene
symbols. These consensus annotations were used for
calculating the TUA metrics and for fixing the boundar-
ies of called transcripts with merged annotation errors
or dissociated annotation errors. All called transcripts
were mapped to annotations one-to-one; if more than
one transcript overlapped a single annotation, the best
overlapping called transcript was chosen so that dissoci-
ated annotation errors were accommodated in the TUA
metrics.
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Definitions of transcript categories

Called transcripts were assigned to one of the following
ten functional classes, according to the rules defined
below, as described previously [17].

(1) Protein coding: A transcript with more than 20 %
of its sequence overlapping any well annotated protein-
coding gene from RefSeq and GENCODE release 19.

(2) Non-coding transcript: A transcript overlapping an
annotated non-coding RNA gene, such as those encod-
ing a miRNA, tRNA, or snRNA, without any restrictions
on the size of the transcript or the quality of the overlap
using the RNA Genes table from the UCSC genome
browser.

(3) IncRNA: A transcript with more than 20 % of its
sequence overlapping any well annotated IncRNA from
LNCipedia 2.1.

(4) Enhancer: A pair of short (< 10 kb) bidirectionally
transcribed intergenic transcripts that do not signifi-
cantly overlap annotated transcripts.

(5) Divergent: A transcript that overlaps the 5" promoter
driving expression of a primary transcript, such as an
mRNA or a IncRNA. Divergent transcripts were only in-
cluded if (1) >10 % of the transcript overlapped the prox-
imal region of a promoter (+500 bp relative to the TSS)
driving expression of a primary transcript >1 kb in size on
the opposite strand and (2) the transcript was <50 % of the
size of the primary transcript, which effectively excluded
divergent enhancer-transcript pairs.

(6) Antisense: A transcript that runs antisense to a
protein-coding gene or IncRNA gene and has >20 % of
its sequence overlapping >20 % of an annotated protein-
coding gene or IncRNA gene on the opposite strand.

(7) Repeat: A transcript with more than 50 % of its se-
quence overlapping genomic regions identified in the
RepeatMasker track in the UCSC Genome Browser.

(9) Other genic — sense/antisense: A transcript that
has a poor match to existing annotations. Transcripts in
this category overlap any segment of a gene annotation
on either strand, but show <20 % matching to the anno-
tation on the same strand (sense) or on the opposite
(antisense).

(10) Intergenic: A transcript does not belong to any
defined categories above.

Heatmaps and metagenes
Enhancer transcription heatmaps were generated with
Java Treeview, v.1.1.6r4 [50]. Cell type-specific meta-
genes were created using runMetaGene function in the
groHMM package with window size of 100 bp and the
sampling option enabled.

Gene set enrichment and hierarchical clustering analyses
Gene Set Enrichment Analysis (GSEA), v. 2.0.14 [39],
was used for the functional study of enhancers using a
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preranked list generated by excluding terms whose
size was >500 or <15 after downloading GO terms
for  humans from  http://download.baderlab.org/
EM_Genesets/September_02_2011/Human/symbol/GO/
Human_GO_bp_no_GO_iea_symbol.gmt. = Normalized
enrichment scores (NESs) were used for the subsequent
hierarchical clustering analysis after filtering the terms
whose NESs were zero for more than 20 enhancers. The
heatmap.2 function in the gplots package in R was used
for clustering both terms and enhancers using the aver-
age linkage option.

Determining regulation in response to hormone treatment

Regulation in response to hormone treatments was de-
termined using the edgeR package in R [51] with a
FDR <1 % for MCF-7 and AC16 cells. Because of the
lack of a biological replicate for the LNCaP cells, house-
keeping genes were used to estimate the common disper-
sion and a p-value < 0.001 was used to call regulation.

Additional file

Additional file 1: The following additional data are available with
the online version of this paper. (Table S1): is a table listing public
GRO-seq data sets mined using groHMM in this paper and the outcome
of the analyses in various cell types. (Table S2): is a table listing HMM
and non-HMM based broad peak callers, and their applicability to the
analysis of GRO-seq data. (Table S3): is a table listing the performance of
each transcript-calling algorithm tested in detail using GRO-seq data from
MCF-7 cells with default parameter values. (Tables S4 and S5): are tables
showing a comparison of transcription units called using optimal parameters
versus the average of all 50 explored parameter sets for D. melanogaster and
C. elegans, respectively. (Table S6): is a table listing the top ten GO terms for
the cell type-specific enhancer clusters. (Table S7): is a table listing the top
ten GO terms for the non-cell type-specific enhancer cluster. (Figure S1): is
a figure showing the parametric space for explored 100 models comparing
three transcript callers: groHMM, SICER, and HOMER. (Figure S2): is a figure
showing variations in TUA with gene expression patterns. (Figure S3): is a
figure showing a functional analysis of cell type-specific enhancers [52-56].
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