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Abstract. An overview is given on the ways databases can be em-
ployed to aid in the prediction of chemical compounds, in particular

1 Introduction

Since its beginning as a systematic science over two hun-
dred years ago, chemistry has had to face the overwhelming
richness of the world of chemical compounds that are found
in nature or are synthesized by the experimental chemist. Try-
ing to keep track of all the compounds discovered has required
a monumental effort, resulting in large book series such as
Gmelin’s “Handbuch der theoretischen Chemie”,[1] and its suc-
cessors, Gmelin’s “Handbuch der Anorganischen Chemie”[2]

and Beilstein’s “Handbuch der Organischen Chemie”,[3] or the
more physico-chemically oriented “Landolt-Börnstein”-
series.[4] With the advent of powerful computers, it has been a
natural step to move these data compilations to electronic data-
bases such as Reaxys,[5] the Cambridge Structure Database,[6]

the Inorganic Crystal Structure Database,[7] or the protein data
bank,[8] just to name a few. In these databases, one finds an
overview over the possible modifications in chemical systems
that have been discovered experimentally (plus some theoretic-
ally predicted structures).

From a crystal chemistry and materials chemistry point of
view, it is of particular interest that experience has shown that
there appear to exist some correlations between the structure(s)
a chemical compound takes on and (some of) the other physi-
cal properties we observe for the compound.[9] Over the years
a multitude of such structure-property relationships have been
investigated – a quick search for publications with the keyword
“structure-property relationship” in the title yielded over
100.000(!) responses – and often documented in appealing
graphical form. Applications of such relationships range from
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inorganic crystalline compounds. Methods currently employed and
possible future approaches are discussed.

molecules,[10,11] in particular biologically active molecules,[12]

glasses,[13,14] aerogels,[15] and porous framework materials,[16]

polymers,[17] proteins,[18] and thin films,[19] to inorganic (crys-
talline) solids.[20–23] Of course, there are many different types
of properties, for which such relationships can be formulated,
depending both on the type of chemical system and the appli-
cation one has in mind. From the point of view of structure
prediction, the “property” of interest is the kinetic (and thermo-
dynamic) stability of a given structure-type in a chemical sys-
tem. We would love to develop a robust map from a selected
set of chemical properties of the atoms comprising a chemical
system plus the “known” structure types, i.e. the ones extracted
from all the experimentally observed and theoretically simu-
lated chemical compounds, to the degree of kinetic stability of
the chemical compound in the specified structure type.

The qualitative and often even quantitative success of em-
ploying specific structure – property relationships via inter-
polation and, to a certain degree, extrapolation, has led to opti-
mistic suggestions that one can establish perfect structure-
property relationships, which will produce easy ways for pre-
dicting new materials with specific desired properties.[24] In
the final consequence, this raises the fundamental question of
whether the “design” of chemical materials with specified
properties is possible in the first place, or whether we are
forced to choose from among the limited number of physically
possible compounds on the admittedly rich table provided by
nature according to the laws of physics.[25] In practice, we
note, however, that there exist numerous examples where the
same crystal structure is found, for example, for both insulators
and metals, and thus these considerations, and especially the
extrapolations involved, need to be taken with a large grain
salt. Nevertheless, it is often reasonable to assume that if two
compounds belong to the same general class of chemical sys-
tems, then they will share some of their properties, and thus
some trends in these properties may truly be correlated with
the various modifications possible in these systems. This might
well allow us to predict some of the properties of not-yet-syn-
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thesized compounds from the structure type they are predicted
to crystallize in.

But this requires us to first take the important step of figur-
ing out, whether a given structure type will constitute a stable
modification in a particular chemical system. For practical pur-
poses, this is equivalent to predicting, which possible crystal-
line modifications can exist in a given chemical system for a
reasonable range of thermodynamic boundary conditions. Such
modifications can be divided into two groups: those that agree
with structure types that have been observed in other chemical
systems (which may be either chemically similar to the system
under consideration, or actually quite different and only show
the same composition), and those structure types that have
never been observed in any chemical system or only been real-
ized in chemical systems that are chemically so different from
the compound under consideration that “chemical intuition”
will not suggest these structure types to us.

Clearly, in the case where a completely new structure type
is going to appear during the synthesis of a new compound, a
database can only be of very limited assistance in predicting
the structure. In that case, we have to turn to fundamental
physical principles that tell us that every (meta)stable chemical
compound corresponds to a locally ergodic region on the en-
ergy landscape of a chemical system.[26–28] At low tempera-
tures such a region corresponds to a local minimum of the
potential energy in the space of atom configurations, but at
elevated temperatures such a region can be quite large en-
compassing several or even many local minima. Over the past
twenty-five years finding such local minima of the potential en-
ergy via global optimization methods has been developed to a
certain proficiency, with different research groups proposing dif-
ferent global optimization algorithms (see, for example[28–31]

and references cited therein).
However, the number of such local minima grows exponen-

tially with the size of the system. Even if one excludes defect
minima and amorphous structures by focusing on only small
periodically repeated simulation cells containing up to, say, ten
formula units, the number of minima can be quite overwhelm-
ing, and the danger that one misses an important modification
increases with system size. Furthermore, since the ab initio
energy calculations are too time-consuming for large global
searches, we often need to employ simplified energy functions
for the global search, refining the resulting minima afterwards
with more accurate ab initio energy functions using Hartree-
Fock- or DFT-based computer codes. In this case, information
drawn from databases can be a valuable resource to heuris-
tically guide us to find promising candidates for modifications
in a given chemical system.

In this essay, we are going to outline some current and pos-
sible future approaches to structure prediction with the help of
database analyses, specifically with respect to inorganic crys-
talline compounds. Many of the concepts and approaches dis-
cussed in this essay have already been presented in the litera-
ture in some fashion, together with applications. Thus, we are
not going to discuss landscape exploration techniques or en-
ergy computation methods nor their applications to chemical
systems in detail, but focus on providing a general presentation
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of the use of databases for structure prediction and closely
related questions that might inspire the reader to proceed fur-
ther along the directions mentioned.

2 Energy Landscape, Chemical Similarity, and
Structure Prediction

2.1 Energy Landscape

The world of all conceivable atom arrangements for N
atoms is called the configuration space (N ≈ NAvogradro). A
point in the configuration space can be visualized as a vector
Ṙ with 3N coordinates [each atom contributes its position vec-
tor ṙ = (x, y, z)]. For each such configuration, we can compute
the potential energy, and the 3N-dimensional hypersurface of
the energy over the configuration space is the so-called (poten-
tial) energy landscape. As we know from classical mechanics,
the dynamics of the chemical system is given by the forces
acting on the atoms, i.e. the gradient of the potential energy.
Of course, there are also quantum mechanical aspects such as
zero-point vibrations, quantum tunneling, or spin degrees of
freedom that should be considered, in principle; however, for
the purpose of the present discussion, we will assume that the
Born-Oppenheimer approximation holds and the effect of such
additional features can be assumed to be small.

Clearly, if one picks such a vector Ṙ at random, the structure
associated with it will be a random arrangement of atoms as
one finds in the gas or liquid phase, and the ideal crystalline
structures listed in databases such as the Inorganic Crystal
Structure Database (ICSD) are singular points on the energy
landscape that will never be seen by randomly picking points
in configuration space. However, most of these randomly se-
lected atom arrangements are quite high in energy, and physics
tells us that the chemical system will preferentially occupy
those regions of configuration space that are local minima of
the free energy F = E – TS at a given temperature (and on a
given time scale[26–28]). Specifically, a metastable modification
of a chemical compound corresponds to a locally ergodic re-
gion of configuration space, i.e. a region containing many
(similar) atom configurations, which is locally equilibrated
with a low free energy and kinetically stable enough such that
the system does not leave this region, on experimental time
scales.

Quite generally, the sets of configurations around a mini-
mum or groups of minima on an energy landscape represent
the locally ergodic regions at low or intermediary tempera-
tures, respectively, and the kinetic stability of these regions
grows with the height of the energetic and entropic barriers
surrounding the region. Furthermore, the (crystal) structure
that we associate with such a metastable modification is the
average over all the configurations in the locally ergodic re-
gion; this average is, at least partly, reflected in the so-called
thermal ellipsoids derived for the atoms in a crystal structure
from the experimental data.

2.2 Structure Prediction

From a physical point of view, structure prediction is there-
fore equivalent to finding all the locally ergodic regions of a
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chemical system. Typically, one proceeds by first finding all
minima, and then identifying the barriers surrounding them to
estimate their stability. Usually, the focus is on the energeti-
cally low-lying minima, and thus the first step of the search is
equivalent to a global optimization on a highly complex multi-
minima energy landscape. Such a procedure is very time-con-
suming, the computational effort typically growing exponen-
tially with the size of the system. This remains true even if
one employs as many simplifications as possible, such as simu-
lation cells containing few formula units with periodic bound-
ary conditions and simple fast-to-evaluate cost functions in-
stead of ab initio energies. As long as we are only interested in
crystalline structures for systems where the energy landscape is
well-approximated by empirical potentials, this simplification
is reasonable, but if one wants to analyze amorphous or defect-
controlled compounds much larger simulation cells are needed,
of course.

Much progress has been made in developing efficient ways
to perform such global optimizations for crystalline chemical
systems, but as one knows from databases such as the ICSD,
there exist many crystal structures that contain more than only
a handful of formula units or cannot be well described by em-
pirical potentials forcing us to employ semi-empirical or ab
initio energy calculations instead. As a consequence, even
highly refined global search methods cannot guarantee success
within reasonable computation times. Furthermore, in general
it is not sufficient to find only the global minimum, because
in many instances it is a metastable modification, perhaps only
realizable as a nano-crystal or thin film, which exhibits the
desired properties – a fact well-known in experimental chemis-
try.[32]

One way to address this problem is by exploiting our knowl-
edge about chemical systems collected in databases. In that
way, we can hope to accelerate the search for “good” structure
candidates in a not-yet-explored chemical system by extrapo-
lating from other (related) systems, where already some crys-
talline modifications are known. While the purist might reject
such heuristic procedures, it is obvious that one should not
refuse any methodology that can assist us in identifying candi-
dates for metastable compounds in a chemical system, even if
it is only heuristic and clearly limited. In particular, if one’s
goal is not to prove the feasibility of a particular prediction
methodology but to find all possible modifications for a spe-
cific given chemical system – or at least as many as one can
in a limited amount of time –, then one should employ every
method available. For more information about the many unbi-
ased (i.e. without relying on information beyond the energy
function itself) global optimization methods that are currently
being employed, we refer to the literature (see references,[28–31]

mentioned above), and for the remainder of this essay, we are
only going to discuss approaches that rely on the availability of
databases that contain large numbers of crystal structures of
chemical systems.

2.3 Similarity of Chemical Systems

From an abstract point of view, every chemical system is
different, and thus there is no a priori reason to assume that
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the possible modifications observed in one system are going
to exhibit the same or even a similar structure as those found
in any other system. And if one defines a “structure” via the
exact cell parameters of a crystalline unit cell and the specific
atom positions within this cell, the numerical values of these
coordinates will be different from those found in any other
chemical system. But the experience of the practicing crystal-
lographer, chemist, and materials scientist has shown that
among the structures observed in the world of crystalline com-
pounds there are many which differ from each other only by
slight changes in atom parameters and/or cell parameters, such
that they appear to be the same, at least visually, once one
disregards the specific chemical identity of the atoms involved.
The crystallographic literature contains many algorithms that
have been suggested to quantify this similarity, e.g. based on
symmetry,[33] geometry,[34] or topology[35] considerations, each
being most useful in specific contexts. But at the moment the
decisive issue is that once we subsume all these similar struc-
tures under one structure type, we realize that instead of hun-
dreds of thousands of crystalline structures, “only” tens of
thousands remain, some of which are found to occur in hun-
dreds of different chemical systems. As an aside we note that
one such classification, where one assigns isopointal structure
types according to symmetry considerations – with a refine-
ment to isoconfigurational structure types based on addition-
ally using cell parameters and atom coordinates – has recently
been introduced in the ICSD.[36] By now most of the structures
found in the ICSD have been assigned to one of these types.

From a physical point of view, the occurrence of the same
structure type T́ in two different chemical systems means that
the energy landscapes of these two systems each possesses a
local minimum that belongs to this structure type T́. And if, as
not infrequently happens, several of the modifications present
in one of the systems are also observed in the second system,
then it is a reasonable expectation that the two energy land-
scapes are going to be quite similar. Then one can hypothesize
that many of the other modifications that are only found in one
of the two systems are nevertheless capable of existence in the
other one.

Clearly, such an educated guess is very helpful in our search
for new modifications in a particular chemical system since
we can right away perform a local minimization to verify
whether this structure type is present as a kinetically stable
modification in the second system, which is much faster than
the global search necessary otherwise. We note here that this
assumption of landscape similarity with the consequence of
a highly desirable transferability of the results found for one
landscape to another one has also been supported by many
global landscape explorations.

One caveat is, of course, that in most cases the global search
has been performed only with simplified energy functions.
Thus we are comparing only models, i.e. approximate descrip-
tions belonging to similar classes, e.g. hard-sphere two-body
interaction models or all-electron ab initio calculations or den-
sity functional pseudo-potential models, of the true energy
landscapes of the two systems. This might result in misleading
similarities due to the inherent features of the models and inter-
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actions. Thus, one must be aware that the true landscapes of
the two systems are usually still going to be different in certain
aspects: for example, not all minima found in one system will
be present in the other, or the energy rankings of those minima
present in both systems may be different.

From a chemical point of view, the existence of modifica-
tions with the same structure type in two different chemical
systems can often be correlated with the chemical similarity of
the two systems. Quantities such as differences in electronega-
tivity, cation-anion-(size) ratios, or total valence electron con-
centration are commonly employed to categorize chemical
compounds, and are used to post-dict, and sometimes even to
predict, by analogy or “chemical intuition” (if the analogy is
not an obvious one), the structure of a new chemical com-
pound. This is a time-honored and very successful approach in
experimental chemistry, as most famously demonstrated by the
success of the periodic table that still is one of the most valu-
able organizational tools of the practicing chemist.

In this context, we note that from our experience with the
energy landscapes of many chemical systems we have found
that even for relatively small simulation cells with few atoms
the minima that are associated with known structure types con-
stitute not more than half of the local minima found.[37] But
among the lowest-energy minima, this proportion can increase
to 90%, at least for systems with simple AnBm-type composi-
tions. Of course, this mainly highlights the fact that, with re-
gard to their synthesis, we have already carefully explored
most of the binary systems with simple composition ratios n:m.
Thus the number of unknown structure types in this group of
systems is rather small (especially if one allows for a certain
amount of distortions within a structure family). But this also
supports the suggestion that the energy landscapes of chemi-
cally similar systems can show a relatively high degree of
similarity. However, this high similarity is much less fre-
quently found for compounds with more complex composi-
tions.

3 Database aided Structure Prediction

3.1 Structure Prediction for Given Chemical Systems based
on Structural Analogy

One obvious way to exploit the putative similarity of the
energy landscapes of many chemical systems with the same
composition formula consists in replacing the atoms in a
known structure type by their analogues in the chemical com-
pound of interest, and then to perform a local minimization
and vibrational analysis, in order to check for the kinetic sta-
bility of this type in the new system. By repeating this pro-
cedure for all appropriate structure types found in the various
databases, we can gain a certain overview over the minimum
structures of the new system. A more refined way is to use
these minima as starting points[38] for a global optimization
technique such as the threshold algorithm,[39,40] which ex-
plores the configuration space below an energy lid that is ac-
cessible from a given energy minimum. By increasing this lim-
iting lid, one can, in principle, globally explore the whole en-
ergy landscape.
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We note that one important preliminary task required before
such a data bank-based search can be performed is the identifi-
cation of all structure types that are present in the databases,
by using one of the comparison algorithms mentioned above.
To a certain extent, the classification already provided by the
ICSD can be employed as a starting point, but since this classi-
fication is based primarily on symmetry one needs to be care-
ful. Hence, one would first classify all known structures into
structure families by a geometry-based structure comparison,
and then define the center of this group of structures as the
structure father or structure type representative.[41] Once this
has been achieved, one can take these prototypical structures
as starting structures for further global searches or local mini-
mizations, respectively.

Here, we note that for the use in energy landscape explora-
tion and structure prediction, a geometrical comparison crite-
rion is usually most appropriate: the metric that measures dis-
tances among neighbors in the real configuration space of atom
arrangements is defined by sums over the Euclidean distances
between corresponding atoms in the two structures – a geomet-
rical quantity – while topological similarity is based on the
bond network, which only rather indirectly correlates with the
shape of the energy landscape, and symmetry-based similarity
cannot really be mapped to the energy landscape at all. Never-
theless, following the dictum that one should not discard any
systematic way to generate structure candidates, one should
not hesitate to add all those structure types that have been
gained on the basis of topological and symmetry arguments to
those starting points that have been selected based on geomet-
rical similarity.

In this context, one should keep in mind that there exist
many chemical correspondences between e.g. binary and ter-
nary, or higher, phases. Thus, it might well be that the un-
known structure of the new modification or compound of inter-
est in a binary A/B system might be identical to the structure
of some known ternary A�/B�/C� system, if one were to ident-
ify A� with A and B� and C� with B! To explore this, we have
in the past analyzed the ICSD with regard to similarity be-
tween structures and structure types in binary, ternary, quater-
nary, etc. systems.[41] This procedure will result in a family-
relationship-tree that connects every structure not only with
other structures of the same type (forming a structure family),
but also with structures belonging to related families in the
sense described above. This procedure can provide us with
additional data bank-based structure types, even if they do not
exist, strictly speaking, so far in form of a synthesized com-
pound.

Trying to predict structures by chemical analogy in the way
described above has been the oldest method in the litera-
ture.[42] If we consider the statistics mentioned above, it is no
surprise that there have been quite a number of successes. This
has especially been true in the field of high-pressure structures,
where the knowledge that two chemically similar compounds
have the same structure at standard pressure and that in system
one there exists a high-pressure modification with a certain
structure type, makes it a relatively easy target to predict that
the second system will also exhibit a high-pressure structure
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with the same structure type. And rules such as the pressure-
coordination rule[43] allow us a pretty well-educated guess
about the similarity of the structures of chemically analogous
systems, e.g. a high-pressure modification of system two exhi-
biting a structure identical with the one of the standard pres-
sure modification of system one.

From the point of view of exploiting database information
during a structure prediction study, this combination of chemi-
cal heuristics and hard structural data in the database has been
a reasonably successful one, leading many people to the con-
viction that database mining is all that is needed for success-
fully predicting the structures of new compounds. In particular
groups around Curtarolo and Ceder[44] have been developing
this approach, culminating in the so-called Materials Genome
Project.[45] And molecular crystal structure prediction and the
prediction of secondary and ternary structures of proteins have
also been guided by this kind of data-mining approach (for a
review see, for example[27]).

In the case of molecular crystals, statistical analyses have
shown that the symmetry groups for about 90 % of all struc-
tures of molecular crystals belong to only about ten different
space groups, and that many of these structures can be de-
scribed with only one or two molecules in the asymmetric unit.
As a consequence, many search methods for molecular crystal
structures exploit this information by e.g. systematically scan-
ning all possible atom arrangements that can be generated by
applying these space group symmetries to one or two mol-
ecules (where the scanning includes the systematic change of
the cell parameters and the orientation of the molecules with
respect to the cell axes and to each other).[46]

Similarly, for protein structure prediction, taking the primary
sequence of the bases of a protein, and then comparing pieces
of these sequences, or the whole sequence, to corresponding
pieces of known protein structures, has proven to be quite suc-
cessful. Following this approach, one can derive the secondary
structure elements like the α-helices and β-sheets for the un-
known protein, and even establish good guesses regarding the
tertiary folded structure.[47–49] Again, the large number of al-
ready solved protein sequences and structures serve as a confi-
dence-building foundation for such “structure prediction by
analogy”. One even has attempted to use statistical methods to
estimate, how many “basic protein sequences” and “protein
structures” are still missing,[50,51] although there is clearly a
self-reinforcing feedback going on: proteins that are similar
can be solved with regard to their sequence and structure by
similar methods, thus giving too much weight to the “known”
structures, while the set of the unknown, and also the unsolved,
structures is more likely to contain more not-yet-known struc-
ture types than one would expect from extrapolation from the
set of known and solved proteins and their structures.

Nevertheless, even with this caveat, it is clear that em-
ploying similarity analyses plus chemical intuition will quite
likely continue to contribute to our ability to predict the struc-
tures of not-yet-synthesized compounds, and especially to the
structure solution of synthesized but not-yet fully analyzed
compounds. But one should not forget that in the case of bulk
solid compounds the lack of simple but relatively rigid bond-
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ing rules as one finds in covalent compounds like molecules,
makes it much harder to feel fully confident that extrapolation
from known cases will yield the truly new structures expected
in yet unexplored chemical systems. Again, the statistics is
looking too good in some way, because those modifications
that are easy to synthesize tend to be the ones that are similar
to other chemical compounds whose structures are known.
Thus the more complex compounds and the seemingly simple
but not-yet-synthesized compounds are statistically more likely
to exhibit new structure types never seen so far. These will
often even be difficult to post-dict or “explain” after a synthe-
sis, no matter how much one distorts simple structure motifs
such as dense sphere packing or basic coordination polyhedra.

3.2 Prediction of Appearance of given Structure Types

After discussing the structure-prediction-by-direct-analogy
approach, which is particularly well-suited to the straightfor-
ward use of databases, let us turn to some more uncommon
ways of their employment. A complementary task where data-
base information can be put to good use is the issue of predic-
ting the appearance of a given structure type T́ (for an example,
see reference[52]). Here, the goal is to figure out, which chemi-
cal system might support a particular modification that might
e.g. fit structurally to a technologically useful layered com-
pound, giving us more ways to fine-tune the properties of an
electronic device. In some ways, this task is the dual to the
standard structure prediction problem. Up to now, one usually
has only relied on chemical intuition and trial-and-error experi-
ence, but computational capabilities have increased to the point
where they can assist in this task.

Clearly, one can pursue the brute-force approach: Minimize
the desired structure type for all chemical systems of correct
composition type that would be compatible with the T́ structure
type. This is usually quite a computational effort, especially if
one keeps in mind that one needs to (a) also verify that the
desired modification is kinetically sufficiently stable, and (b)
perform at least some global search for every chemical system
studied in order to gain an overview of how many competing
modifications with lower energy exist in the system. Further-
more, in this brute force approach, one would not really exploit
all the pre-knowledge one possesses regarding the structure
type, which might be much more extensive than just the over-
all composition type. Thus, one would like to perform some
pre-selection in order to focus on the most likely candidates.

Such a pre-selection should take both structural information
about the desired structure type and chemical information
about the systems considered into account. For example, cer-
tain coordination polyhedra might be present in T́, and thus
one would want to first look at those chemical systems which
are known to crystallize in structure types that also contain
these polyhedra. Scanning the databases for compounds of the
right composition exhibiting modifications where these poly-
hedra have been observed, would thus be a fruitful data-mining
approach. Of course, this would require us to automate the
search for such coordination polyhedra throughout the whole
database, but with an efficient use of scripts and analysis algo-
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rithms such as the Kplot-algorithm[53] this can clearly be
achieved, as long as the database is available in a searchable
form. In principle, one might even want to include such coordi-
nation-polyhedra information for each structure directly in the
database itself, for future reference.

Similarly, chemical intuition will be of help by providing
some heuristic rules such as the radius-ratio rule for ionic com-
pounds – again, information regarding the ionic radii can be
taken either from tables compiled in the past or be generated
from a systematic perusal of the structures in the databases.
Other kinds of chemical information would be the valence-
electron concentration or the number of covalent bonds ex-
pected or involved for the structure type T́ – again a systematic
pre-scanning of the chemical systems with respect to these at-
tributes could be very helpful for restricting the search range.

Finally, a third way to attack this problem might be called
the “reverse approach”: In this method, we look at those chem-
ical systems S(k) where a modification with the desired type
T́1 is known to exist, and find all additional structure types
T́i�1 that appear as modifications in at least one of these sys-
tems. Now, we argue from a possible similarity of the energy
landscapes: If in another chemical system S(j�k) (where we
have not yet observed type T́1) one of the modifications of
structure type T́i�1 exists, then the likelihood is increased that
in addition the modification with structure type T́1 is also a
local minimum, at least compared to the likelihood for a ran-
domly selected system that only exhibits the same composition
type. Thus, we select such a system S(j), and compute / relax
all structure types T́i in this system, to see whether T́1 might
be stable in S(j), and how T́1 compares with the other compet-
ing structure types T́i�1 with respect to the energy.

In most cases, we will find that the already known structures
in system S(j) are the thermodynamically stable structures, but
experience has shown that in many cases the desired structure
T́1 is at least kinetically stable and often quite competitive en-
ergy-wise. We note that this approach can e.g. also be used to
suggest candidate systems where given high-pressure phases
might be likely to exist.

3.3 Prediction of Multinary Phases

In many applications in materials science, one deals with
complex multinary phases. Many of these actually constitute
solid solutions, and while the prediction of their structure can
be addressed by computational means (for a review see, for
example[28]), here we will focus only on the case of ordered
crystalline modifications where databases like the ICSD can
serve as a resource. In general, we can employ such a database
for structure prediction of multinary compounds completely
analogously to the case we discussed above in the general
structure-prediction-by-analogy section. However, there are
not really enough such multinary structures available in the
present databases to make this approach as reliable as it has
been for binary and even ternary compounds; a similar prob-
lem is currently encountered in the protein community, where
not enough solved RNA-structures are available for simple
“prediction by analogy” of new RNA structures.[54] Thus, one
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needs to find different ways to tackle the prediction of the
structures of multinary compounds.

The most promising approach consists in reversing the
“family” analysis employed in the prediction by structural
analogy, where we constructed e.g. possible A/B structure can-
didates by a contraction of known A�/B�/C� structure types.
Instead we now consider chemical systems A�/B�/C�, whose
structure we expect to be related to some A/B-structure type
(based on chemical / structural information, such as, for exam-
ple, local coordination polyhedra), and assign the atoms of
types A�, B�, and C� to locations of atoms A and B in the
known A/B-structure(s). Next, we minimize the energy for all
the structure candidates generated in this fashion, and check
their kinetic and thermodynamic stability. This approach for
predicting structures of multinary phases from related binary
or ternary phases by substitution of ions / atoms has a long
tradition in experimental chemistry. Nevertheless, it is not
clear, to what extent one has, in the past, really systematically
exploited all the data available in the databases that can be
used to predict new compounds in this fashion.

One issue one should keep in mind, is that there exists an
enormous number of ways to perform such substitutions –
even if one restricts the search to small unit cells –, and thus
often chemical intuition, for what it is worth in this case, needs
to be appealed to, in order to control the combinatorial ex-
plosion of possible substitutional atom arrangements. Some-
times, simple arguments based on e.g. minimizing the electro-
static repulsion of the ions will lead to a successful reduction
in the number of possible configurations that need to be
checked regarding their kinetic and thermodynamic stability.
But in many cases, the number of candidate structures will still
be overwhelmingly large.

Furthermore, as mentioned earlier, the chances of encoun-
tering a truly new structure type will increase with the com-
plexity of the chemical system. For example, due to the
slightly different ionic radii of the substituting atoms and their
dependence on the local coordination by other atoms, it may
well be that the real structure of the multinary system will
contain a different overall arrangement of coordination polyhe-
dra than those in any of the binary or ternary systems studied
so far – or even exhibit completely new coordination polyhe-
dra not yet found for the participating ions in known structures.
Thus a deduction of the new structure type for A�/B�/C� com-
pounds from substituting atoms into one of the known A/B
structure types cannot succeed in such a case.

This conclusion is somewhat distressing: it clearly demon-
strates the limits of a structure prediction based solely on data-
bases of known structures. However, one way to improve our
chances to deal with multinary structures is by creating a new
structure database that contains the results of systematic com-
putational explorations of the energy landscapes of ternary and
higher chemical systems. Here, we can take a leaf out of the
early prediction work on binary systems with empirical poten-
tials,[55] where the general methodology consisted of repeating
the global searches for slight variations of the potential param-
eters about the ones deduced from database information such
as the ionic radii. But what we now have in mind is that instead
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of considering only small parameter variations for one chemi-
cal system, one would explore the energy landscapes for a vari-
ety of composition types for a large grid of the parameters in
the empirical potential.

Since all the “chemical information” about the system that
can be taken into account during the global search is encoded
in the choice of the potential parameters, covering a large grid
of these parameter values is actually equivalent to studying a
large variety of chemical systems! In contrast to the case of
a single chemical system, where we carefully explored many
variations of the potential parameters in the neighborhood of
the “chemically sensible” choice, in the procedure proposed
here, we are going to scan a large range of physically/chemi-
cally feasible situations by choosing a wider grid spacing in
parameter space. While we would not “know” from a given
set of parameters, which chemical system they best fit, we will
obtain many possible “generic” structure types for A�/B�/C�
etc. compounds – the equivalent of the structure representa-
tives we would have extracted from the databases other-
wise –, which we then can use as starting configurations in
subsequent local optimizations with ab initio codes or highly
refined empirical potentials for any chemical system of inter-
est.

3.4 Search for Missing Compounds

So far, we have discussed the use of a database to aid in the
prediction of the existence and structure of specific chemical
compounds, or, alternatively, the search for possible chemical
systems, where a particular crystalline structure is realized. But
we can also use a database as a negative-positive screening
tool, i.e. we search the database for “holes”, and try to use
theory and/or experiment to fill these lacunae. What we mean
by a “hole” are “missing” chemical compounds, i.e. we want
to identify those chemical systems where one would expect a
crystalline compound or a specific modification to exist but
nothing is registered in any database so far.

Every practicing chemist knows of such “missing” com-
pounds, the most famous being perhaps C3N4, which is one of
the first compounds, for which a promising three-dimensional
structure was predicted about twenty-five years ago;[42] so far
only layer-type structures of this composition have been syn-
thesized, however. But there are many other chemical systems,
not only multinary ones but even some binary and ternary
compounds, which one might expect to exist, but which have
not yet been synthesized. So far, such systems have been iden-
tified in a more or less haphazard fashion by chemical intuition
and personal preference, but by now the computational tools
have become efficient enough for a systematic exploration of
their energy landscapes once such promising missing com-
pounds have been identified via analysis of various databases.

Of course, one can again follow a brute force route and
e.g. for binary systems pick every possible AnBm composition
registered e.g. in the ICSD for some chemical system, and per-
form local optimizations for every chemical system for all A/
B-structure types found so far. In this fashion, we would be
able to identify a plethora of kinetically stable binary com-
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pounds that would provide synthesis targets for the experimen-
talists. But while this might just be possible for binary systems,
already for ternary systems it will be extremely expensive
computationally, although the Materials Genome project men-
tioned earlier goes some way in this direction. Furthermore,
most of the crystalline modifications predicted will be only
marginally kinetically and thermodynamically stable, resulting
in a truly momentous heap of essentially dead data.

Preferably, one would want to pre-select candidates by iden-
tifying the most promising combinations of chemical system,
chemical composition and structural modification, which have
not yet been synthesized, and then perform local ab initio en-
ergy minimizations for only these candidates, at least at the
beginning. Such a preselection step should be rooted in a sta-
tistical analysis of the databases available, of course. In a pos-
sible first step, we might want to quantify the likelihood of the
various bonding situations that appear in the various chemical
systems and their compositions, being aware of not only the
“average” or “typical” bonding situation but also of the outliers
that might be the key to new and unusual structure types.

Once we have determined the range of reasonable composi-
tions for a given chemical system, we can treat each such
chemical system in the same fashion as we did for the standard
structure prediction for a given chemical compound of interest:
Look in the database for modifications that occur in more or
less analogous chemical systems with the same composition,
and use these as the first candidates for feasible polymorphs
in the system under investigation. Finally, one should repeat
this process by extending it from the “reasonable” to the “feas-
ible” compositions (the outliers) in the chemical systems. One
should note that any extrapolation beyond this would no longer
be justified by the analysis of the database – we would either
be back at the brute-force level of exhaustively working our
way through all feasible chemical systems or have to rely on
our personal “chemical intuition” for our choice of system of
interest.

Of course, if we proceed like this, the usual caveats apply:
if the thermodynamically stable modification in one of the
chemical systems we study does not have an analogue among
the already synthesized (or perhaps simulated!) crystalline
structures, then we are stumped. Furthermore, concerning the
thermodynamic and kinetic stability of a given modification,
we need to be conscious of the fact that in most ternary or
higher chemical systems a modification with a particular com-
position will not only compete with other modifications with
the same composition but also with compounds of neighboring
chemical composition in the same overall chemical system.
If the modification under consideration is thermodynamically
unstable with respect to decomposition in two neighbor phases,
it will be crucial to determine its kinetic stability against such
a decomposition. But estimating the kinetic stability, while al-
lowing compositional changes and/or a phase separation for a
fixed overall composition, is highly non-trivial. Such an esti-
mate is computationally an order of magnitude more expensive
than the one for the kinetic stability with respect to a transfor-
mation into another modification with the same composition.
Still, a systematic perusal of the available databases for “miss-
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ing” chemical compounds should be of great help in our
attempts to explore and understand the world of crystalline
chemical compounds.

3.5 Network Structures

Up to now, we have only talked about the whole crystal
structure of a chemical compound, and its similarities with
other compounds listed in the various databases, and how this
information can be directly exploited for the purpose of struc-
ture prediction. But there is another aspect of structural simi-
larity frequently employed when trying to understand crystal
structures: the local coordination polyhedra around cations
and/or anions formed by their counterions, or the presence of
complex anions and cations that can similarly be represented
by a “rigid” polyhedron. Superficially similar to the local
bonding coordination of atoms in molecular chemistry, one
often finds the same local building blocks in many compounds
that contain the same types of atoms as anions and cations.
Earlier, we had already noted how these local coordination can
be exploited as characteristic features based on which we se-
lect candidate structure from the database by direct analogy.

Frequently, these polyhedra exhibit slight distortions for dif-
ferent compositions, or when different additional cations/
anions are present in the structure but are not part of the poly-
hedra. However, for the present purpose one would only work
with the idealized coordination polyhedra; the amount of dis-
tortion of these polyhedra will be established in the subsequent
local minimization. Once we have investigated all structures
in the various databases with respect to the presence of such
“typical” building blocks for the atoms comprising the chemi-
cal system of interest, we can then, guided by the analogy to
molecules, select all, or only the most common, building
blocks to generate structure models for new not-yet-synthe-
sized compounds in this chemical system. In the literature,
there exist several such “coordination graph” based methods
to structure prediction.[56,57] Note that in this approach, we use
the database only to identify such polyhedra, but not in the
choice and/or generation of the new candidate structures as we
did earlier.

While this class of methods seems to avoid the global search
we talked about above by straightforwardly yielding many ap-
parently feasible structure candidates for a given chemical sys-
tem, we quickly realize that there are very many ways one can
combine these building blocks, even if one uses certain heuris-
tic rules to restrict the exponentially large number of such
polyhedra networks. Furthermore, it is far from obvious and
actually quite unlikely that every candidate structure on the
energy landscape can be reduced to a network of known build-
ing blocks. To amend this problem, we would need to include
additional hypothetical coordination polyhedra in the graph
generating algorithm. While this would allow us to essentially
globally scan the landscape on the one hand, it would also
enormously increase the number of candidates generated on
the other hand. This greatly reduces the advantage of this
method for general structure prediction purposes since one can
quickly get overwhelmed by the number of local minimiza-
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tions required – after all there is no a priori information avail-
able, which of the network models are high or low in energy.

3.6 Prediction via Hierarchical Construction

There exists another, related approach that can be employed
to generate structure candidates based on local structure ele-
ments extracted from databases: the heuristic construction of
hierarchical structure models. Here, one would go beyond indi-
vidual coordination polyhedra and select larger excerpts of
known crystal structures as building blocks of a structure can-
didate. We note that for this kind of structure generation, it is
also possible, in principle, to obtain useful building blocks
from cluster databases and use such locally optimized clusters
to construct larger structures.[58]

There are two types of such heuristic constructions. The first
one generates structures that exhibit the same type of interac-
tions within a building block and between neighboring build-
ing blocks. These types of models produce network-like struc-
tures, and are inspired by e.g. zeolites or polyoxometalates,
where so-called secondary building units have been employed
to describe, and conversely model and predict the structures of
such systems.[59] We remark that, conversely, we can also gen-
erate low-density structure candidates for simple chemical sys-
tems by replacing building blocks observed in e.g. zeolites by
individual atoms.

The second class of structure models is based on different
types of interactions within and among the building blocks.
Here, the guides are compounds with complex anions, and pos-
sible applications are systems containing large clusters such as
intercluster compounds. By treating such large building blocks
as compact (rigid) units that interact via some effective (van
der Waals, metallic, and/or ionic) intraction, one can generate
at least approximate structure candidates by insertion of these
blocks into the positions of atoms in various known structure
types, followed by local structure refinements.

Such a hierarchical approach is often the most effective way
to obtain starting points for a prediction of the structure of
highly complex compounds. Yet such many-atom-units re-
semble “atoms” only on a very superficial level, and relying
on this analogy to generate new structures by unit-to-atom sub-
stitution can be problematic. Both the “shape” of, and the ac-
tual interactions among the units are often quite complex such
that the true structures might turn out to be rather different
from those predicted by a hierarchical construction based on
soft- or hard-sphere type models that usually guide our intu-
ition. Furthermore, the local energy minimizations will most
likely be both very involved due to the multiple types of inter-
actions and length scales present, and thus rather computation-
ally expensive. But once the computational tools have im-
proved sufficiently to allow us to perform efficient fast local
optimizations of such chemical systems, then hierarchical
model building can be a sensible way to start the investigation
of the energy landscape of highly complex crystalline com-
pounds.
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3.7 Structure Prediction by Structure-Property
Relationships

Finally, we return shortly to the issue of using the databases
to predict materials with specific properties. With the availabil-
ity of truly gigantic computers and computer farms, one can
provide, by direct computation, for every existing chemical
compound a database entry that contains not only structural but
also many other physical properties. By proposing to employ
massive computations of this type, the Materials Genome type
projects have set themselves the goal to provide the materials
scientist with a large smorgasbord of compounds that might be
useful at some point.

But going beyond just accumulating large amounts of data,
the grand aim here would be to not only compute various phys-
ical properties of interest for all compounds known, but also
use this information to automatically set up structure-property
relationships. In particular, after computing the properties of
many thousands of structures, the database(s) should be large
enough that we can go beyond chemical intuition when choos-
ing the structural parameters in these structure-property plots.
Instead we would use statistical analyses on a large scale to
establish significant relationships among structural, chemical
and physical properties of various groups of chemical com-
pounds. In the field of structure-property relationships for mol-
ecules and molecule-based systems, such systematic statistical
analyses are by now becoming more and more standardized.[60]

Similar systematic correlation studies should clearly be pos-
sible for crystalline compounds and their properties, too. In
particular, machine learning techniques,[61] ranging from clus-
tering analysis to neural networks, should be quite suitable for
this task.

In the end, this type of information will then guide us in the
choice of which chemical systems will be the most likely ones
that exhibit certain physical and chemical properties. In par-
ticular, this will be true even for instances when the compound
has not yet been synthesized but has only been predicted to
exist as a kinetically stable modification. In its turn, the predic-
tion of this modification might have come from the structure
prediction analogue of a structure-property plot that now con-
nects kinetic stability, simple or more complex combinations
of chemical and physical parameters associated with a chemi-
cal system, and known structure types.

While it is tempting to use one’s “chemical intuition” to
speculate, which kind of such parameters correlate well with
the existence of kinetically stable modifications of what struc-
ture type in any specific chemical system – the approach that
has been employed by experimental chemists since the begin-
ning of chemistry as a science –, we refrain from doing so
here. Instead, we suggest one should follow a more systematic
approach by e.g. training a neural network with a sufficiently
large space of input parameters and hidden nodes to correctly
assign to a given chemical system the observed structure types,
plus the predicted ones if high-quality predictions are already
available for a system. By trying to keep the set of physical
and chemical parameters used as input for the neural network
as general as possible (within the computational limitations, of
course), we should be able to create an unbiased data bank-
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based structure prediction machine that will nicely comple-
ment the global landscape exploration techniques that have
been developed over the past two-and-a-half decades.

4 Conclusion

In philosophy and pedagogy, one sometimes considers phase
transitions in our understanding: The abstract transition from
quantity to quality, as Hegel and his successors have dis-
cussed,[62] or the deeper understanding of a mathematical theo-
rem gained once we have studied enough examples of its appli-
cations, or even in the study of chemistry the profound intu-
ition acquired by the experimental chemist due to the many
syntheses he or she has performed. Also in computer or ma-
chine learning, such transitions are observed,[63] e.g. during the
teaching of a neural network, whose parameters are optimized
by feeding it a multitude of teaching examples until the net-
work is ready to correctly analyze and classify instances of
input never presented before. Similarly, one often speaks in
physics of the new paradigm of emergent properties in com-
plex systems, where there is no longer a simple direct relation
between the e.g. macroscopic and/or long-time features of the
system and the microscopic and/or short-time aspects of the
system that are ruled by e.g. the laws of quantum mechan-
ics.[64] Perhaps the most exciting such dynamical transition is
suspected to lie behind the emergence of life and conscious-
ness in biological systems that are governed on the micro-
scopic level by physical and chemical laws.[65,66]

One can propose that this kind of transition will have its
counterpart in the field of database applications: Once the
amount of information inside the database has grown large
enough, then there exists, at least in potentia, the foundation
for the emergence of higher order structures among the wealth
of information contained in the database. In particular, with
regard to chemical databases, we can hope and anticipate that
the combination of large amounts of data and sophisticated
statistical analysis tools will result in deeper insights into the
relationships among chemical systems and their structural,
chemical, and physical properties. The final aim would be that
with the help of the database we can answer questions about
chemical compounds that are not included in the database or
not even known to be possible to exist.
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