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Feature-based attention has been shown to enhance the responses of neurons tuned to an attended feature while
simultaneously suppressing responses of neurons tuned to unattended features. However, the influence of these
suppressive neuronal-level modulations on perception is not well understood. Here, we investigated the perceptual
consequences of feature-based attention by having subjects judge which of four random dot patterns (RDPs) contained a
motion signal (Experiment 1) or which of four RDPs contained the most salient nonrandom motion signal (Experiment 2).
Subjects viewed pre-cues which validly, invalidly, or neutrally cued the direction of the target RDP. Behavioral data were fit
using the linear ballistic accumulator (LBA) model; the model design that best described the data revealed that the rate of
sensory evidence accumulation (drift rate) was highest on valid trials and systematically decreased until the cued direction
and the target direction were orthogonal. These results demonstrate behavioral correlates of both feature-based attentional
enhancement and suppression.
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Introduction

Top-down visual attention is a highly adaptive
mechanism that modulates sensory signals in order to
facilitate the processing of behaviorally significant
stimuli. Attention can be allocated based on prior
knowledge of spatial locations (spatial attention) or of
a target defining feature (feature-based attention).
Numerous studies demonstrate that spatial attention
improves behavioral performance on a wide array of
tasks (Posner, 1980; Carrasco, 2011) and that these
improvements in performance are accompanied by
corresponding increases in the gain of sensory neurons
that have a receptive field at the attended location
(McAdams & Maunsell, 1999; Reynolds, Chelazzi, &

Desimone, 1999; Reynolds, Pasternak, & Desimone,
2000; Williford & Maunsell, 2006; Reynolds & Heeger,
2009). In contrast, feature-based attention enhances the
gain of neurons that are tuned to an attended feature
and suppresses the gain of neurons that are tuned away
from the attended feature (Cohen & Maunsell, 2011;
Khayat, Neibergall, & Martinez-Trujillo, 2010; Marti-
nez-Trujillo & Treue, 2004; Scolari, Byers, & Serences,
2012; Treue & Martinez-Trujillo, 1999).

Consistent with neurophysiology data, previous
psychophysical studies suggest that feature-based
attention selectively increases sensitivity to relevant
visual features in a variety of perceptual tasks (Baldassi
& Verghese, 2005; Busse, Katzner, Tillmann, & Treue,
2008; Felisberti & Zanker, 2005; Ling, Liu, & Carrasco,
2009; Liu & Hou, 2011; Liu, Stevens, & Carrasco, 2007;
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Sàenz, Buraĉas, & Boynton, 2003). However, the
behavioral correlates of feature-based attentional
suppression are less clear. One recent study suggests
that feature-based attention suppresses neurons tuned
away from an attended feature, consistent with
evidence from single-unit recording (Ling et al.,
2009), while another study reported only an enhance-
ment of an attended feature value without concurrent
suppression of dissimilar features (White & Carrasco,
2011). However, neither study systematically varied the
relationship between the target stimulus and the focus
of feature-based attention, so the consequence of
attentional suppression on the efficiency of processing
unattended features was not directly evaluated.

In the present study, we employed a cueing paradigm
to investigate both the facilitatory and suppressive
effects of top-down feature-based attention on visual
processing using a paradigm in which feature-based
attention had to be deployed to stimuli that were
distributed across the entire visual field. Using a
quantitative model of perceptual decision making—
the linear ballistic accumulator ([LBA]; Brown &
Heathcote, 2008)—we show that the rate of sensory
evidence accumulation is highest for an attended
feature and suppressed for stimulus directions rotated
away from the attended direction. These findings
provide behavioral evidence that feature-based atten-
tion can give rise to both improvements and impair-
ments in perceptual processing.

Experiment 1

Methods

Subjects

Eleven right-handed subjects (five females) were
recruited from the University of California, San Diego
(UCSD, La Jolla, CA) community. All had normal or
corrected-to-normal vision. Each subject gave written
informed consent in line with the guidelines of the local
Institutional Review Board at UCSD and the Decla-
ration of Helsinki and completed two 1–1.5 hr sessions
in a climate- and noise-controlled subject room.
Compensation for participation was $10.00/hr for the
experiment. Data from three subjects were discarded
due to subjects’ failure to return for the second session
of the experiment (thus, data from eight subjects were
analyzed).

Stimuli and task

Subjects viewed the stimuli in a darkened room on a
CRT monitor (MultiSync FP2141 [NEC Display
Solutions, Itasca, IL], refresh rate 85Hz) that was

controlled by a PC running Windows XP. The
luminance output of the monitor was measured with a
Minolta LS-110 photometer (Konica Minolta, Ramsey,
NJ) and linearized in the stimulus presentation soft-
ware. Subjects viewed the screen from a distance of
approximately 60 cm. Visual stimuli were generated
using the Psychophysics Toolbox stimulus presentation
software (version 3; Brainard, 1997; Pelli, 1997) for
Matlab (version 7.8.0; Mathworks, Natick, MA).

Subjects were presented with four random dot
patterns (RDPs). One RDP was presented in each
quadrant of the screen and centered 7.828 from the
horizontal midline and 6.988 from the vertical midline
(see Figure 1). Each RDP was composed of small dots
(0.158 · 0.158) confined within a circular aperture 88 in
diameter. Each dot was presented for a limited lifetime
of 100 ms and moved at a speed of 58/s. Dots that
reached the edge of the aperture were moved to the
opposite side of the aperture and redrawn. The target
RDP contained 100% coherent motion (all dots moved
in the same direction), while the distractors contained
0% coherent motion (the direction of each dot was
drawn from a uniform distribution). Subjects had to
indicate which RDP contained coherent motion using
one of four keys on the number pad that corresponded
to the spatial position of each of the four stimulus
locations. At the beginning of each trial there was either
a valid cue (50% of the trials) that correctly indicated
the impending direction of the target stimulus, an
invalid cue (25% of the trials) that incorrectly indicated
the impending direction of the target stimulus, or a
neutral cue (25% of the trials) that gave no indication of
the impending target direction (Figure 1). Invalid cues
indicated directions that were offset from the target
direction by 6308 to 61808 in 308 steps, where the order
of presentation was determined pseudorandomly on
each trial with the constraint that all offsets were equally
represented. All cues were presented centrally for 1000
ms and were followed by a 1000 ms presentation of the
four RDPs. Subjects were instructed to keep their eyes
at fixation throughout the trial and were allowed to
make a response any time after the onset of the stimulus
array; each trial was self-paced and terminated once
subjects provided a response. All subjects were encour-
aged to respond as quickly and as accurately as possible.
Each block contained 48 trials in total, and the
experiment consisted of 20 blocks. Subjects typically
completed four to eight blocks on the first day of the
experiment (in addition to training, see below) and then
returned a second day to complete the remaining blocks.
Subjects were allowed to rest between blocks if they
chose to do so, and all analyzed data came from subjects
who completed all 20 blocks.

All participants were trained for a minimum of 160
trials immediately prior to the main experiment. All
cues in the training session were neutral and provided
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no directional information. In order to equate perfor-
mance and to ensure that subjects were not at ceiling, a
staircasing procedure implemented in Psychtoolbox
(QUEST, Watson and Pelli, 1983) was run to estimate
the contrast threshold of the stimuli at which each
individual could perform the task with approximately
75% accuracy. The contrast value estimated for each
subject was then fixed for the remaining blocks for the
main experiment. The mean contrast level 6 SEM
across eight subjects was 1.65% 6 0.05%.

Linear ballistic accumulator model

The LBA model frames every decision as a race
between N independent accumulators that correspond
to each possible choice alternative, where N¼ 4 in our
experiments (see Figure 2 for a schematic of the model
and Brown & Heathcote, 2008 for more details). The
first accumulator to reach the response threshold (or b)
determines the response choice and the response time.
For every trial, each accumulator begins with a random
activation level (the starting point, or k) that is
independently drawn from a uniform distribution on
(0, A). The starting points vary from trial to trial and
from accumulator to accumulator, but the height of the
distribution (A) was fixed for each of the four
accumulators. Since ‘‘response caution’’ is defined as
the distance between the response threshold and the
starting point, we hereon use the response threshold
parameter to represent ‘‘response caution,’’ since the
maximum of the starting point distribution here was
fixed (in other situations where A is allowed to vary
freely, response caution is sometimes defined as the
response threshold minus the height of the starting
point distribution; see Wolfe & Van Wert, 2010 for an
example, although in that paper, response caution is
referred to as ‘‘decision criterion’’). During decision
making, activity in each accumulator increases linearly
and a response is deployed as soon as an accumulator
crosses the response threshold. The predicted response
time is thus the time taken to reach the threshold, in
addition to a constant offset time (nondecision time or
t0). The stimulus display drives the rate at which
sensory evidence is gathered for each accumulator (drift
rate, or d). These drift rates vary from trial to trial
according to independent normal distributions (with
the standard deviation, s, of these distributions being
arbitrarily fixed at 1), with means v1, v2, . . . , vN for the
N different response accumulators. The drift rate
parameter estimated by the LBA model is thus the
mean of this drift rate distribution, which reflects the
quality of sensory information in favor of that
particular response. For instance, if the upper right
RDP contains 100% coherent motion while the other
RDPs contain 0% coherent motion, there will be a
large mean drift rate parameter for the accumulator

corresponding to the upper right response, and small
mean drift rates for the other three accumulators. All
random values (the start points and drift rates) are
drawn independently for each accumulator and are
independent across decision trials.

Figure 1. Behavioral paradigm for Experiment 1. At the beginning

of each trial there was either a valid cue (50% of the trials)

correctly indicating the impending target direction of motion, an

invalid cue (25% of the trials) incorrectly indicating the impending

target direction of motion, or a neutral cue (25% of the trials) that

contained no directional information whatsoever. Invalid cues

indicated directions that were offset from the direction of motion of

the target RDP anywhere from 6308 to 61808 on a trial by trial

basis (determined pseudorandomly within a given block of trials).

All cues were presented centrally for 1000 ms and were followed

by 1000 ms of the four RDPs. Note: Cues in the first panel are

exaggerated in size for the purposes of clarity.
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Since the starting point for the evidence accumulator
is a random sample from a uniform distribution on (0,
A), the amount of evidence that needs to be accumu-
lated to reach the threshold b is a sample from the
uniform distribution U(b – A, b), assuming b � A. Since
the drift rate for the i-th accumulator is a random draw
from N(vi, s), the distribution function for the time
taken for the i-th accumulator to reach threshold is the
given by the ratio of these two, which has the following
cumulative distribution function (CDF) (at time t . 0):
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Note that lowercase Greek letters in Equations 1 and 2
refer to PDFs, while the uppercase Greek letters refer
to CDFs. For more details regarding these equations
and their derivations, see Brown and Heathcote (2008).

We used the LBA for several reasons. First, the
parameter estimates are jointly constrained by both
accuracy and response time (RT) data (for both correct
and incorrect responses), as opposed to using only one
dependent measure. Second, the joint use of accuracy
and RT data allows the LBA to naturally handle any
speed-accuracy tradeoffs that may arise in the data.
Finally, the LBA (and other similar models) isolate

specific aspects of cognitive processing that are
influenced by various experimental conditions (as
captured by the different parameters in the model).
For instance, in our cueing experiment, it could be that
the cue influences the rate or quality of information
extracted from the stimulus (as captured by the drift
rate parameter), how much response caution a partic-
ipant displays (as captured by the distance between the
start point and the response threshold parameter), or it
may affect nondecision related processes (as captured
by the nondecision time parameter).

To evaluate the plausibility of each of these possible
models, we fit eight different versions of the LBA
model to the data (using all possible combinations of
these three parameters to capture the effects of cueing).
The parameters were estimated using the method of
maximum likelihood (see Donkin, Brown, Heathcote,
& Wagenmakers, 2011 for full details of these methods,
as well as an extensive discussion of alternative
approaches). Initial parameter values for searches were
generated two ways: (1) heuristic calculations based on
the data and (2) start points determined from the end
points of searches for simpler, nested models. Different
mean drift rates were estimated for accumulators
corresponding to the correct responses (that is,
responses that matched the actual location of the target
RDP), and the same single value was estimated for all
three accumulators corresponding to incorrect respons-
es (responses that did not match the true location of the
target RDP). These correct and incorrect drift rates
were then averaged across all four accumulators for
each subject, respectively. For the purposes of our
experiments, we report only the correct drift rates.

The most parsimonious of the eight models that we
evaluated was selected using the Bayesian Information
Criterion (BIC), a commonly used criterion that
evaluates the tradeoff between model complexity and
goodness of fit (Raftery, 1995; Schwarz, 1978):

Figure 2. Schematic of the LBA model. The stimulus provides information to four racing accumulators (each corresponding to one of four

spatially distinct RDPs); the first accumulator to reach the response threshold determines the response, and thus the decision time. One

accumulator corresponds to each possible response, and their average rates of increase (drift rates) are assumed to be determined by the

stimulus properties. Response caution determines how much sensory evidence needs to be accumulated before a response is made and

captured by the relative distance between the response threshold and the start point. The final response time is the decision processing

time (the time taken for the first accumulator to reach the response threshold) plus a constant offset (non decision time).
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BIC ¼ �2 � ðloglikÞ þ ðlogNÞ � d:
where lik ¼ likelihood, N ¼ number of data, and d ¼
number of parameters.

We calculated the group BIC across all subjects for
each model design by summing log-likelihoods, sample
sizes, and parameter counts. The design with the lowest
BIC value was considered the most parsimonious
model. We then approximated posterior model prob-
abilities based on the BIC by assuming a fixed effect for
subjects. This approach assumed that every subject had
an identical structure, such that when we compared
model designs (e.g., the model where only drift rate
varied versus the model where only response threshold
varied), it was assumed that all subjects were described
by the same model design. These posterior model
probabilities provide support regarding the likelihood
of each model design (for more details, see Burnham &
Anderson, 2002).

Results

A one-way repeated measures ANOVA revealed a
significant effect of cue validity on accuracy (F[7, 49]¼
5.140, p ¼ 0.0002; Figure 3a). Mean accuracy rates in
the neutral condition were slightly higher than in the
invalid condition, but not different from the valid
condition (see Figure 3a and first column of Table 1).
Most notably, accuracy was lowest when the target was
offset by 908 or 1208 from the attention cue, after which
there was a gradual improvement in accuracy (rebound
effect; see Discussion). Consistent with this observa-
tion, a one-way repeated measures ANOVA on the
accuracy rates for only the invalid trials revealed a
significant difference between accuracy levels across the
different cue-target offsets (F [5, 35]¼ 2.8717, p¼ 0.02).

Similarly, RTs varied significantly as a function of
cue condition (F [7, 49]¼ 2.505, p¼ 0.0278; Figure 3b).
RTs were significantly faster on valid trials compared
to neutral trials, but RTs on valid and invalid trials
were of a similar magnitude (see Figure 3b and second
column of Table 1). A one-way repeated measures
ANOVA on the RTs for only the invalid trials revealed
no significant differences between RTs across the
different cue-target offsets (F [5, 35] ¼ 0.7621, p ¼
0.5832).

The accuracy and RT data present a mixed picture:
the accuracy data suggest that attention confers no
facilitation for validly cued features, but instead
operates primarily by suppressing features dissimilar
from the cue. In contrast, the RT data suggest
facilitation for the cued feature and little suppression
of features dissimilar from the cue. However, there is a
speed-accuracy tradeoff occurring: subjects were equal-
ly accurate on both valid and neutral trials, but
responded significantly faster on valid trials (Figure 3

and first and second columns of Table 1). By using both
accuracy and RT data, the LBA model accounts for
such tradeoffs and is able to estimate how the cue
manipulation selectively influences various latent var-
iables such as the rate of sensory evidence accumulation
(drift rate), the amount of information required to
make a decision (response threshold), and the time
related to nondecisional processes.

Out of the eight tested model designs (where either
response caution, drift rate, or nondecision time could
stay fixed or vary), the best fitting LBA model—as
determined by the BIC—only allowed drift rate to vary
between the eight possible cue-target conditions (val-
idly cued targets, neutrally cued targets, and the six
possible invalidly cued targets, collapsing across
clockwise and counterclockwise offsets). The parameter
estimates for response caution and nondecision time for
this model were 3.188 and 0.169, respectively (see
Figure 4 for the drift rates across the cue conditions).
The posterior probability of this model was almost 1,
which was more than 1040 times more likely than the
next best design, in which both drift rate and
nondecision time varied (see Methods for more details).
Extremely strong support for one alternative like this is
characteristic of group-average analyses like ours since
such analyses compare extreme hypotheses (i.e., every
subject is better described by one particular model
compared to another). To confirm that these analyses
did not bias our results, we also calculated posterior
model probabilities separately for each individual
participant and averaged the resulting probabilities;
the model where only drift rate varied still had the
greatest average posterior probability.

Figure 4 shows the drift rates corresponding to the
accumulators that matched the correct response (and
all subsequent statistics focus on these drift rates as
well, see the LBA model section under Methods for
more details). A one-way repeated-measures ANOVA
revealed a strong effect of cue condition on drift rates
(F [7, 49]¼ 6.793, p , 0.0001), and an individual t-test
revealed that drift rates were larger on valid trials
compared to neutral trials (Figure 4 and third column
of Table 1). In contrast, the drift rates with invalidly
cued trials were not significantly different from the drift
rates observed on neutrally cued trials (Figure 4 and
third column of Table 1). A one-way repeated measures
ANOVA on the drift rates associated with just invalidly
cued targets revealed a significant difference across the
possible offsets (F [5, 35] ¼ 5.092; p ¼ 0.0013). Thus,
drift rates on invalid trials did exhibit a pattern that is
analogous to the rebound effect observed in the
accuracy data: as the offset between the cued direction
and target direction increased, the drift rates corre-
sponding to the correct response decreased up until an
offset of 908, after which they began to rise again.
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In Experiment 2, we attempted to amplify the
suppressive effects of feature-based attention by
creating a variant of the behavioral paradigm in which
the distractors competed more effectively with the
search target.

Experiment 2

Methods

Subjects

Thirteen right-handed subjects (five females) were
recruited from the University of California, San Diego

(UCSD, La Jolla, CA) community. All had normal or
corrected-to-normal vision. Each subject gave written
informed consent per Institutional Review Board
requirements at UCSD and completed two 1–1.5 hr
sessions in a climate- and noise-controlled subject
room. Compensation for participation was $10.00/hr
for the experiment. Data from 1 subject were discarded
due to failure to return for the second testing session, so
data from 12 subjects were analyzed.

Stimuli and task

All methods used in Experiment 2 are similar to
those used in Experiment 1 unless noted. In Experiment
2, we also used a four alternative forced choice task,
but the single target RDP contained 80% coherent
motion, while the distractors contained 40% coherent

Figure 3. (a) Mean accuracy rates across the different cue

conditions for Experiment 1. Mean accuracy rates computed

across subjects (ordinate) as a function of the eight possible cue

conditions (abscissa). (b) Mean response times on correct trials

across the different cued conditions for Experiment 1. Mean

response times computed across subjects (ordinate) as a function

of the eight possible cue conditions (abscissa). Offsets were

collapsed across clockwise and counterclockwise directions. All

error bars are 61 SEM, computed after subtracting the mean

from each subject.

Comparison

Accuracy

rate

Response

time

Drift

rate

Neutral vs. valid p ¼ 0.9948 p ¼ 0.0364* p ¼ 0.0168*

Neutral vs. 308 p ¼ 0.995 p ¼ 0.085 p ¼ 0.9392

Neutral vs. 608 p ¼ 0.1367 p ¼ 0.1962 p ¼ 0.8191

Neutral vs. 908 p ¼ 0.1003 p ¼ 0.7059 p ¼ 0.7433

Neutral vs. 1208 p ¼ 0.1 p ¼ 0.2545 p ¼ 0.744

Neutral vs. 1508 p ¼ 0.1699 p ¼ 0.254 p ¼ 0.8631

Neutral vs. 1808 p ¼ 0.1 p ¼ 0.1895 p ¼ 0.1157

Valid vs. 308 p ¼ 0.17 p ¼ 0.25 p ¼ 0.0566

Valid vs. 608 p ¼ 0.1005 p ¼ 0.0847 p ¼ 0.0642

Valid vs. 908 p ¼ 0.1168 p ¼ 0.254 p ¼ 0.0616

Valid vs. 1208 p ¼ 0.1005 p ¼ 0.19 p ¼ 0.062

Valid vs. 1508 p ¼ 0.17 p ¼ 0.1895 p ¼ 0.057

Valid vs. 1808 p ¼ 0.101 p ¼ 0.0770 p ¼ 0.1814

308 vs. 608 p ¼ 0.1862 p ¼ 0.019 p ¼ 0.5965

308 vs. 908 p ¼ 0.14 p ¼ 0.3811 p ¼ 0.3192

308 vs. 1208 p ¼ 0.1367 p ¼ 0.1962 p ¼ 0.345

308 vs. 1508 p ¼ 0.2625 p ¼ 0.0196 p ¼ 0.056

308 vs. 1808 p ¼ 0.1699 p ¼ 0.1305 p ¼ 0.062

608 vs. 908 p ¼ 0.2123 p ¼ 0.784 p ¼ 0.8635

608 vs. 1208 p ¼ 0.1368 p ¼ 0.9225 p ¼ 0.8651

608 vs. 1508 p ¼ 0.5676 p ¼ 0.7840 p ¼ 0.345

608 vs. 1808 p ¼ 0.2625 p ¼ 0.92 p ¼ 0.0617

908 vs. 1208 p ¼ 0.3746 p ¼ 0.7908 p ¼ 0.9392

908 vs. 1508 p ¼ 0.995 p ¼ 0.791 p ¼ 0.25

908 vs. 1808 p ¼ 0.4597 p ¼ 0.784 p ¼ 0.062

1208 vs. 1508 p ¼ 0.2787 p ¼ 0.79 p ¼ 0.249

1208 vs. 1808 p ¼ 0.3084 p ¼ 0.9667 p ¼ 0.059

1508 vs. 1808 p ¼ 0.9949 p ¼ 0.785 p ¼ 0.056

Table 1. Pair-wise comparisons of mean accuracy rates, mean

response times, and mean drift rates between different cued

conditions for Experiment 1 (n¼8). Offsets were collapsed across

clockwise and counterclockwise directions. Please refer to Figure

3 and Figure 4. Note: The reported p-values here have been

corrected for multiple comparisons using a False Discovery Rate

procedure. *p , 0.05, **p , 0.01, ***p , 0.001.
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motion (Figure 5). The purpose of this manipulation
was to magnify competition between distractors and
the target, which we anticipated would lead to larger
attentional effects compared to Experiment 1. The
direction of each distractor RDP was offset from the
target direction by either 6158, 6458, 6758, 61058,
61358, or 61658 (pseudorandomly chosen on each
trial, with the constraint that each distractor direction
was unique). Subjects indicated which RDP contained
the high coherence using keys on the number pad to
indicate their decision. Invalid cues indicated directions
that were offset from the direction of motion of the
target RDP anywhere from 6308 to 61808 (in 308
steps) on a trial-by-trial basis. All cues were presented
centrally for 1000 ms and the stimulus array was
presented for 2000 ms. Subjects were instructed to keep
their eyes at fixation throughout the trial and were
allowed to make a response any time after the stimulus
onset; each trial was self-paced and terminated once
subjects provided a response. All subjects were
encouraged to respond as quickly and as accurately
as possible. Each block contained 48 trials, and in total,
the experiment consisted of 20 blocks. Subjects
typically completed 4 to 8 blocks on the first day of
the experiment (in addition to training) and then
returned a second day to complete the remaining
blocks. Subjects were allowed to rest between blocks if
they chose to do so, and all analyzed data came from
subjects who completed all 20 blocks.

We used the same training and staircasing proce-
dures described in Experiment 1 to titrate performance
to approximately 75% before data collection in the
main task. For the main experiment, the mean contrast
level 6 SEM across the 12 subjects was 15.21% 6
4.3%.

Results

A one-way repeated measures ANOVA revealed a
significant effect of cue-validity on accuracy (F [7, 77]¼
19.561, p , 0.0001; Figure 6a). Accuracy was higher on
valid trials compared to neutral trials and generally
lower on invalid trials compared to neutral trials
(Figure 6a and first column of Table 2a). A one-way
repeated measures ANOVA for accuracy rates on only
the invalid trials also revealed a highly significant
difference (F [5, 55] ¼ 11.319, p , 0.0001). Most
notably, accuracy was lowest at 908 and 1208 (Figure
6a and first column of Table 2a), after which there was
a gradual improvement (rebound effect, see Discus-
sion).

RTs also varied as a function of cue condition (F [7,
77] ¼ 7.44, p , 0.0001; Figure 6b). Compared with
neutral trials, RTs were significantly faster on valid
trials and significantly slower on invalid trials (Figure

6b and second column of Table 2a). A one-way
repeated measures ANOVA for RTs on only the
invalid trials also revealed a significant difference
(F [5, 55]¼ 3.2106, p¼ 0.013).

A one-way repeated measures ANOVA also revealed
a significant modulation in the error rate as a function
of the directional offset between the cue and an
incorrectly selected distractor (F [5, 55] ¼ 36.164, p ,
0.0001; Table 2b and Figure 6c). In particular, subjects
selected a distractor whose direction was only 158 away
from the invalid cue significantly more often than
distractors rotated more than 1058 from the invalidly
cued direction (Table 2b and Figure 6c).

As in Experiment 1, we found that the best fitting
model based on the lowest BIC value was the one where
only drift rate varied between the eight possible cue
types (collapsing across clockwise and counterclock-
wise offsets). The parameter estimates for response
caution and nondecision time were 20.215 and 0.139,
respectively (see Figure 7 for the drift rates across the
cue conditions).

The approximate posterior model probability (see
Methods for more details) was close to 1, more than 106

more likely than the next best design in which both drift
rate and nondecision time varied. A one-way ANOVA
revealed a robust effect of cue-type on drift rates (F [7,
77] ¼ 8.281, p , 0.0001). Consistent with the raw
accuracy rates and RTs, drift rates estimated from valid
trials were significantly larger than drift rates estimated
from neutral trials. Drift rates were also significantly
lower for all invalid offsets compared to neutral trials,
with the exception of the 1808 offset. A one-way
repeated measures ANOVA for drift rates on only the
invalid trials revealed a highly significant difference
(F[5, 55]¼ 6.7937, p , 0.0001). Drift rates showed the
same rebound effect evident in the accuracy data: drift
rates continued to decrease as the offset between the
cue and target increased, up until an offset of 908, after
which they returned to the level observed on neutral
trials (Figure 7 and third column of Table 2a).

Discussion

We utilized two variants of a cueing paradigm to
show that goal-directed feature-based attention influ-
ences visual performance through both facilitatory and
suppressive mechanisms. In Experiment 1, when
subjects searched for an oddball motion target, the
LBA model revealed increased rates of sensory
evidence accumulation for validly cued targets com-
pared to neutral targets (facilitation). In addition, drift
rates on invalidly cued trials varied as a function of the
cue target offset, with highest drift rates observed for
invalid targets that most closely matched the cue.

Journal of Vision (2012) 12(8):15, 1–17 Ho et al. 7



However, while these patterns are suggestive, the drift
rates on invalid trials were not significantly lower than
drift rates on neutral trials. In Experiment 2, two key
changes were made in an attempt to amplify attentional
enhancement and suppression. First, we increased
competition between the target and distractors in an
effort to place additional demands on suppressive
attentional mechanisms. Second, as a result of the
increased difficulty associated with having more salient
distractors, the RDPs in Experiment 2 had higher mean
contrast levels compared to Experiment 1: 15.21%
versus 1.65%. Given that both neurophysiological and
psychophysical work suggest that higher contrast levels
can yield greater feature-based attentional effects
(Hermann, Heeger, & Carrasco, 2012; Martinez-Tru-
jillo & Treue, 2002), it is possible that this increase in
contrast might also contribute to more pronounced
attentional modulations. Indeed, these manipulations
had the intended effect, as an analysis of drift rates
revealed extremely robust evidence for both attention-
related facilitation and suppression (Figure 7).

Rebound effect

In Experiment 1, drift rates corresponding to
invalidly cued targets were suggestive of a suppressive
effect of feature-based attention (Figure 4 and third
column of Table 1). This pattern, however, was far

more pronounced in Experiment 2, where drift rates
corresponding to the invalidly cued targets were
significantly lower than those for neutrally cued targets
as the offset between the invalid cue and target
approached 908 (Figure 7 and third column of Table
2a). However, as the offset between the invalid cue and
target increased from 908 to 1808, the corresponding
drift rates also gradually increased, giving rise to a
‘‘rebound effect’’ (Figure 7 and third column of Table
2a). A similar rebound pattern was also observed in
Experiment 1, where a ANOVA conducted on drift
rates on invalidly cued targets was significant (Figure 4
and third column of Table 1).

This nonmonotonic change in drift rate as a function
of cue-to-target separation is superficially inconsistent
with neurophysiological data showing maximal neural
suppression for directions opposite from the attended
direction (Martinez-Trujillo & Treue, 2004). Recall that
our task only required subjects to identify the quadrant
that contained the RDP with the highest motion
coherence (among distractors containing 0% motion
coherence in Experiment 1 and 40% motion coherence
in Experiment 2). As a result, the observed rebound
effect could be related to subjects monitoring orienta-
tion signals associated with the axis of motion rather
than the direction of motion per se. Indeed, many
neurons in areas such as the primary visual cortex will
respond robustly to the axis of motion in a manner
analogous to a static bar rendered at the same

Figure 4. Drift rates for the accumulators corresponding to the correct response on the different cue conditions for Experiment 1. Mean

drift rates corresponding to the correct response on each trial computed across subjects (ordinate) as a function of the eight possible cue

conditions (abscissa). Offsets were collapsed across clockwise and counterclockwise directions. All error bars are 61 SEM, computed

after subtracting the mean from each subject.
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orientation (Albright, 1984; Conway and Livingstone,
2003; Livingstone, 1998; Livingstone and Conway,
2003). Note, however, that behavioral performance in
Experiment 2 on invalid trials with a 1808 offset was not
as good as performance on valid trials (Figures 6 and 7;
Table 2a). Therefore, signals from motion selective
neurons tuned 1808 from the cue might very well have
been suppressed in motion selective visual areas such as
middle temporal (MT), and the partial recovery of
performance might be supported by attentional gain
targeted towards orientation selective neurons in other
areas that are tuned to the axis of motion. In either case,
the data suggest that subjects were using the cue to guide
search, and clear evidence supporting the suppressive
effects of feature-based attention were observed.

Comparisons with the feature-similarity gain
model

Compared to a condition in which only a fixation
mark was attended, Martinez-Trujillo and Treue (2004)
reported enhanced responses in MT neurons that were
tuned to an attended direction of motion and sup-
pressed responses in neurons that were tuned away from
the attended direction of motion (see also Cohen &
Maunsell, 2011). These data predict enhanced percep-
tual sensitivity for attended features as well as a
reduction in perceptual sensitivity for features that are
maximally separated from the target in feature space
(e.g., opposite directions of motion). Consistent with a
suppressive component of feature-based attention, Ling
et al. (2009) used an equivalent-noise paradigm and a
task in which subjects had to discern whether or not a
centrally presented RDP contained motion that was
clockwise or counterclockwise from one of four
reference directions (see also Baldassi & Verghese,
2005). The coherence (proportion of dots moving in
the same direction) of the RDP was systematically
adjusted across multiple levels, and the directional
offset between the target direction and the reference
directions was adjusted to estimate a perceptual
sensitivity threshold for each subject. On validly cued
trials, attention reduced sensitivity thresholds across all
motion coherence levels, suggesting that feature-based
attention suppressed neural responses evoked by dots
within the RPDs that were moving in uncued directions.
This putative suppression of uncued motion directions
is consistent with previous neurophysiology studies and
with our psychophysical and modeling results. Howev-
er, the present results further demonstrate that the
suppressive effect of feature-based attention can operate
across multiple locations in the visual field, as opposed
to being restricted to a single spatial location that
contains both the cued and the uncued features (as in
the variable coherence RDPs used by Ling et al., 2009).

Figure 5. Behavioral paradigm for Experiment 2. At the beginning

of each trial there was either a valid cue (50% of the trials)

correctly indicating the impending direction of motion, an invalid

cue (25% of the trials) incorrectly indicating the impending

direction of motion, or a neutral cue (25% of the trials) that

contained no directional information whatsoever. Invalid cues

indicated directions that were offset from the direction of motion of

the target RDP anywhere from 6308 to 61808 on a trial-by-trial

basis (determined pseudorandomly within a given block of trials).

The target RDP contained 80% motion coherence, while the

distractors contained 40% motion coherence, where each

distractor direction was offset from the target direction by either

6158, 6458, 6758, 61058, 61358, or 61658 (randomly chosen

per trial, where each distractor direction was unique) for eight of

the subjects or by 6188, 6368, or 6728 for the remaining four

subjects. Note: Cues in the first panel are exaggerated in size for

the purposes of clarity.
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Figure 6. (a) Accuracy rates across the different cue conditions for Experiment 2. Mean accuracy rates computed across subjects

(ordinate) as a function of the eight possible cue conditions (abscissa). (b) Mean response times on correct trials across the different cued

conditions for Experiment 2. Mean accuracy rates computed across subjects (ordinate) as a function of the eight possible cue conditions

�
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In addition, our data reveal a systematic decline in
processing efficiency as a function of the directional
offset between the cue and the target. This systematic
relationship between the cue-to-target offset and the
efficiency of sensory processing is evident both in the
pattern of drift rates on invalid trials (Figure 7), and in
the pattern of errors made on invalid trials, as subjects
in Experiment 2 more often chose a distractor whose
direction was similar to the cue compared to a distractor
whose direction was far from the cue (Figure 6c).

White and Carrasco (2011) also directly assessed the
relationship between feature-based attentional suppres-
sion and behavior using a dual-task paradigm. Subjects
were asked to indicate whether there was a speed
change in a primary RDP (that was shown in one

hemifield) and then asked to discern which of two
secondary RDPs shown in the other hemifield con-
tained coherent motion. The direction of coherent
motion in the secondary RDP either matched or
mismatched (by 1808) the direction of motion of the
primary stimulus. As in the present study, performance
was enhanced when subjects were given a valid cue that
indicated the direction of the primary RDP compared
to when they were given a neutral cue. In addition,
subjects were more sensitive to coherent motion in the
secondary stimulus when the motion in the secondary
stimulus matched the cued direction. However, when
the direction of the secondary stimulus mismatched the
cued direction, performance was not impaired com-
pared to a neutral cue condition. Thus, their overall

Comparison Accuracy rate Response time Drift rate

Neutral vs. valid p ¼ 0.000364*** p ¼ 0.0021** p ¼ 0.0056**

Neutral vs. 308 p ¼ 0.3960 p ¼ 0.5851 p ¼ 0.0409*

Neutral vs. 608 p ¼ 0.0022** p ¼ 0.052 p ¼ 0.0491*

Neutral vs. 908 p ¼ 0.0004*** p ¼ 0.0491* p ¼ 0.0409*

Neutral vs. 1208 p ¼ 0.00035*** p ¼ 0.0037** p ¼ 0.0436*

Neutral vs. 1508 p ¼ 0.0019** p ¼ 0.0031** p ¼ 0.044*

Neutral vs. 1808 p ¼ 0.1656 p ¼ 0.01* p ¼ 0.4928

Valid vs. 308 p ¼ 0.00043*** p ¼ 0.052 p ¼ 0.0261*

Valid vs. 608 p ¼ 0.00035*** p ¼ 0.0018** p ¼ 0.0325*

Valid vs. 908 p ¼ 0.0003*** p ¼ 0.01* p ¼ 0.026*

Valid vs. 1208 p ¼ 0.0003*** p ¼ 0.0019** p ¼ 0.027*

Valid vs. 1508 p ¼ 0.0004*** p ¼ 0.0037** p ¼ 0.026*

Valid vs. 1808 p ¼ 0.0065** p ¼ 0.01* p ¼ 0.0437

308 vs. 608 p ¼ 0.00037*** p ¼ 0.046* p ¼ 0.3794

308 vs. 908 p ¼ 0.00036*** p ¼ 0.052 p ¼ 0.0659

308 vs. 1208 p ¼ 0.00036*** p ¼ 0.0112* p ¼ 0.1376

308 vs. 1508 p ¼ 0.0019** p ¼ 0.0328* p ¼ 0.5381

308 vs. 1808 p ¼ 0.1387 p ¼ 0.0835 p ¼ 0.0491*

608 vs. 908 p ¼ 0.0239* p ¼ 0.3645 p ¼ 0.02

608 vs. 1208 p ¼ 0.0575 p ¼ 0.1426 p ¼ 0.041

608 vs. 1508 p ¼ 0.7924 p ¼ 0.3948 p ¼ 0.7489

608 vs. 1808 p ¼ 0.3326 p ¼ 0.6406 p ¼ 0.044*

908 vs. 1208 p ¼ 0.6875 p ¼ 0.5851 p ¼ 0.4029

908 vs. 1508 p ¼ 0.057 p ¼ 0.7351 p ¼ 0.0473*

908 vs. 1808 p ¼ 0.0275* p ¼ 0.6283 p ¼ 0.03*

1208 vs. 1508 p ¼ 0.0565 p ¼ 0.3171 p ¼ 0.0436*

1208 vs. 1808 p ¼ 0.0145* p ¼ 0.1737 p ¼ 0.026*

1508 vs. 1808 p ¼ 0.0413* p ¼ 0.7499 p ¼ 0.027*

Table 2a. Pair-wise comparisons of mean accuracy rates, mean response times, and drift rates between different cued conditions for

Experiment 2 (n¼ 12). Offsets were collapsed across clockwise and counterclockwise directions. Please refer to Figures 6a, 6b, and 7.

Note: The reported p-values here have been corrected for multiple comparisons using a False Discovery Rate procedure. *p , 0.05, **p ,

0.01, ***p , 0.001.

 
(abscissa). (c) Mean proportion of error trials for every offset between the chosen distractor and invalid cue for Experiment 2. Mean

proportion of errors as a function of the offset between the direction of the chosen distractor (ordinate) and the invalid cue for that trial

(abscissa). Only incorrect trials with invalid cues were used in this analysis. Offsets were collapsed across clockwise and

counterclockwise directions. All error bars are 6 SEM, computed after subtracting the mean from each subject.
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pattern of data is consistent with attentional facilitation
in the absence of suppression. In contrast, the results
from our experiments—particularly Experiment 2—
provide strong evidence for both attentional facilitation
and suppression. However, our results are not neces-
sarily inconsistent with White and Carrasco’s (2011)
findings, as motion in their secondary stimulus either
matched the cued direction or was offset by 1808 from
the cued direction. In both of our experiments,
suppression was minimized for directions that were
1808 from an invalid cue (the ‘‘rebound effect,’’ Figures
3, 4, 6, and 7). Thus, suppression might simply have
been minimized at the 1808 offset in their study.

Finally, Tombu and Tsotsos (2008) evaluated a
feature-based version of their selective-tuning model,
which posits that attention facilitates the processing of
attended features, suppresses the processing of immedi-
ately adjacent features, and has little impact on the
processing of distant features (see also Tsotsos et al.
1995). In their study, subjects had to decide whether the
stripes on a grating stimulus were jagged or straight, and
the attended orientation was cued on a block-by-block
basis. The orientation of the stripes either matched the
attended orientation or was offset by 458 (the ‘‘similar’’
condition) or by 908 (the ‘‘dissimilar’’ condition).
Accuracy rates were highest when the stripes matched
the cued orientation, lowest in the similar condition (458
offset), and intermediate in the dissimilar condition (908
offset). Although this pattern was only observed with
‘‘jagged’’ stripes (and not with straight stripes), their
data are consistent with the pattern of suppression and
rebound that we report in Experiment 1 (Figures 3 and

4) and Experiment 2 (Figures 6 and 7). Namely, the
pattern of suppression was nonmonotonic as the offset
between the cued orientation and the presented orien-
tation increased, and offsets farther away from the cued
feature were not suppressed as strongly as offsets that
were at an intermediate distance from the cued feature
value. Thus, it is possible that our results—particularly
in Experiment 2—tap into a similar mechanism
proposed in Tsotsos et al.’s (1995) selective-tuning
model. The present study, however, complements and
extends their results by demonstrating enhancement and
suppression relative to a neutral cue baseline, by
sampling more feature values, and by implementing a
quantitative decision model that can better isolate the
different latent cognitive factors that are involved in
perceptual decision making.

In sum, our results reveal both facilitatory and
suppressive effects of feature-based attention that
systematically depend on the directional offset of the
stimulus and the currently attended direction. These
graded attention effects—that primarily influence the
rate of sensory evidence accumulation—are generally
consistent with the feature-similarity gain model, which
predicts increasingly impaired performance for features
that are tuned progressively farther away from the cued
direction (but see our discussion of the ‘‘rebound
effect’’ and the selective tuning model above). To
extend these findings in future studies, we can couple
our general experimental and analytical approach with
paradigms developed by other investigators to examine
interactions between suppression and the spatial extent

Comparison

158 vs. 458 p ¼ 0.4164

158 vs. 758 p ¼ 0.2786

158 vs. 1058 p ¼ 0.0015**

158 vs. 1358 p ¼ 0.006**

158 vs. 1658 p ¼ 0.0321*

458 vs. 758 p ¼ 0.8433

458 vs. 1058 p ¼ 0.1436

458 vs. 1358 p ¼ 0.0071**

458 vs. 1658 p ¼ 0.084

758 vs. 1058 p ¼ 0.1579

758 vs. 1358 p ¼ 0.006**

758 vs. 1658 p ¼ 0.2217

1058 vs. 1358 p ¼ 0.2456

1058 vs. 1358 p ¼ 0.8051

1358 vs. 1658 p ¼ 0.169

Table 2b. Pair-wise comparisons of the mean error rate on invalid

trials according to the different offsets between the invalid cue and

chosen distractor direction (n ¼ 12). Offsets were collapsed

across clockwise and counterclockwise directions. Please refer to

Figure 6c. Note: The reported p-values here have been corrected

for multiple comparisons using a False Discovery Rate procedure.

*p , 0.05, **p , 0.01, ***p , 0.001.

Figure 7. Drift rates for the accumulators corresponding to the

correct response on the different cue conditions for Experiment 2.

Mean drift rates corresponding to the correct response on each

trial computed across subjects (ordinate) as a function of the eight

possible cue conditions (abscissa). Offsets were collapsed across

clockwise and counterclockwise directions. All error bars are 61

SEM, computed after subtracting the mean from each subject.
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of feature-based attention (Liu et al., 2011), as well as
the impact of feature-based attention on the simulta-
neous processing of multiple relevant stimuli (Sàenz et
al., 2003; White & Carrasco, 2011).

Mechanisms of attentional enhancement and
suppression: Sensory gain versus selective
weighting

Given the large and growing amount of neurophys-
iological evidence, it is tempting to ascribe the
facilitatory and suppressive behavioral effects observed
in our study to modulations of neurons at relatively
early stages of sensory processing (Liu et al., 2007;
Martinez-Trujillo & Treue, 2004; Maunsell & Treue,
2006; Sàenz, Buraĉas, & Boynton, 2002; Scolari et al.,
2012; Serences, Saproo; Scolari, Ho, & Muftuler, 2009;
Treue & Maunsell, 1996; Treue & Martinez-Trujillo,
1999). However, the attentional enhancement and
suppression effects that we observe may not reflect
changes in early sensory gain, but instead a selective
weighting of sensory responses by downstream decision
mechanisms (Baldassi and Verghese, 2002, 2005;
Dosher & Lu, 1999; Eckstein, Thomas, Palmer, &
Shimozaki, 2000; Law & Gold, 2008, 2009; Palmer,
1995; Palmer, Verghese, & Pavel, 2000). On this
account, areas involved in integrating sensory evidence
during decision making might overweight the output of
direction-selective neural populations tuned to the cued
feature, and underweight input from neural popula-
tions tuned away from the cued direction. This selective
weighting would give rise to enhanced performance in
the valid-cue condition and systematically worse
performance for targets rotated farther from the cue
(Figures 3 and 4 from Experiment 1; Figures 6 and 7
from Experiment 2). Moreover, this type of selective
weighting also predicts the systematic pattern of errors
observed in Experiment 2, as neurons that respond to
distractor directions that are close to the cued direction
might more strongly influence decision mechanisms
and trigger more frequent incorrect responses (Figure
6c). Finally, the selective weighting account might
explain the larger suppressive effects that we observed
in Experiment 2 compared to Experiment 1, as the 40%
coherent RDP distractors in Experiment 2 are more
likely to influence decision mechanisms that differen-
tially weight responses from neural populations that
respond to directions that are adjacent to the cued
direction.

Thus, based on the current behavioral data alone, we
cannot unambiguously determine if the behavioral
facilitation on valid trials and the impaired perfor-
mance on invalid trials is due to sensory enhancement,
selective weighting during decision making, or—more
likely—to some combination of the two mechanisms.

One potential method to disentangle these alternatives
would be to re-run a version of Experiment 2 with
fewer offsets and more sessions in order to dramatically
increase the amount of data that is collected. With
more power, it may be possible to use a modified LBA
model to estimate response caution for every possible
cue-distractor offset on trials in which a distractor is
incorrectly selected in place of the target. Thus, one
could test whether or not response caution is lower
when distractors are similar to the invalid cue, which
might support the idea that the decision criteria are
adjusted based on cue-stimulus similarity. However, an
alternate, and perhaps more fruitful, approach would
be to adapt a version of Experiment 2 to either single
unit recording or functional magnetic resonance
imaging environments. This would enable measure-
ments of attention-mediated changes in sensory gain
throughout the visual cortex and allow one to examine
if most of the variability in behavior can be accounted
for by only considering the observed changes in sensory
gain or if positing an additional mechanism that
selectively reweights sensory responses during decision
making is needed to fully explain the nature and
magnitude of the observed changes in behavior (Pestilli,
Carrasco, Heeger, & Gardner, 2011).

Linear ballistic accumulator versus signal
detection models

The LBA model is one of many models that utilizes
RT and accuracy to examine how experimental
manipulations impact latent cognitive factors such as
drift rate, decision boundaries, and non-decision times
(Brown & Heathcote, 2008; Link & Heath, 1975;
Ratcliff, 1978; Ratcliff & Rouder, 1988; Usher &
McClelland, 2001; Van Zandt, Colonius, & Proctor,
2000; Wagenmakers, van der Maas, & Grasman, 2007).
Other models, such as those based on signal detection
theory (SDT), also do an excellent job explaining
accuracy data that is obtained in experiments similar to
ours (Baldassi & Verghese, 2002, 2005; Eckstein et al.,
2000; Palmer, 1995; Palmer et al., 2000). In these SDT
models, each element in a visual display elicits a noisy
representation within each relevant feature dimension.
The observer then combines these representations
across all features to obtain a single decision variable,
and the stimulus with the maximum value is deemed
the most likely to be the target. This approach is
particularly adept at explaining behavior in situations
where the target is exposed briefly in a data-limited
manner, and accuracy is the primary dependent
measure (as opposed to RT). However, even though
SDT models account for performance on an impressive
array of search tasks, sequential sampling models often
have an advantage. This is particularly true when a
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decision is based on noisy sensory inputs that are
continuously present so that the reliability of the final
decision variable continuously increases as more
evidence is unveiled (Smith & Ratcliff, 2004). In
addition, the conception of a perceptual decision as
an accumulation process is now well supported based
on studies that examine the buildup of firing rates of
sensorimotor neurons that are thought to play a key
role in mediating basic perceptual decisions (Gold &
Shadlen, 2007; Heekeren, Marrett, Bandettini, &
Ungerleider, 2004; Leon & Shadlen, 1999; Mazurek,
Roitman, Ditterich, & Shadlen, 2003).

Feature-based attention and changes in
neural variability

As discussed above, changes in the rate of sensory
evidence accumulation (Figures 4 and 7) can be
intuitively linked to changes either in the firing rate of
sensory neurons or to changes in the relative weighting
of sensory signals by downstream decision mechanisms.
However, there is growing evidence that top-down
attention can also influence neural variability (Cohen &
Maunsell, 2009, 2010, 2011; Cohen & Kohn, 2011;
Mitchell, Sundberg, & Reynolds, 2007, 2009). For
example, space- and feature-based attention have been
shown to reduce the ratio of the variance of individual
sensory neurons to their mean firing rate (or the ‘‘fano
factor’’; Mitchell et al., 2009; Cohen &Maunsell, 2011).
In turn, a reduction in neural variability should lead to
more stable sensory responses across time, thus
speeding the process of evidence accumulation during
decision making (Churchland, Kiani, Chaudhuri,
Wang, Pouget, & Shadlen, 2011). Recently, Rahnev et
al. (2011) used a SDT model to demonstrate that such a
reduction in neural variability can increase behavioral
performance by increasing the signal available for
supporting perceptual decisions. Interestingly, this
reduction in variability improves performance on
average, but also reduces the probability of a high
signal response on any given trial, thereby leading to a
more conservative bias in behavioral responses (Rah-
nev et al., 2011). While these results are not directly
comparable to the present findings due to differences in
the task and the type of model that was employed, they
suggest an important role for attention-mediated
reductions in neural noise during perceptual decision
making. An advantage of sequential sampling models,
like the LBA, is that such explanations can be directly
investigated. For example, one could explore LBA
models in which the parameter governing the variance
of the drift rate distributions was free to vary with
cueing manipulations. Such models can be difficult to
estimate due to the highly correlated posterior distri-
butions for mean drift rate and variance parameters, so

such investigations will require future studies that have
many more data points per participant (Donkin,
Brown, & Heathcote, 2009; Smith, Ratcliff, & Wolf-
gang, 2004).

Conclusions

Here, we provide evidence for both facilitatory and
suppressive effects of top-down feature-based attention
on human performance that can best be explained by
changes in the rate of sensory evidence accumulation,
particularly when competition between the target and
distractors was high. One critical outstanding issue
concerns developing a mechanistic explanation for the
observed effects and determining whether feature-based
attention mediates behavior primarily via changes in
sensory gain, changes in the weighting of sensory
evidence by downstream decision mechanisms, or
through some combination of the two. Future studies
employing neurophysiological or neuroimaging ap-
proaches will hopefully dissociate these possibilities
and isolate the relative contributions of each mecha-
nism.
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