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Visual crowding is the inability to identify visible features when they are surrounded by other structure in the peripheral field.
Since natural environments are replete with structure and most of our visual field is peripheral, crowding represents the
primary limit on vision in the real world. However, little is known about the characteristics of crowding under natural
conditions. Here we examine where crowding occurs in natural images. Observers were required to identify which of four
locations contained a patch of ‘‘dead leaves’’ (synthetic, naturalistic contour structure) embedded into natural images.
Threshold size for the dead leaves patch scaled with eccentricity in a manner consistent with crowding. Reverse correlation
at multiple scales was used to determine local image statistics that correlated with task performance. Stepwise model
selection revealed that local RMS contrast and edge density at the site of the dead leaves patch were of primary importance
in predicting the occurrence of crowding once patch size and eccentricity had been considered. The absolute magnitudes of
the regression weights for RMS contrast at different spatial scales varied in a manner consistent with receptive field sizes
measured in striate cortex of primate brains. Our results are consistent with crowding models that are based on spatial
averaging of features in the early stages of the visual system, and allow the prediction of where crowding is likely to occur in
natural images.
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Introduction

While reading this sentence, notice that text rapidly
becomes illegible and details become indistinguishable
with distance from the current point of regard. This
effect is called crowding (Bouma, 1970). This paucity of
detail is not just an effect of reduced acuity or contrast
sensitivity—the presence of contours can easily be
detected—it is just that they cannot be individuated. It
is therefore crowding that represents the primary limit
on the functionality of peripheral vision.

Crowding causes deficits across a wide variety of
visual tasks, including Vernier acuity (Westheimer &
Hauske, 1975), orientation discrimination (Andriessen
& Bouma, 1975; Parkes, Lund, Angelucci, Solomon, &
Morgan, 2001), letter identification (Bouma, 1970;
Flom, Heath, & Takahashi, 1963; Toet & Levi, 1992),
and face recognition (Louie, Bressler, & Whitney, 2007;

Martelli, Majaj, & Pelli, 2005; see Levi, 2008; Pelli &
Tillman, 2008; Whitney & Levi, 2011 for recent
reviews). The emerging consensus from these studies
is that crowding is a consequence of spatially pooling
features within receptive fields of increasing size:
information is averaged (Balas, Nakano, & Rosenholtz,
2009; Dakin, Cass, Greenwood, & Bex, 2010; J.
Freeman & Simoncelli, 2011; Greenwood, Bex, &
Dakin, 2009; Parkes et al., 2001; van den Berg,
Roerdink, & Cornelissen, 2010; J. Freeman, Chakra-
varthi, & Pelli, 2012) or not resolved by attention (He,
Cavanagh, & Intriligator, 1996; Nandy & Tjan, 2007;
Strasburger, 2005) and therefore some is lost.

Most investigations of crowding have used simplified
stimuli presented on otherwise featureless backgrounds,
a situation quite unlike the typical natural world. While
these studies have provided important insights into the
essential process of crowding, the extent to which this
understanding holds true in natural vision is less clear.
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The most robust finding from the crowding literature is
that image features are pooled within a region whose
size is approximately half the retinal eccentricity
(Bouma, 1970; Pelli & Tillman, 2008). Given that
natural images are cluttered, this finding implies that
most of the time, we should be unable to identify
anything outside the fovea because there is nearly
always another contour in the ‘‘crowding window.’’
Alternatively, recent work suggests that image group-
ing processes can minimize the effects of crowding in
complex images. For example, crowding can be
attenuated when flanks can be grouped together and/
or segmented from a central target (Bex, Dakin, &
Simmers, 2003; Livne & Sagi, 2007, 2010; Saarela,
Sayim, Westheimer, & Herzog, 2009), facial expression
can be recognized even though facial features are
crowded (Fischer & Whitney, 2011; Martelli et al.,
2005), and identification of objects containing internal
structure is relatively less affected by crowding than for
object silhouettes or for letters (Wallace & Tjan, 2011).
Given that natural scenes generally contain meaningful
objects, this class of observation suggests that natural
images may be relatively resistant to crowding.

A number of authors have examined crowding-
related phenomena in natural images viewed by the
peripheral visual field. To and colleagues (To, Gilchrist,
Troscianko, & Tolhurst, 2011; To, Lovell, Troscianko,
& Tolhurst, 2010) showed that the subjective magni-
tude of hue or orientation differences in peripherally-
viewed natural images was less than predicted from
contrast sensitivity. Similarly, Kingdom, Field, and
Olmos (2007) demonstrated that subjects were highly
insensitive to naturally-occurring geometric transfor-
mations that produced local luminance changes that
otherwise could be easily detected. Bex (2010) showed
that spatial distortions could be detected in natural
images, but sensitivity decreased as edge density
increased in real and random phase images. These
findings demonstrate that spatial discrimination of
cluttered natural images is impaired in the peripheral
visual field, and that the presence of edges plays an
important role in these discriminations. Since crowding
depends on visual features such as edges, this suggests a
critical role for crowding in peripheral vision.

Several authors (J. Freeman & Simoncelli, 2011;
Balas et al., 2009; Parkes et al., 2001) have proposed
that crowding may be an emergent property of
statistical averaging among image features. J. Freeman
and Simoncelli (2011) developed a crowding model
based on a texture synthesis algorithm (Portilla &
Simoncelli, 2000), modified so that spatial structure is
synthesized within regions whose size scales with
eccentricity. To test the model, this scale factor was
varied to produce a set of naturalistic stimuli that were
progressively ‘‘texturized’’ with eccentricity. Human
observers discriminated between pairs of such textur-
ized images and the slope of the scaling factor for

images that were perceptual metamers (i.e., not a
discriminable difference) was used to estimate percep-
tual field sizes for texture discrimination. These size
estimates closely followed those estimated for receptive
fields in visual area V2 in non-human primates. The
authors conclude that V2 is a likely candidate for the
mid-level visual mechanism at which crowding occurs.

Averaging models are therefore able to account for
crowding effects across a range of stimuli, from
oriented gratings (Parkes et al., 2001) and simple
objects (Dakin et al., 2010; Greenwood et al., 2009; van
den Berg et al., 2010; Balas et al., 2009) to natural
images (Balas et al., 2009; J. Freeman & Simoncelli,
2011). While we have good estimates of the statistical
distribution of luminance (van Hateren & van der
Schaaf, 1998), contrast (Balboa & Grzywacz, 2003) and
edges (Bex, 2010; Bex, Solomon, & Dakin, 2009) in
natural images, there is no firm understanding of how
these image properties determine crowding in natural
images. We sought to improve this understanding using
a modified reverse correlation paradigm to identify
where crowding can be expected to occur in arbitrary
natural images.

To assess crowding in natural scenes, stimuli must be
embedded within scenes rather than presented on blank
backgrounds if they are to capture the influence of the
spatial characteristics of natural images. Furthermore,
in order to eliminate luminance and contrast cues that
could be detected independently of crowding, the
stimuli must be locally matched to the image they
replace. We considered three methods to meet these
criteria. First, randomizing the phase spectrum of an
image patch is frequently used to generate naturalistic
images (e.g., Oppenheim & Lim, 1981), while main-
taining the amplitude spectrum. However, phase
scrambled patches lack edges (which arise from
correlations in phase across spatial scale), and have
Gaussian luminance distributions, so are therefore not
useful for discriminations of spatial structure. Second,
introducing spatial distortions avoids both these
problems, but their visibility in natural images depends
on the spatial scale of the distortion (Bex, 2010).

We therefore employed ‘‘dead leaves’’ stimuli (Lee,
Mumford, & Huang, 2001; Matheron, 1975; Pitkow,
2010; Ruderman, 1997) that were embedded in a
natural image. Opaque elementary shapes (in this case,
ellipses of pseudo-random aspect ratio) were laid over a
circular image segment with no constraint for overlap
(see Figure 1A). The ellipses therefore form naturalistic
edges where some objects occlude others, a property
that mimics the provenance of local image structure in
natural scenes (Lee et al., 2001; Ruderman, 1997;
Pitkow, 2010). In our variant of this method, each
ellipse is assigned the intensity of the pixel at its centre
in the underlying natural image. The dead leaves
patches therefore have the same space-averaged lumi-
nance and contrast as the image segments they replace
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and differ from the background image only in structure
such as texture and contours (see Figure S1).

Methods

Observers

Three observers participated in the experiment, the
authors and one naı̈ve participant. All observers had
normal or corrected-to-normal visual acuity. All
participants gave informed consent and the methods
were approved by the Institutional Review Board of the
Schepens Eye Research Institute in accordance with the
Declaration of Helsinki.

Stimuli and procedure

Stimuli were presented using the PsychToolbox
(Brainard, 1997; Pelli, 1997; Kleiner, Brainard, & Pelli,
2007) for MATLAB (The Mathworks) running on a
Windows 7 computer. The display was an Apple

Studio Display 17 00 CRT with 1024 · 768 pixels
resolution refreshing at 75 Hz. The monitor was
gamma-corrected via the graphics card control panel
after calibration with a Minolta LS110 luminance
meter, and was set to a maximum luminance of 80 cd/
m2 (mean 40 cd/m2). Observers viewed the screen from
57 cm.

Natural scenes were selected at random from a set of
calibrated natural images (van Hateren & van der
Schaaf, 1998). A 23.4 · 23.48 (750 · 750 pixel) section
of an image in the set was selected at random. The
mean intensity of the image was set to the mean of the
monitor, the global RMS contrast (r(L)/l(L)) was set
to 25%, and the resulting image was clipped to the
range [0–255]. Many natural scenes contain large
inhomogeneities, such as relatively sparse areas of sky
at the top of the image, which may influence crowding
and response biases. We therefore randomized the
orientation of the underlying image at 08, 908, 1808 or
2708 across trials. Images were presented for 200 ms
followed by a mask (a phase scrambled version of the
image), which remained on the screen until the observer

Figure 1. ‘‘Dead leaves’’ in natural images. (A) Twelve circular patches of elliptical primitives are laid over a natural image at three

eccentricities from the centre on each cardinal axis. The radius of the patch increases with eccentricity. Each ellipse takes on the

greyscale value of the image pixel at its centre, matching the dead leaves patches in space-averaged luminance and contrast. On fixating

the cross in the centre of the image, you may note that some patches are harder to discriminate than others—thus local image properties

modulate crowding. In the experiment, observers reported the location of a single patch of dead leaves relative to fixation (4AFC). Our

analysis aimed to determine the local image properties in the underlying natural image that are correlated with discrimination

performance. (B) Seven image statistics were computed at four Gaussian-weighted scales (here, the finest scale, r¼ 2 pixels, is shown).

These statistics are used to predict performance on the discrimination task, along with task parameters such as patch size.
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responded. A fixation spot subtending 0.258 was
presented in the centre of the image.

A patch of dead leaves was presented above, below,
left or right of fixation (at random across trials),
centered at 2, 4 or 88 of eccentricity (varied across
blocks of trials). The observers’ task was to indicate
the location of the dead leaves patch relative to
fixation (4 alternative forced-choice). The radius of the
patch was under the control of an adaptive staircase.
The area of the patch was tiled with elliptical
primitives, placed within the patch region with an
average density of 1 per 64 square pixels, with a
minimum of one ellipse. The horizontal and vertical
dimensions of each ellipse were independently ran-
domly drawn from a uniform distribution with a lower
bound of 4 pixels and an upper bound of 32 pixels.
These constraints were selected to ensure that dead
leaves patches were matched to the average local slope
and edge density of the ensemble of natural images (see
Figure S1). The orientation of each ellipse was
randomly drawn from a uniform distribution. The
centers of the ellipses were constrained to fall within
the circular patch area. The intensity of each ellipse
was set to the intensity value of the pixel in the natural
image at the centre location of the ellipse. These
constraints ensured that on average across the set of
natural images, the image statistics of the dead leaves
patches are very similar to the image segments they
replace. This matching can be seen in Figure S1. At a
coarse spatial scale, the dead leaves patches are
matched in luminance, RMS contrast, orientation,
orientation variability and local amplitude spectrum
slope to the patch that they replace. They are less-well
matched on edge density and phase congruency, which
is unsurprising since these properties are closely tied to
contours. Thus, the dead leaves patches serve to alter
local contour information while remaining closely
matched to the image segment they replace in other
image statistics.

Two different adaptive staircases were used in the
experiment: in approximately 60% of trials the patch
size was determined using a 2 up 2 down staircase
(Wetherill & Levitt, 1965) based on responses from all
patch locations, while the remaining trials were
collected using the Psi method (Kontsevich & Tyler,
1999) with separate staircases for each visual field
location. Both methods were set to converge on 50%
correct performance in order to provide sufficient
numbers of hits and misses for efficient reverse
correlation. One block consisted of 400 trials. At
eccentricities of 2, 4, and 88, TW completed 5,718,
5,600, and 5,614 trials, PB completed 5,418, 5,700, and
5,800, and N1 completed 5,600, 6,000, and 5,600 trials
respectively (total trial numbers not factors of 400 are
due to aborted blocks).

Image analysis

We aimed to determine the local image properties
correlated with dead leaves discrimination in natural
images. We concentrated our analysis on seven image
statistics. Luminance corresponds to pixel intensity.
RMS contrast is the variation in pixel intensity over
space. Edge density is the space-averaged binary output
of the Sobel edge detector, where higher values denote
more ‘‘edge’’ pixels per unit of area. Orientation is
calculated using steered filters (W. Freeman & Adelson,
1991), and we test orientation relative both to the image
and to the screen. Orientation variance is the variability
in orientation over space, bounded [0–1]. Local
amplitude spectrum slope is the log-log local slope of
the Fourier amplitude spectrum at every point in the
image, where more negative slopes correspond to
greater power at low spatial frequencies than high,
indicating that the image is more blurred. Finally, the
maximum moment of phase congruence (Kovesi, 2003)
is an additional measure of the presence of edges that is
less correlated with image contrast and more scale
invariant than methods that depend on intensity
gradients. Details for the calculation of these statistics
are given in the Appendix. Spatial maps of each local
image statistic were computed for each natural image
(see for example Figure 1B), then were Gaussian
weighted over four spatial scales (r ¼ 2, 8, 32 or 128
pixels, corresponding to 0.06, 0.25, 1, and 48). The
value of each weighted statistic corresponding to the
centre of the dead leaves patch on each trial (a scalar)
was entered into further analyses.

Reverse correlation

We used logistic regression to estimate the correla-
tion between manipulated parameters (such as patch
size), local image statistics, and trial-by-trial perfor-
mance. Logistic regression describes the change in
logged odds (a linear transformation of the expected
value of proportion correct) as a function of a linear
system of predictors and weights. Fits were performed
using the MATLAB (Mathworks) GLMFIT function.
We performed a stepwise model selection procedure to
determine which predictor variables to include in the
model, in which experimentally-manipulated variables
and then stochastically-varying image statistic predic-
tors were sequentially added to the model (see
Appendix and Tables S1–S5). With a large dataset
such as ours, traditional null hypothesis significance
testing and associated statistics such as p values, F
ratios and R2 may overestimate the evidence against the
null hypothesis, overfit the data, and make compari-
sons between the relative importance of predictor
variables inferentially hazardous (Wagenmakers,
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2007; Wetzels et al., 2011; Raftery, 1995). For this
reason, here we tested against the Bayesian Informa-
tion Criterion (BIC; Kass & Raftery, 1995; Schwarz,
1978; see Equation 1, Appendix) and associated
estimates of posterior probabilities (Wagenmakers,
2007) to arrive at a parsimonious model of task
performance. Model selection was performed for each
observer separately. The BIC is derived from the log
likelihood of the model fit, includes penalties for both
the number of parameters in the model and the number
of observations that make up the data, and is
equivalent to assuming a unit information prior
(Raftery, 1999). It is considered to be a conservative
criterion that favors smaller models (Raftery, 1999), so
we can be reasonably certain that parameters favored
for inclusion by the BIC do indeed contribute
meaningfully to model fit. The reverse correlation
applied here is similar in several ways to that used by
Baddeley and Tatler (2006), and the reader is referred
to that paper for a useful discussion of some of these
methodological issues in the context of predicting
fixation locations.

Results

After model selection, the final model contained 27
parameters, comprised of a constant, 6 for the
independently manipulated experimental parameters
(the decimal log of patch size in degrees, this term
squared, eccentricity and target visual field location
entered as three dummy coded parameters), 8 image
statistics (RMS contrast and edge density at four
spatial scales), and 12 two-way interaction terms (see
Appendix for selection procedure; raw data is provided
as a supplement).

Manipulated predictors

Four factors were independently manipulated during
the experiment: the size of the dead leaves patch, its
location relative to fixation, its eccentricity from
fixation, and the orientation of the underlying natural
image segment. The relationship between these factors
and task performance is shown in Figure 2. Perfor-
mance improves with increasing patch size, and there is
an interaction between patch size and eccentricity such
that larger patches are required at larger eccentricities
to reach the same level of performance. These findings
are consistent with known properties of crowding.

In addition, performance is generally better when the
dead leaves patch was presented to the left or right of
fixation rather than above or below fixation (compare
red to blue data and curves, Figure 2), and to a lesser

degree, when the patch is presented below fixation
compared to above fixation. This effect is independent
of the rotation of the underlying image, suggesting that
these visual field effects are relative to the intrinsic
perceptual space of the observer rather than to the
geotopic orientation of the image (e.g., sky above).
Finally, the orientation of the image segment did not
improve the model, suggesting that performance is
governed by local image properties rather than by the
global image orientation (see Figure S2 for thresholds
according to image segment orientation).

As noted in the Introduction, a common diagnostic
tool for identifying crowding is that the size of the
integration region producing crowding scales with
eccentricity with a factor of approximately 0.5 (‘‘Bou-
ma’s Law’’; Pelli & Tillman, 2008; Levi, 2008; Bouma,
1970), with an empirically observed range from
approximately 0.3 to 0.7 (Pelli, Palomares, & Majaj,
2004; Bouma, 1970; Toet & Levi, 1992; Levi & Carney,
2009; Chung, Levi, & Legge, 2001; Strasburger,
Harvey, & Rentschler, 1991; Kooi, Toet, Tripathy, &
Levi, 1994). To estimate the value of Bouma’s constant
for our data, we calculated the patch size that produces
62.5% correct performance (representing the mid point
of the theoretical dynamic range of task performance,
from 25 to 100% correct) when all other predictors are
held constant. This was performed by solving Equation
2 (see Appendix) for patch size at each eccentricity,
setting p to be 0.625, the dummy variables for visual
field location equal to their marginal frequency and all
other predictors to their mean. We reason that the
diameter of the threshold patch size corresponds
approximately to the spatial region over which dead
leaves patches are difficult to discriminate from the
surrounding natural image. That is, patches smaller
than the integration region are averaged with the
surrounding natural structure, whereas patches larger
than the region are not averaged with natural structure
and are therefore discriminable.

These results are shown in Figure 3. While estimates
fall below the rule-of-thumb 0.5 slope, they are well
within the range of Bouma’s Law, and well above
scaling factors for overlay masking and position
uncertainty (Pelli et al., 2004; Michel & Geisler, 2011;
White, Levi, & Aitsebaomo, 1992). We believe this
provides further evidence to suggest that our task is
measuring crowding, rather than masking or position
uncertainty alone.

Image predictors

Which local image statistics in the natural image are
associated with task performance once patch size and
eccentricity have been factored out? We concentrate on
seven statistics (see Figure 1B). While many of these
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statistics are highly correlated with each other, our
model selection attempts to reduce the set of predictors
to those that most parsimoniously capture variation in
task performance.

All predictors except orientation (either relative to
the image or absolute) significantly improved fits over
models containing the manipulated experimental pa-
rameters alone. However, cumulatively entering these
predictors and testing model fit against the BIC in a
stepwise fashion (see Supplementary Table S4) deter-
mined that the most parsimonious cumulative model
contained only RMS contrast and edge density.

The relationship between RMS contrast, edge
density and performance across spatially-weighted
pooling regions was quantified by calculating these
statistics at more (finer-grained) scales than at the four
scales used in model-fitting (results of the following

analysis for the original four scales are provided in
Tables S6 and S7). We picked 12 equally-log-spaced
scales from 1 to 256 pixels (0.03 to 8 degrees). Since the
units of RMS contrast and edge density are domain-
dependent and the distributions observed in the image
database are skewed, we needed to calculate a
meaningful metric to compare predictors in the central
portion of the observed distributions. To this end, we
computed the value of the linear predictor (logit; see
Equation 2) with patch size set to its threshold value
(see Figure 3), and all other predictors set to their mean
or marginal values for an eccentricity, except for the
predictor at the scale of interest. We computed the logit
for two values of the predictor of interest for each scale
and eccentricity: the first in which the predictor was set
to the 16th percentile of the observed distribution
(approximately one standard deviation below the mean

Figure 2. Performance as a function of patch size and target visual field location relative to fixation, for eccentricities of 28, 48, and 88 (rows

top to bottom), and target visual field location for three observers (columns left to right). Note logarithmic scale of patch size. Curves show

fits of the logistic model favored by model selection. Models were fitted to the raw binary response data. For illustration, these data have

been binned into six equally-sized bins (data points). Model fits are plotted from the smallest to the largest patch size presented. Each

data point represents approximately 230 trials. Error bars show the 95% beta distribution confidence intervals on the bins.
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for a normal distribution) and the second in which the
predictor was set to the 84th percentile. This allows us
to examine the changes in task performance predicted
by the model across the central operating range of the
predictor. The difference score between the two logits
(Dlogit ¼ logit84 – logit16) can be thought of as a
normalized regression weight for the predictor at that
scale and eccentricity. If the difference is positive, then
as the predictor increases the model predicts that the
observer’s task performance will improve. If the
difference is negative, an increase in the predictor is
correlated with more incorrect responses. The absolute
magnitude of the difference indicates the importance of
that scale for the model, such that a larger magnitude
indicates that changes in the predictor at that scale are
more strongly associated with performance. The value
of Dlogit was calculated for each scale at each
eccentricity. The resulting difference scores alternated
between positive and negative values (see insets, Figure
4A–B). This indicates that contrasts between closely-
spaced neighboring scales are important predictors of
performance. More strikingly, we noticed that the
absolute magnitude of these difference scores changed
lawfully with the scale of the spatial averaging (see
Figure 4A–B), even after size and eccentricity had been
factored out in this analysis. Given that these weights
for spatial averaging are correlated with psychophysical
performance, we speculated the area of spatial averag-

ing might be related to receptive field sizes of neurons
supporting task performance.

To quantify this possibility, we fit a three-parameter
Gaussian function (mean, bandwidth and amplitude) to
the absolute predictor weights at each eccentricity.
While the individual signed data are noisy, on average
the absolute values across observers show evidence of
size tuning for both RMS contrast and edge density.
Note that the effect of patch size and eccentricity has
already been accounted for in this analysis by setting
patch size to its threshold value for each eccentricity.
For RMS contrast, the peak locations of the best-fitting
Gaussian functions increase slightly with eccentricity,
consistent with the increase in receptive field sizes with
eccentricity. J. Freeman and Simoncelli (2011) recently
observed that psychophysical discrimination thresholds
for texturized natural scenes scaled with Bouma’s law,
which is consistent with the scaling of receptive field
sizes in V2. While it is highly speculative to attempt to
relate the underlying physiology to psychophysical
performance, we apply similar logic to our results from
Figure 3 and Figure 4A–B by converting the mean
parameter from the Gaussian fits (l) into a ‘‘receptive
field size’’ by plotting the full width at half maximum of
the corresponding Gaussian scaling region (i.e.,
2
ffiffiffiffiffiffiffiffiffi
2ln2
p

l). The resulting values are plotted against
estimates of receptive field sizes of visual areas V1, V2,
and V4 of macaque (J. Freeman & Simoncelli, 2011) in
Figure 4C. Consistent with Bouma’s law, threshold size
for the detection of dead leaves patches is close to the
receptive field sizes of neurons in area V2 of primate
brains. Once patch size is factored out, however, spatial
averaging estimates for RMS contrast are consistent
with the smaller receptive fields of V1 (see Figure 4C).
The uncertainty associated with the fits for edge density
does not allow us to draw any strong conclusions, but
these peaks are generally larger than those for RMS
contrast and are closer to the larger receptive field sizes
of extrastriate cortex.

The observation that the coefficients for RMS
contrast are not exclusively positive means that
performance is not simply a linear function of local
image contrast (note that the global contrast of all
images was the same), but is dependent on center and
surround contrasts at multiple scales. To verify that the
importance of contrast is not driven solely by patches
below contrast detection threshold, we repeated our
model selection procedure after excluding trials in
which the local RMS contrast at the target location fell
below 10% (a value that is well above contrast
increment detection threshold in natural scenes at most
scales (Bex et al., 2009). Excluding trials for which local
contrast fell below this value at a coarse scale (r¼ 48 /
128 pixels; 8% of trials) resulted in no substantive
changes to model selection. Excluding trials where local
contrast fell below 10% in a more fine region (r¼ .258 /

Figure 3. Threshold patch diameter for each observer as a

function of eccentricity. Solid line shows best fit to all points and

has a slope of 0.37. Least-squares slopes for individual subjects

were 0.44, 0.41, and 0.28 for TW, PB, and N1, respectively.

Points have been jittered horizontally to aid visibility.

Journal of Vision (2012) 12(7):6, 1–19 Wallis & Bex 7



8 pixels; 45% of trials) did change some outcomes of
the model selection procedure (these analyses are
detailed in the captions of Tables S1–S5), but
importantly, edge density and RMS contrast were still
included in the final models for two of three observers.
The remaining observer’s preferred model included
only edge density. These control analyses confirm that
the present task examines crowding and not target
detection, as our primary findings hold for image
patches that were easily detectable.

Predictive performance of the model

To assess the predictive performance of our model,
we performed bootstrapped cross validation (see Figure
5). For all observers, the area under the ROC curve for
the final model falls in the range of .75 to .8, with little
variation across samples. This is a good indication that
the model is not overfit, since it stably predicts out-of-

sample data on a criterion not used for model selection.
Figure 5 also shows two reduced models for compar-
ison. The ‘‘Task’’ model includes only manipulated
parameters, whereas the ‘‘þ RMS’’ model is the task
model with RMS contrast included. It can be seen from
these distributions that including RMS contrast signif-
icantly improves the predictive performance of the
model relative to task parameters alone. The effect of
including edge density is smaller but still statistically
substantial.

Since our model contains pixel-based predictors, it is
possible to evaluate the predictions of the model for an
arbitrary image. To the extent that crowding in natural
scenes reflects our task, we believe that this type of
computation could be used to predict the likelihood of
‘‘crowding’’ in arbitrary natural images. We illustrate
model predictions for the natural image from Figure 1
(see Figure 6). Here, we averaged model coefficients
across observers then evaluated the model’s predicted
proportion correct for every pixel in the image,

Figure 4. Coefficients for RMS contrast and edge density across scale, and interpreted as receptive field size. (A) Absolute change in the

linear predictor for RMS contrast changes across spatial scales, for three eccentricities. The abscissa shows the standard deviation of the

Gaussian-weighted scale in degrees of visual angle. The ordinate shows the absolute value of the change in the logit (linear predictor)

from the 16th percentile of RMS contrast at that scale to the 84th percentile, holding patch size at its threshold value for that eccentricity

(Figure 3) and all other predictors in the model at their mean value. This can be thought of as a normalized absolute regression coefficient.

Curves show the best fitting Gaussian function for each eccentricity (functions were fitted to all observers’ data rather than means, but

points show mean values between observers to aid visibility). Error bars show the SEM between the three observers. The inset Figure

shows the data for individual observers from (A). Colors code eccentricity as in A. Different observers are displayed with different markers

(TW¼ circle, PB¼ square, and N1¼ diamond) and D logits whose signed value is positive are shown as solid markers, negative D logits

as open markers. (B) Same as (A) for edge density. (C) Inferring receptive field sizes from model outputs. Hinged lines show changes in

receptive field diameter as eccentricity increases for three visual areas V1, V2, and V4 in non-human primates (parameters kindly

provided by J. Freeman). The shaded regions around the hinged line fits show 95% confidence regions estimated from the parameter

uncertainties provided by J. Freeman. Triangles pointing up show the full width at half maximum of a Gaussian with a standard deviation

given by the peak of Gaussian fits in (A), for RMS contrast. Down-pointing triangles show the same for edge density, from (B). Error bars

on these data points show 95% confidence intervals derived from fitting to data in (A) and (B) sampled with replacement 4999 times.

Circles plot the average threshold patch diameter in degrees (Figure 3) and error bars showþ/- 1 standard deviation between observers

(error bars at 2 and 4 degrees are smaller than the marker). In good agreement with Bouma’s law, threshold patch size estimates are

consistent with the sizes of receptive fields in area V2 of primate brains. RMS contrast peaks are more consistent with V1 receptive fields,

and edge density is more consistent with extra striate regions (albeit with much greater uncertainty).
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assuming central fixation and marginalizing over visual
field location. We show predictions for several combi-
nations of image size and Bouma’s constant (the scaling
of the integration region as a function of eccentricity).

Several features of Figure 6 are noteworthy. First, a
general effect of eccentricity is evident, with perfor-
mance more likely to be poor (lighter pixels) for
locations further from the fovea. These observations
agree qualitatively with the known eccentricity-depen-
dence of crowding. Second, not all areas of the image
are equally susceptible to crowding at a given
eccentricity: performance depends on the local image
statistics at each location. For example, performance is

predicted to be poorer for the dense leaves close to
fixation (an area of lower contrast texture surrounded
by relatively high contrast regions). This highlights an
important contribution of our model, since crowding
varies in magnitude depending on the image structure
at surrounding scales, not simply as a function of
eccentricity. Finally, the importance of local image
statistics depends on the region of integration: if the
region of integration is larger (Bouma’s constant of 0.5)
as a function of eccentricity, the magnitude of the
influence of features at very local scales is reduced.
Note that we found a constant of approximately 0.4
across observers (Figure 3), meaning that the demon-
stration images shown here span likely ranges of the
integration region for human observers.

Discussion

Some natural scenes are more cluttered than others,
and some areas within a given natural scene are more
cluttered than others. Crowding therefore will not
occur uniformly across the visual field in the natural
world. Consequently, predicting where crowding is
likely to occur in natural images is a necessary step in
developing methods for assisting those with low vision,
and could improve the prediction of eye movements in
natural scenes. More fundamentally, understanding the
image correlates of crowding in natural scenes will help
to constrain models of crowding. We developed a
paradigm that allowed us to study crowding in natural
scenes independently of simple luminance and contrast
detection. Three observers identified the location of
modifications of spatial structure (dead leaves) in
natural images. We examined the correlations between
performance and local image statistics at the location
of the dead leaves using linear modeling. Our model
allows prediction of where discrimination of local
structure will be poor for any arbitrary natural image
(Figure 6).

The discrimination of contrast-matched changes in
spatial structure in natural images will necessarily
involve the combined activity of several mechanisms
that have been distinguished by studies using simplified
stimuli. For example, performance will likely be
influenced by spatial position uncertainty (e.g., Pelli,
1985, 1981), overlay masking (e.g., Legge & Foley,
1980; Pelli & Farell, 1999) and surround suppression
(Petrov, Carandini, & McKee, 2005; Polat & Sagi,
1993; Bair, Cavanaugh, & Movshon, 2003), which have
been distinguished from ‘‘pure crowding’’ per se (Levi,
Hariharan, & Klein, 2002; Pelli et al., 2004; Petrov,
Popple, & McKee, 2007). However, there are several
aspects of our results that indicate the task under study
is primarily a crowding task.

Figure 5. Model cross-validation. 70% of the data was randomly

selected and fit; these coefficients were used to predict responses

in the remaining 30% of data. This process was repeated 4999

times for each observer, and distributions of model fit assessed by

the area under the Receiver Operating Characteristic (ROC)

curve are shown. A value of .5 would indicate that the model

discriminates hits from misses no better than chance, whereas a

value of 1 would indicate perfect discrimination performance.

Bootstrap distributions are represented as box-and-whisker plots

where the horizontal line shows the median, the height of the

square shows the interquartile range, the whiskers are twice the

interquartile range, and samples lying outside this range are

presented as points. Here we show the performance of three

models: the ‘‘Task’’ model contains only manipulated parameters

(patch size, eccentricity and target location); the ‘‘þ RMS’’ model

is the task model with RMS contrast added, and the ‘‘Final’’ model

is the final model after model selection (containing RMS contrast

and edge density). Including image predictors in the model greatly

improves predictive performance compared to considering task

parameters alone.
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Consistent with one of the most commonly-agreed
signatures of crowding, we found that threshold patch
sizes increased with eccentricity with a constant of
approximately 0.4 (Figure 3). This is within the range
of previous estimates of ‘‘Bouma’s law’’ (Pelli &

Tillman, 2008; Levi, 2008; Bouma, 1970; Pelli et al.,
2004), indicating that our results are likely a conse-
quence of crowding rather than masking, which
remains approximately invariant of eccentricity (e.g.,
Mullen & Losada, 1999), surround suppression (which

Figure 6. Model outputs for the image used in Figure 1, assuming an observer fixates centrally. Here we plot the probability of ‘‘crowding’’

as 1-p, where p is the model’s predicted probability of a correct response. Lighter pixels denote areas in which dead leaves discrimination

is more difficult; that is, where contrast-matched contours are more likely to be crowded. In the left images, patch diameter (Bouma’s

constant) was set to 0.3 · eccentricity, whereas in the right images patch diameter was 0.5 · eccentricity. In the top images, the image

size is set to 248 (i.e., the borders of the image are imagined to be at 128 eccentricity) whereas in the bottom images the retinal image size

is doubled (i.e., viewing distance is halved). These images can be used to gain a sense of how the model weighs the size of the integration

region and eccentricity against local image statistics.
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increases with eccentricity with a shallower slope)
(Petrov & McKee, 2006), or position uncertainty
(which also increases with a far shallower slope (Michel
& Geisler, 2011; White et al., 1992). Indeed, differences
in this eccentricity scaling factor have been character-
ized as a critical distinction between crowding and
‘‘ordinary masking’’ (Pelli et al., 2004).

In addition, we found evidence of visual field
anisotropies such that modifications on the horizontal
meridian were more easily detected than modifications
on the vertical meridian. While visual field anisotropies
consistent with these results have been reported
previously for both contrast detection (Najemnik &
Geisler, 2005, 2008) and for crowding (Liu, Jiang, Sun,
& He, 2009; Toet & Levi, 1992; see Petrov &
Meleshkevich, 2011), our task does not allow us to
rule out response bias as a contributing factor. That is,
visual field anisotropies in this task could be produced
by differences in sensitivity across the visual field,
biases toward some responses over others, or some
combination of the two. We are currently working to
disentangle these factors using a variant of Luce’s
Choice Model (Lesmes, Wallis, & Bex, 2011; Luce,
1963).

Our analysis does not allow us to investigate another
often-reported anisotropy of crowding, the ‘‘inward-
outward’’ effect, in which flankers radial but more
eccentric than the target produce greater crowding than
flankers closer to the fovea (Toet & Levi, 1992; Bex et
al., 2003; Petrov & Meleshkevich, 2011). This anisot-
ropy is generally proposed to be a consequence of the
two-dimensional geometric projection of M-scaled
receptive fields onto an isotropic area of cortex
(Motter, 2009), with a possible role for trans-saccadic
attentional integration (Nandy & Tjan, 2012). Our
approach could be extended to investigate this effect by
testing skewed spatial averaging regions as well as
symmetric Gaussians: if sensitivity were spatially
anisotropic, preferred averaging regions should exhibit
the characteristic ‘‘teardrop’’ shape of crowding inter-
ference zones (Toet & Levi, 1992).

Importantly, our finding that crowding is greater in
regions where local contrast is low does not simply
reflect a failure to detect contours under these
conditions: contrast and edge density remained
important predictors after excluding trials where local
contrast was below 10%, a conservative cutoff for
detection thresholds in natural images (Bex et al.,
2009). While crowding is often characterized as
contrast-independent once flankers are detectable (Pelli
et al., 2004), the strength of crowding effects have been
demonstrated to scale with contrast, depending on
other stimulus parameters (Chung et al., 2001). Our
finding that local contrast is an important determinant
of crowding is in good agreement with this. Similarly,
while spatial uncertainty, overlap masking, and sur-

round suppression are necessarily involved in the
observers’ perceptual processing of all stimuli, these
factors cannot fully explain performance in the task.
Every location in our natural image stimuli will suffer
from these effects, including the target and the three
non-target locations. It is not that subjects confuse the
spatial location of the target with non-target locations;
the four locations are too remote from one another for
such positional confusions. Nor are observers unable to
detect the presence of the target because of masking or
surround suppression: observers are aware of spatial
structure everywhere in the image, just as you are now
while reading this text. Performance in our task is poor
because the visible spatial structure of the dead leaves
patches is not discriminably different from the sur-
rounding natural image—this phenomenon is the
hallmark of crowding.

While our dead leaves discrimination task in natural
images is obviously related to texture perception, it is
important to note that this is a crowding task rather
than a texture discrimination task. It is relatively easy
to discriminate an isolated patch of dead leaves
presented peripherally on a uniform background from
the patch of natural image used to generate it. That
would be a texture discrimination task, not a crowding
task, because the influence of the surrounding spatial
structure has been removed. Our task could therefore
be considered crowded texture discrimination—but this
does not make crowding about texture discrimination
any more than using letters to study crowding makes
crowding about reading.

Our analysis revealed that target size, eccentricity,
RMS contrast, and edge density are of primary
importance for determining the ‘‘crowdability’’—the
likelihood that structure in a given location will be
crowded—of an arbitrary natural image viewed at a
given eccentricity. The model coefficients for these
image predictors demonstrate systematic changes
across spatial scales. The threshold detection size of
the dead leaves patch was consistent with Bouma’s law,
with a mean slope of 0.4. For RMS contrast but not
edge density, the peak tuning of absolute predictor
weights increases with eccentricity in a manner
reminiscent of the increase in receptive field sizes of
visual neurons through the visual hierarchy (see Figure
4A–B). We compared the scales of these tuning
parameters with receptive field size estimates measured
with electrophysiological and imaging methods in other
primates (Figure 4C, J. Freeman & Simoncelli, 2011). A
Bouma’s law near 0.5 for size dependence as a function
of eccentricity is consistent with the receptive field sizes
of neurons in area V2 of primate brains. More
speculatively, the RMS contrast tuning sizes measured
in our behavioral task in human observers in the
present study are closer to the receptive field sizes in
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cortical area V1. The coefficients for edge density were
too uncertain to identify with any given cortical area.

In a task that required observers to discriminate
pairs of texturized natural image ‘‘metamers’’ from one
another, J. Freeman and Simoncelli (2011) found that
the threshold spatial scale corresponded to V2 receptive
field sizes. Our task involving the discrimination of a
modified patch embedded within a larger unmodified
natural image produced threshold size estimates that
were in good agreement, but estimates of scaling for
RMS contrast were smaller. We propose that this
variation in the scale over which different parameters
modulate the likelihood of crowding is consistent with
recent evidence from fMRI showing that crowding may
occur at multiple stages of the visual hierarchy
(Anderson, Dakin, Schwarzkopf, Rees, & Greenwood,
2012). Collectively, these data suggest that it is not
possible to characterize crowding as specific to one
stage of the visual system.

The area under the ROC curve for our model was
approximately 0.75 (see Figure 5). It may not be
possible to achieve significantly better prediction than
this without also considering internal sources of
variability (that is, variability not related to the
stimulus). Response consistency paradigms across a
variety of tasks show that the ratio of internal-to-
external noise can vary between 0.75 up to 2.5, but is
typically about 1 (Burgess & Colborne, 1988; Gold,
Bennett, & Sekuler, 1999; Green, 1964; Murray,
Bennett, & Sekuler, 2002), and values around this
range have been recently reported for judgments of
noisy edges embedded in natural images (Neri, 2011).
That is, human discrimination performance is limited
approximately equally by stimulus and non-stimulus
uncertainty. If performance were completely deter-
mined by the stimulus and our model captured all of
this information, we would expect an area under the
ROC approaching one; conversely, if observers’ re-
sponses were completely independent of the stimulus,
we would expect our model to be at chance. Therefore,
an internal-to-external noise ratio of around 1 is
consistent with an area under the ROC of 0.75, if the
model captures most of the stimulus information
important to the observers’ decisions.

Crowding of orientation is one of the most replicated
results in the literature (Levi, 2008; Parkes et al., 2001;
Pelli & Tillman, 2008; Pelli et al., 2004; van den Berg et
al., 2010; van den Berg, Roerdink, & Cornelissen,
2007), and is stronger than for photometric (Kingdom
et al., 2007; To et al., 2011; van den Berg et al., 2007)
and structural (Bex, 2010) judgments in natural images.
It is therefore interesting that orientation failed to
contribute to our model. However, this is simply
reconciled by the fact that while crowding impairs
fine-scale orientation discrimination, absolute orienta-
tion does not determine where crowding will occur.

Centre-surround interactions of orientation differences
are captured by orientation variability, and to a lesser
extent by edge density.

To restrict the scope of our study we only considered
two-way interactions and relatively simple image
statistics. Similarly, there is a large space of candidate
models not considered by our model selection proce-
dure for reasons of computational tractability. There is
complex correlational structure between pixel intensi-
ties in natural images (Field, 1987; Lee et al., 2001), and
this structure has been shown to be important for
human perception (Geisler & Perry, 2011; Kingdom,
Hayes, & Field, 2001). Future work could examine this
structure explicitly, but our results show that even
simple local image statistics incorporated into simple
probabalistic models allow reliable predictions about
the probability that crowding will occur in arbitrary
natural images. In addition, our statistical model could
be compared to more mechanistic models such as
saliency (Itti, Koch, & Niebur, 1998; Harel, Koch, &
Perona, 2006), clutter (Rosenholtz, Li, & Nakano,
2007), and texture segmentation models (Rosenholtz,
2000; Malik, Belongie, Leung, & Shi, 2001; Malik &
Perona, 1990). It is worth noting at this point that our
model is simply a refined description of the data; we do
not claim it is a theory of any visual process (see
Roberts & Pashler, 2000 for related discussion).
Finally, our approach may be beneficial to consider
for image quality assessments and compression: poten-
tially, images could be compressed severely in areas
with high crowding probability away from common
gaze points with no corresponding loss of perceived
quality (Watson, 1993; Gao, Lu, Tao, & Li, 2010).

Conclusions

Traditional studies of crowding with simple stimuli
show that features falling halfway between the fovea
and a target’s eccentricity will render the target
unrecognizable. This arrangement is ubiquitous in
natural scenes and suggests that our perception of the
natural world should be unrecognizable in the periph-
eral visual field. Our data show that spatial manipula-
tions of natural scenes can be reliably detected
depending on local image features, which challenges
this general inference. We used a reverse correlation
analysis between performance and local image statis-
tics. This analysis revealed that target size, eccentricity,
local RMS contrast and edge density can be used to
make reasonable predictions of the likelihood that an
observer will experience crowding. The existence of
metamers, whether dead leaves or ‘‘texturized’’ natural
images, cannot be used to infer that the image
processing that generates such metamers is equivalent
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to the mechanisms that represent spatial structure and
cause crowding. Instead, we demonstrate that the
discrimination of dead leaves in complex images can
be used to predict where crowding is likely to occur in
natural scenes.

Appendix

Image statistic computation

The 750 pixel square image from each trial was
padded with mean intensity out to 1024 · 1024 pixels.
The seven feature maps were Gaussian weighted by
multiplying the map with a Gaussian kernel K at one of
4 scales (r of 2, 8, 32 or 128 pixels, corresponding to
0.06, 0.25, 1, and 4 degrees of visual angle) in the
frequency domain.

Local RMS contrast at each scale was computed as
the square root of the difference between the Gaussian
weighted estimate of squared intensity and the weighted
estimate of raw intensity (the standard deviation of
local pixel intensity (see Bex et al., 2009).

Edge density was computed by first running Mat-
lab’s Sobel edge detector over the image, returning ones
at pixels containing edges and zeros elsewhere. Con-
volving this edge map with the Gaussian kernels
returned a local estimate of edges per pixel at each
scale.

Local orientation was computed using steered
derivative of Gaussian filters (W. Freeman & Adelson,
1991). We started with a set of two dimensional
circularly symmetric Gaussians at a number of
wavelengths i:

G x;y;rið Þ ¼ e
� x2

2r2
i

� �
� e
� y2

2r2
i

� �

where r is the standard deviation of the Gaussian at
wavelength i. The filter weight was given by the integral
of the Gaussian:

wi ¼
R
Gðx;y;riÞdxdy

We considered four wavelengths of ri¼ {2, 16, 64, 128}
pixels. We took the Hilbert transform of the first x
derivative of G:

Hi ¼ hilb
]

]x
Gi

� �

to obtain a set of quadrature pairs in which the even
and odd components are represented in the real and
imaginary components of Hi respectively. These filters
were then rotated across four orientations hj ¼ {0, 90,
180, 270} to produce a set of filters Fh, r at each
orientation h and wavelength r. These filters were then

convolved with the image. The filter response was taken
as the real positive component of this convolution,
summed across orientations for each wavelength:

rri
¼
X4
j¼1

maxð0; realðFhj;ri
*IÞÞ

The amplitude of the filter response was the absolute
value of the response summed across orientations:

mri
¼
X4
j¼1
jFhj;ri

*Ij

Sine and cosine responses at each scale were also
computed:

svri
¼
X4
j¼1

sinhj �maxð0; realðFhj;ri
ÞÞ

cvri
¼
X4
j¼1

coshj �maxð0; realðFhj;ri
ÞÞ;

which was then used to compute the local orientation
estimate at each wavelength, wrapped across four
quadrants using Matlab’s atan2 function.

This orientation estimate at each wavelength was
then summed across scales after weighting by the
integral of the filter:

sv ¼
X4
i¼1

rri

wi
� sin orri

cv ¼
X4
i¼1

rri

wi
� cos orri

and then used to compute the final orientation estimate
across spatial scales using atan2.

The sine and cosine of this orientation feature map
were then convolved with the Gaussian weighting
kernels K to produce Gaussian weighted estimates of
orientation across space. Additional computations
performed on orientation, including some summary
statistics, were computed using the Circular Statistics
Toolbox for Matlab (Berens, 2009).

Orientation variance was calculated as the square
root of the variance in sine and cosine components of
the local orientation estimates at each scale. This local
orientation variance metric is bounded [0–1], where
lower values refer to regions of similar local orientation
and higher values refer to regions where nearby pixels
vary in orientation.

Local amplitude spectrum slope was approximated
by computing the slope of the best fitting regression line
through the log filter response magnitudes at every
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pixel, summed across orientations, as a function of the
log spatial frequency of the filter.

Phase congruency (the maximum moment of phase
congruency covariance) was calculated using methods
described by Kovesi (2003) and associated Matlab
routines (phasecong3.m, November 2010 update; run
on the unpadded analysis image). The maximum
moment of phase congruency provides a measure of
local edge strength bounded [0–1]. High values are
returned for both edges and textures; this measure is
less dependent on local RMS contrast than the Sobel
edge detector.

To summarize, seven image statistics were computed
for each image presented in the experiment, and these
statistics were spatially averaged at four Gaussian
scales. The weighted statistic at the centre of each
possible dead leaves patch location relative to fixation
was then entered into further analysis.

Model selection procedure

We aimed to characterize performance on the 4AFC
task as a function of both manipulated parameters,
such as patch size, and image parameters that
stochastically vary across trials, such as local contrast.
To do this we apply a Generalized Linear Model
(GLM) in the form of a logistic regression. Logistic
regression describes the change in logged odds (a linear
transformation of the expected value of proportion
correct) as a function of a linear system of predictors
and weights:

log
p

1� p

� �
¼ b0 þ b1x1 þ b2x2 þ � � � þ bnxn

where p is the proportion correct (probability of
success), b are the regression weights, and x are the
values of the predictors.

Psychometric functions are often fit with two
additional free parameters: a term that represents the
chance rate for the number of response alternatives,
and a term that represents the lapse rate (Wichmann &
Hill, 2001). To fit psychophysical percent correct data
in the context of GLMs, some authors (Yssaad-
Fesselier & Knoblauch, 2006) have suggested using a
modified link function in which the function is bounded
between these additional parameters. However, this
procedure violates an important assumption of least-
squares fitting, namely that variance is equal across the
extent of the function (homoscedasticity). The variance
of the binomial distribution decreases as the expected
value approaches zero or one. Bounding floor perfor-
mance to a theoretical chance rate using a modified link
function will violate this assumption, since the variance
at this asymptote is greater than expected from the
binomial distribution. To avoid this problem, here we

fit full [0—1] logistic functions to our data, but test
quadratic terms to account for the tendency of expected
values to fall to chance levels (here 0.25) rather than to
zero.

To constrain our model parsimoniously, we per-
formed a hierarchical model selection procedure using
the BIC (Kass & Raftery, 1995; Raftery, 1995, 1999;
Wagenmakers, 2007; Schwarz, 1978) and associated
metrics as our primary selection rule. Model selection
was performed for each subject separately, but since the
three subjects showed similar final models (see below),
we fit one model to all subjects for simplicity.

The BIC is computed as:

BIC ¼ �2logLþ klogn ð1Þ
where n is the number of observations, k is the number
of free parameters, and L is the likelihood of the data
given the model. This information criterion therefore
penalizes models for additional parameters and takes
the number of observations into account (k log n is a
penalty term for these two factors). This is important to
do with a large dataset such as ours. The Bayes Factor
between two competing models (H0 and H1) is then
approximated as the ratio between their prior predic-
tive probabilities (Wagenmakers, 2007):

BF01 ’ exp
BIC1 � BIC0

2

� �

The approximate posterior probability of H0, assuming
equal prior probabilities between H0 and H1, is given
by

PrBICðH0j DÞ ¼
1

1þ exp � 1
2DBIC10

� �
(Wagenmakers, 2007) where a posterior probability
. .75 constitutes ‘‘positive’’ evidence for H0, and a
posterior probability of . .99 constitutes ‘‘very strong’’
evidence for H0 (interpretations as per Raftery, 1995).

Additional metrics of model fit, the Akaike Infor-
mation Criterion (AIC) and the area under the receiver
operating characteristic curve (AROC) are also provided
in Supplementary Tables.

Manipulated parameters

The first step we took in model selection was to
consider candidate models for describing manipulated
parameters on performance. Four factors were manip-
ulated during the experiment: the size of the dead leaves
patch, its location relative to fixation, its eccentricity
from fixation, and the orientation of the underlying
image segment. The candidate models we tested are
shown in Table S1.
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For two of the three observers the most parsimoni-
ous model of the set contained 11 free parameters:
patch size, patch size squared, eccentricity, an interac-
tion between patch size and eccentricity, target
location, and interaction terms between target location
and eccentricity (Table S1). For the remaining observer
an 8 parameter model containing patch size, a
quadratic patch size term, eccentricity, an interaction
between eccentricity and patch size, and visual field
location (but no interaction between field location and
eccentricity) was preferred. The orientation of the
underlying natural image was not significantly predic-
tive of performance for any observer.

Image statistic predictors

What do variations in local image statistics contrib-
ute to explaining performance, once manipulated
parameters are taken into account? To answer this
question, we added each image predictor to the
manipulated parameter model for each observer (Table
S2). We chose to add the predictor at all four Gaussian
scales, plus an interaction term between each scale and
eccentricity, for a total of 8 parameters for each image
predictor (16 for orientation, since the circular variable
must include both sine and cosine terms). For all
observers, all image statistics except orientation (either
relative to screen or image) improved model likelihood
over task parameters alone (Table S2), but some were
preferred relative to others (Table S3).

To determine the most parsimonious model based on
this, we cumulatively added the image predictors in the
order they most improved the manipulated-parameter
model (Table S4). Evaluation against the BIC revealed
that, once RMS contrast and edge density were
included in the model, including parameters for
amplitude slope did not significantly improve model
fit for TW or N1. For PB, amplitude slope could be
usefully included, but the next most important image
predictor (phase congruence) could not.

Preferred model

This model selection procedure resulted in a 27
parameter model for TW, a 35 parameter model for
PB, and a 24 parameter model for N1. To simplify the
interpretation of these fits across observers, we fit all
observers’ data with the 27 parameter model (see Table
S5 for fit metrics). All fits shown in the paper are
derived from this model except for those in Figure 4,
where we entered 12 scale parameters rather than 4.
The full specification of the preferred model’s design
matrix is:

log
p

1� p

� �
¼ b1 þ b2ðpatchÞ þ b3ðeccÞ

þ b4ðpatch·eccÞ þ b5ðpatchÞ2
þ b6ðvf1Þ þ b7ðvf2Þ þ b8ðvf3Þ
þ b9ðvf1·eccÞ þ b10ðvf2·eccÞ
þ b11ðvf3·eccÞ þ b12ðRMS1Þ
þ b13ðRMS2Þ þ b14ðRMS3Þ
þ b15ðRMS4Þ þ b16ðRMS1·eccÞ
þ b17ðRMS2·eccÞ
þ b18ðRMS3·eccÞ
þ b19ðRMS4·eccÞ þ b20ðEdge1Þ
þ b21ðEdge2Þ þ b22ðEdge3Þ
þ b23ðEdge4Þ þ b24ðEdge1·eccÞ
þ b25ðEdge2·eccÞ
þ b26ðEdge3·eccÞ
þ b27ðEdge4·eccÞ

ð2Þ
where ‘patch’ is log10 (patch size (8)), ‘ecc’ is eccentricity
(8), ‘vf10 – ‘vf30 are dummy-coded variables signifying
target visual field location relative to fixation, and
‘RMSn’ and ‘Edgen’ refer respectively to log10 (RMS
contrast) and edge density at Gaussian scale n (0.06,
0.25, 1, and 48).

Raw data

Raw data (after computation of image statistics) is
provided as a supplemental file, with an accompanying
guide to column labels and units . Re-use is encouraged
with proper attribution.
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