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Abstract

Background—Recent reports showed that functional control of HIV-1 infection for a prolonged 

time is possible by early anti-retroviral therapy (ART); however its underlying mechanism needs 

to be studied with a suitable animal model. Recently, humanized-BLT (bone marrow, liver and 

thymus) mouse (hu-BLT) was shown to be an excellent model for studying HIV-1 infection. We 

thus tested the feasibility of studying functional control of HIV-1 infection using hu-BLT mice.

Methods—Animals in three treatment groups (Rx-6h, Rx-24h, Rx-48h) and untreated group 

were infected with HIV-1, followed by ART initiation at 6, 24 or 48 hours post-infection and 

continued daily for two weeks. Three weeks after stopping ART, CD8+ T-cells were depleted 

from all animals. Plasma viral load (PVL) was monitored weekly using droplet digital PCR 

(ddPCR). Percentage of CD4+ and CD8+ T-cells were measured by flow cytometry. In situ 

hybridization (ISH) and ddPCR were used to detect viral RNA (vRNA) and DNA.

Results—While control animals had high viremia throughout the study, all Rx-6h animals had 

undetectable PVL after ART cessation. After CD8+ T-cells depletion, viremia increased and CD4+ 

T-cells decreased in all animals except the Rx-6h group. Viral DNA was detected in spleens of all 

animals and a few vRNA+ cells were detected by ISH in one of three Rx-6h animals.
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Conclusion—Early ART did not act as prophylaxes, but rather, can control HIV-1 productive 

infection and prevented CD4+ T-cells depletion in hu-BLT mice. This mouse model can be used to 

elucidate the mechanism for functional control of HIV-1.
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Introduction

Anti-retroviral therapy (ART) has greatly reduced mortality and morbidity associated with 

HIV-1 infection over the last decade1. Early ART treatments not only limited the disease 

progression in infected infants to enable them to achieve normal growth and development, it 

also reduced the sexual transmission rates of HIV-1 in adults2,3. Despite these successes, 2.3 

million new infections are still occurring annually worldwide4. Recent research 

breakthroughs suggest the possibility of a functional cure involving several cases of HIV-1 

infected individuals. The first is the Berlin acute myeloid leukemia patient who received 

multiple stem-cell transplantation with donor cells lacking the HIV-1 co-receptor CCR5 

(Δ32) after undergoing ablative chemotherapy 5. The patient showed a reduction in 

replication competent viral reservoir without viral rebound in the absence of ART. In 

addition, an infant treated with ART at 30 hours postpartum maintained undetectable viral 

load for 2 years without ART, but viremia rebounded recently6,7. These studies suggest that 

early treatment could limit the rapid spread of HIV-1, reduce the size of viral reservoirs and 

achieve a temporary functional control of HIV-1 productive infection.

Despite these recent excitements on functional cure, several critical questions still need to be 

addressed. One is the mechanisms on how the virus can be suppressed for sustained period 

without ART and what led to the subsequent viral rebound. Another is the need to determine 

the timing for initiation and duration of ART after HIV-1 exposure in order to achieve a 

sustainable functional control of HIV-1 productive infection. Additionally, it is unclear 

whether the latent reservoirs or low-level productive infected cells could still exist after 

early ART, which may lead to viral rebound upon ART withdrawal and remain an 

impediment to a long-term cure. This possibility was demonstrated in two HIV-1 infected 

individuals who underwent allogeneic hematopoietic stem cell (HSC) transfer and then 

treated with ART to protect the donor cells 8, 9. While on ART, both individuals had 

undetectable viremia and HIV-1 DNA in PBMCs after transplantation. Unfortunately, the 

virus rebounded in both patients several months after ART was stopped, suggesting the re-

activation of latently infected reservoirs lead to acute infections. Therefore, it is important to 

better understand the underlying mechanism of functional control and characterize the 

timing of early ART treatment and its correlation with the establishment of viral reservoirs.

Unfortunately, studying the effectiveness of early ART initiation and its relationship with 

the establishment of viral reservoirs will be difficult in patients since the timing of infection 

cannot be determined accurately. In addition, it will also be challenging to obtain the tissues 

and specimens needed to determine residual viral reservoirs. One animal model for such 

studies is the non-human primate (NHP) model. However, NHP is expensive and the 
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number of animals that can be used for these studies is limited. Therefore, alternative animal 

models are needed.

Recently, a new generation of humanized mouse, the BLT (bone marrow, liver and thymus) 

mouse (hu-BLT) has been shown to be an alternative model for studying HIV-1 infections. 

It can be reconstituted with multiple lineages of human immune cells in lymphatic and 

mucosal tissues, and can elicit antigen specific T cell and humoral responses after viral 

infection 10-15. Using the hu-BLT mice, this pilot study shows that early ART initiation can 

functionally control HIV-1 productive infection in the infected animals during the course of 

study. Whether the virus will eventually rebound and how to compare the time scale 

between hu-BLT mouse and human remain to be determined. Our result nevertheless 

indicates that the functional control window through early treatment is small. This model 

offers an opportunity to decipher the parameters for achieving and maintaining a functional 

control of HIV-1 infection.

Materials and Methods

Virus preparation—HIV-1 transmitted/founder viruses, HIV-SUMA and HIV-WITO, 

were generated by transfecting infectious molecular clone pSUMA.c/2821 and pWITO.c/

2474 (cat#l 1748 and 11739 from Dr John Kappes via the AIDS Research and Reference 

Reagent program, Division of AIDS, NIAID, NIH), respectively, into 293T cells. The 

resulting viruses were expanded by co-culture in pooled PBMC from two healthy human 

donors. Cell-free supernatant was harvested, filtered and concentrated by ultracentrifugation. 

Concentrated virus was re-suspended in RPMI and viral titer determined using TZM-bl cells 

according to standard Reed Muench Method 16.

HIV-1 infection, ART initiation and CD8+ T-cells depletion in hu-BLT mice—Hu-

BLT mice were generated by implanting NSG mice (NOD.Cg-Prkdcscid I12rgtm1wj1/SzJ) 

(Jackson Laboratory, Stock number 005557) with human fetal liver, thymus tissues under 

left renal capsule and then injecting with autologous human CD34+ HSCs as previously 

described 14,17. Hu-BLT mice were maintained in micro-isolator cages in BSL-2 animal 

rooms by following the protocol approved by the Institutional Animal Care and Use 

Committee at the University of Nebraska-Lincoln.

All animals were inoculated intraperitoneally (IP) with a mixture of HIV-SUMA and HIV-

WITO (2.5 × 103 TCID50 each). Daily ART was initiated at 6, 24 or 48 hours post-infection 

to treatment groups animals by IP injection. ART was continued daily for two weeks and the 

ART consists of 5mg/mouse of tenofovir disoproxil fumarate (TDF) (Carbosynth Limited) 

dissolved in 30 μl dimethyl sulfoxide (Fisher Scientific) and 4mg/mouse of lamivudine 

(Carbosynth Limited) dissolved in 40 μl sterile water (Hospira Inc). The control animals 

received solvent only. Human CD8+ T-cells of all animals were depleted by IP delivery of 

two doses of anti-CD8 antibody M-T807R1 (NIH Non-human primate reagent resource) at 

5mg/kg at three day interval.

Plasma viral load—Viral RNA was extracted from the animal plasma using QIAamp 

Viral RNA Mini kit (Qiagen). Plasma viral load (PVL) in copies/ml was determined by 
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droplet digital PCR (ddPCR) as follows: Each reaction consisted of a final concentration of 

1X one-step RT-ddPCR supermix (Biorad), 1 mM manganese acetate solution, 900 nM each 

of forward primer (5′-CAAGCAGCCATGCAAATGTT-3′) and reverses primer (5′-

ATGTCACTTCCCCTTGGTTCTC-3′), 250 nM probe (5′-FAM-

CCTGGTGCAATAGGCCCTGC-BHQ1-3′), template vRNA and top up to 20 μl with 

molecular grade water. The primers and probe target the conserved region of HIV-1 gag. 

Droplet emulsion was generated by QX100 droplet generator (Biorad) and PCR was 

performed with C1000 Touch Thermal Cycler (Biorad). Raw fluorescence data was 

quantified using the QX100 droplet reader (Biorad) and analyzed by QuantaSoft version 

1.3.2.0 (Biorad). Statistical analysis was performed using GraphPad Prism 5 (GraphPad 

Software). Background cutoff value of 40 copies/ml was determined with plasma from non-

infected hu-BLT mice.

Flow cytometry—The changes in hCD4+ and hCD8+ T-cells in hu-BLT mice during the 

study were measured by staining the animal PBMC with respective antibodies; mCD45-

APC, hCD45-FITC, hCD3-PE, hCD19-PE/Cy5, hCD4-Alexa 700 and hCD8-APC-Cy7 

(BioLegend, Cat#103111, 304006, 300408, 302209, 300526 and 301016 respectively). Raw 

data were quantified by FACSAria III (BD Biosciences) and analyzed with FlowJo version 

7.6.4 (TreeStar). Statistical analysis was performed using GraphPad Prism 5 (GraphPad 

Software).

HIV-1 DNA copy number in tissues—Genomic DNA from animal spleen tissues was 

extracted using Gentra Puregene kit (Qiagen). The copy number of HIV-1 DNA per million 

human cells was measured by ddPCR. The protocol is similar to PVL with the exception 

that the reaction mix consisted of 1X ddPCR supermix for probes (Biorad) and the DNA 

sample was digested with restriction enzyme Msc I before ddPCR. Digestion of DNA was 

required to reduce sample viscosity and increase template accessibility, and there is no Msc I 

sites within the target sequences. Primers and probes are identical to those used for PVL. To 

determine the number of human cells within the sample analyzed, separate ddPCR reactions 

were performed with primers and probe against human beta-globin gene. The background 

cutoff value of 18 copies/106 human cells was determined using genomic DNA extracted 

from the spleens of uninfected hu-BLT mice.

HIV-1 RNA detection in tissue—Animal spleen tissues were collected during euthanasia 

and fixed in 4 % paraformaldehyde. In-situ hybridization (ISH) for HIV-1 vRNA in spleen 

tissues of sacrificed animals were conducted using 35S riboprobes that covered >90% of 

HIV-1 genome as described previously18. The exposure time of tissue slide radioautography 

was 7 days.

Results

Experimental design and monitoring of the infected animals

The human immune reconstitution of all hu-BLT mice were measured as the percentage of 

human cells present in PBMCs by FLOW cytometry. Thirteen adult animals with good 

immune reconstitution were randomly divided into early treatment (Rx-6h, Rx-24h, Rx-48h, 
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n=3 each) and control (n=4) groups (Supplement Table 1). Kruskal-Wallis nonparametric 

and ANOVA parametric analysis showed no significant differences (P = 0.1136 and 0.1046, 

respectively) between the groups in the percentage of reconstituted human CD45+ cells. 

Similar results (Kruskal-Wallis, P = 0.5874; ANOVA, P = 0.4579) were obtained for the 

reconstituted human CD4+ cells between the groups.

To preclude the possibility that our results are HIV-1 strain specific, all animals were 

infected intraperitoneally with a mixture of two transmitted/founder HIV-1. The 

intraperitoneal route was used since it guarantees 100% infection rate compared with either 

intra-rectal or intra-vaginal inoculation route. The main objectives of this study are to 

establish an animal model of initiating early ART to functional control of HIV-1 infection, 

and to determine the most effective treatment time frame needed to achieve functional 

control and its underlying mechanism (Fig 1). Several studies have shown that ART 

administration within days of post-infection (p.i.) often resulted in a rebound of viremia 

during treatment interruption 19,20. In contrast, the Mississippi infant case initiated ART at 

∼30 hours after birth was able to suppress viremia for 2 years without ART 6,7. Hence, our 

study was designed to initiate ART within hours of infection at 6, 24 or 48 hours p.i. (Fig 1). 

TDF and lamivudine were used in this study.

Several studies in non-human primate models had shown that CD8+ T-cells can mediate 

viral suppression and its depletion can dramatically increase viral load21,22. We reasoned 

that the depletion of CD8+ T-cells may allow previously undetectable residual virus to 

rebound and enable us to better detect the presence of virus. Thus, the CD8+ T-cells were 

depleted from all animals at three weeks after ART was stopped as described in the methods 

section. The CD8+ and CD4+ T-cells levels were closely monitored throughout the study to 

assess the levels of CD8+ T-cells depletion and CD4+ T-cells loss, a hallmark of disease 

progression during HIV infection. The PVL were measured weekly by ddPCR to detect low 

viral copy number in the experimental animals23,24. The spleen tissues were also collected at 

necropsy to be used to determine vDNA by ddPCR and vRNA.

Six and 24 hours treatment animals had undetectable to low PVL after ART cessation

At 1 week p.i., high viremia (2×103 to 1.9×105 copies/ml) was detected in all control 

animals, which suggests that our virus inoculum and delivery route were able to achieve 

100% infection rate (Fig 2A). Importantly, all animals in Rx-6h have undetectable PVL 

during and after ART were stopped (Fig 2A). In contrast, one animal (HM380) in Rx-24h 

had low PVL of 1.4×102 copies/ml during ART and all animals in this group developed very 

low PVL (1×102 to 2×102 copies/ml) after ART was stopped (Fig 2B). For the Rx-48h 

group, one animal (HM452) had high PVL (4.7×104 copies/ml) during ART but became 

PVL undetectable after ART was stopped and before CD8+ T-cells depletion; the other two 

animals (HM383 and 387) in this group developed high PVL (2.1×103 to 1.9×105 copies/ml) 

after ART was stopped. After CD8 T-cells depletion, all animals became viremic (Fig 2C).
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Six hours treatment animals had undetectable to low PVL even after CD8+ T-cells 
depletion

CD8+ T-cells had been shown to suppress viral replication in vivo and led to low viremia25. 

To determine whether the undetectable to low PVL observed after ART cessation was due to 

CD8+ T-cells mediated suppression, all the studied animals underwent CD8+ T-cells 

depletion. Flow cytometric data showed that >99% of CD8+ T-cells in blood were depleted; 

the depletion was sustained in all animals for up to 4 weeks, and in the majority of animals 

for up to 7 weeks (Fig 3A).

Surprisingly, CD8+ T-cells depletion did not result in any significant PVL increase in all the 

Rx-6h animals. Two of these animals (HM323 and 344) had transient low PVL (55 to 1×102 

copies/ml) at three time points while the PVL in one animal (HM353) remained 

undetectable (Fig 2A). In contrast, two animals (HM380 and 430) of the Rx-24h group had 

PVL increased significantly (2×106 to 1.7×107 copies/ml) after CD8+ T-cells depletion (Fig 

2B). One animal (HM381) in Rx-24h developed a high PVL (1.5×103 copies/ml) at only one 

time point and declined to below detection limit at euthanization (Fig 2B). All animals in the 

control and Rx-48h developed high PVL after CD8+ T-cells depletion (Fig 2C).

Six hours treatment protected the infected animals from disease progression

CD4+ T-cells count is an important marker for HIV-1 disease progression. To determine if 

early ART could prevent CD4+ T-cells losses and disease progression, the percentage of 

CD4+ T-cells were measured before and after infection, as well as after CD8+ T-cells 

depletion by flow cytometry.

Before CD8+ T-cells depletion, all animals in Rx-6h maintained their CD4+ T-cells levels at 

pre-infection levels (Fig 3B). Whereas, all the infected animals in the control and in Rx-24h 

and one of three animals in Rx-48h already showed a decline in CD4+ T-cells relative to 

their infection baseline (Fig 3C and D).

After CD8+ T-cells depletion, the lack of CD8+ T-cells led to apparent increases in the 

percentage of CD4+ T-cells across all the experimental groups. More importantly, all 

animals in Rx-6h maintained a high level of CD4+ T-cells during CD8+ T-cells depletion 

(Fig 3B). In contrast, all animals in the control, Rx-24h and Rx-48h showed significant 

CD4+ T-cells losses (Fig 3C and D). These data suggests that early ART at 6 hours p.i. 

prevented the depletion of CD4+ T-cells in the infected animals.

Six hours treatment did not act as pre-exposure prophylaxis to prevent infection

Since ART was administered within hours of infection, there was a concern that it may have 

functioned as prophylaxis rather than treatment. To address this issue, ddPCR was used to 

detect the presence of HIV-1 vDNA in the spleen tissues harvested from all animals at 

necropsy. As expected, the control and Rx-48h animals had high vDNA copy number in 

spleen tissues (2.9×104 to 4.6×105 vDNA copies/106 human cells) (Fig 4A). Similarly, 

vDNA was also detected in Rx-24h animals (110 to 1.83×106 vDNA copies/106 human 

cells) (Fig 4A). Importantly, Rx-6h animals were all found to be vDNA positive (33 to 

2.4×103 vDNA copies/106 human cells) (Fig 4A). This strongly suggests that ART initiation 
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at 6 hours p.i. did not act as prophylaxis because it did not prevent the initial infection, the 

generation of proviral DNA and the establishment of viral reservoirs in the lymphatic tissues 

where vDNA were detected. The low vDNA copy number in some animals was not due to 

lower numbers of cells tested, since nearly 1 million human cells were used for the analysis. 

For example, animal HM323 (Rx-6h) was found to have only 33 vDNA copies/10 human 

cells (Fig 4B).

Detection of HIV-1 vRNA in spleen tissues

To evaluate whether HIV-1 replication occurred in the lymphatic tissues of the 6 hours 

treatment animals, ISH was used to detect vRNA+ cells in the spleen tissues, which had 

undetectable or low PVL. As expected, numerous HIV-1 vRNA+ cells were detected in the 

control, Rx-24h and Rx-48h animals (Fig 5A, B and C). In contrast, no vRNA+ cells were 

detected in two Rx-6h animals (HM323 and 353) (Fig 5D and E), and only a few isolated 

vRNA+ cells (three vRNA+ cells in the whole tissue section analyzed) were detected in the 

third Rx-6h animal (HM344) (Fig 5F). Therefore, our results confirmed that 6 hours ART 

treatment p.i. could achieve functional control and suppress viral replication to low or 

undetectable levels in the lymphatic tissues of treated animals, even upon ART withdrawal 

and CD8+ T-cells depletion during the follow-up period. Importantly, we observed that 

HIV-1 infection can be maintained at either latent or non-productive level upon early ART 

treatment.

Discussion

The recently reported “Mississippi pediatric case” and other studies have provided a 

glimmer of hope that temporary functional control of HIV-1 infection is possible 6,26. 

However, many questions such as whether this functional control can be sustained over 

time, what is its underlying mechanism, where are the potential viral reservoirs and whether 

ART regimen can be further improved remained to be addressed. In this preliminary study, 

we recapitulated the essential feature of functional control, low or undetectable plasma viral 

load after withdrawal of ART during the study period, by using the hu-BLT mouse model27. 

Importantly, our result showed that early initiation of ART at 6 hours, but not at 24 or 48 

hours post-infection in this model, achieved functional control in the infected animals and is 

reminisce of those in the reported clinical cases 6,26.

It was reported that Tenofovir treatment started at 24 hours post-infection achieved a control 

of virus productive infection in rhesus macaques28. Other animal studies showed that HIV-1 

always rebounded after ART was withdrawn in these setting 19,20. However, our study 

showed that hu-BLT mice which received ART at 6 hours post-infection had undetectable 

PVL measured by the sensitive ddPCR after ART was stopped. Only after CD8+ T-cells 

depletion that two out of three animals had transient near-detection limit (40 copies/ml) 

PVL, and the other animal had undetectable PVL even after CD8+ T-cells depletion for over 

7 weeks (Fig 2). Our results suggest that functional control was achieved in the 6 hours post-

infection treated animals using this model. We hypothesize that early treatment might limit 

the size of viral reservoirs in different CD4+ T-cells subsets, allowing the host immune 

system to eliminate productive reservoirs and select for latent reservoirs that remained non-
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productive without ART29 Although the time scale difference between hu-BLT mice and 

human still needs to be determined, the concept of a small window for functional control, 

even for temporary functional control, remain valid based on our study.

Since ART was initiated early after infection, it is possible that it might had acted as 

prophylaxis rather than therapeutic. To address this issue, we checked for the presence of 

HIV-1 vDNA in the lymphatic tissues. Surprisingly, all animals, including the 6 hours 

treatment group, had detectable vDNA in their spleen tissues at the end of experiment. This 

suggests that ART initiated at 6 hours post-infection did not prevent establishment of viral 

reservoirs but acted therapeutically.

Although our detection method cannot determine whether the detected vDNA were in fact 

integrated viral genomes, evidence from other studies suggested that only integrated viral 

DNA can be retained upon successful ART30. In addition, our ISH detected a few HIV-1 

vRNA+ cells in the spleen of one animal in the 6 hours treatment group, suggesting that 

some of these vDNA were integrated and functional. The ISH data might explain why near-

detection limit PVL can still be observed in the same animal. At this point, we cannot 

exclude the possibility that ISH might have missed some vRNA+ cells in other tissues or 

perhaps even in other sections of the same tissue, therefore, further extensive analysis of 

other treated animals will be needed to explore this possibility. In addition, since some 6 

hours treatment animals without detectable PVL had high vDNA copy in their tissues, we 

cannot exclude the possibility that the detected vDNA are integrated but defective proviral 

genome in clonally expanded host cells. It is equally possible that these are functional latent 

proviral genome which can be reactivated for virus production. Nevertheless, our result from 

the CD8+ T-cells depletion experiment showed that the low or undetected viremia in the 6 

hours treatment animals were not mainly due to CD8+ T-cells mediated suppression or lack 

of target CD4+ T-cells. It strongly suggests that lymphatic tissues such as spleen could be a 

major viral reservoir despite successful ART and undetectable viremia. More in-depth 

experiments, such as adoptive transfer of cells and in-vitro stimulation, will be needed to 

determine the presence of replication competent viral reservoirs.

There are several caveats in this study. First, our study has a small number of animals per 

treatment group; second, our study may underestimate the functional curable window which 

may be enlarged by including more ART drugs and increasing the treatment time; third, it is 

possible that other infection routes may produce different results. Thus, future studies are 

needed to address these limitations. Regardless, this study serves as a proof of concept that 

the hu-BLT mouse model can be used for future studies to explore many unanswered 

questions regarding functional control and its sustainability. Such questions include some of 

the major challenges that will be prohibitive, if not impossible to study in patients, due to the 

difficulty in identifying early HIV-1 infection in patients as well as identifying viral genome 

in different anatomic sites. In addition, further optimization of the timing, various ART 

combinations and dosages will be needed to improve the potency of early ART for 

achieving a sustainable functional control of HIV-1 infection. Moreover, this model has the 

potential to address unanswered questions such as the viral reservoirs and mechanisms of 

functional control.
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Figure 1. Schematic of the experimental design
Thirteen adult hu-BLT mice were randomly divided into early treatment (Rx-6h, Rx-24h, 

Rx-48h, n=3 each) and control (n=4) groups. All animals were inoculated intraperitoneally 

(IP) with a mixture of two transmitted/founder HIV-1 viruses (2.5 × 103 TCID50 each). 

Daily ART was initiated at 6, 24 or 48 hours post-infection for each respective treatment 

groups. Three weeks after ART was stopped, CD8+ T-cells from all animals were depleted. 

The levels of CD8+ T-cells, CD4+ T-cells, PVL and vDNA in tissue were monitored as 

indicated.
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Figure 2. Plasma viral load (PVL)
The identical control animals were included in all graphs for comparison purposes. 

Background cutoff value of 40 copies/ml was determined with plasma from non-infected hu-

BLT mice. The 2 weeks on ART and CD8+ T-cells depletion period are shaded. (A) Rx-6h. 

(B) Rx-24h. (C) Rx-48h.
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Figure 3. Flow cytometry
The identical control animals were included in all graphs for comparison purposes. (A) 

CD8+ T-cells percentage before and after CD8+ T-cells depletion. (B) CD4+ T-cells 

percentage of Rx-6h, (C) Rx-24h and (D) Rx-48h treatment groups over the study period.
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Figure 4. HIV-1 DNA copy number in lymphatic tissues
Viral DNA was detected in the lymph node (LN) or Spleen (SP) of necropsied animals by 

ddPCR. Background cutoff value of 18 copies/106 human cells was determined with non-

infected hu-BLT mice spleen tissue. HM380 (Rx-24h) and 452 (Rx-48h) die before 

sacrifice, therefore their samples are unavailable. (A) HIV-1 DNA copies/106 human cells 

for Control, Rx-6h, Rx-24h and Rx-48h group (B) Total number of human cells analyzed for 

HIV-1 DNA for each animal.
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Figure 5. HIV-1 vRNA+ cells in the spleens of hu-BLT mice were detected using in situ 
hybridization
Spleen tissues were collected after >70 days p.i. and fixed in 4% paraformaldehyde. Clusters 

of green silver grains overlay HIV-1 vRNA+ cells after radioautography for 7 day exposure. 

(A) Representative image showed numerous HIV-1 vRNA+ cells in the control animal 

(HM370). (B) Representative image showed numerous HIV-1 vRNA+ cells in Rx-24h 

(HM430). (C) Representative image showed numerous HIV-1 vRNA+ cells in Rx-48h 

(HM383). (D and E) Undetectable vRNA+ cells in two animals of Rx-6h (HM323 and 353, 

respectively). (F) Isolated vRNA+ cell (arrow) in Rx-6h (HM344).
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