Skip to main content
. 2015 Jul 15;10(7):e0133260. doi: 10.1371/journal.pone.0133260

Table 2. Residue-based evaluation of different machine learning models and training sets on DB312 (RB264).

Training set Classifier a Recall Precision F1 ACC MCC AUC
Balanced NB 0.625 (0.575) 0.243 (0.291) 0.349 (0.386) 0.728 (0.755) 0.257 (0.277) 0.723 (0.708)
NN 0.482 (0.474) 0.384 (0.456) 0.426 (0.462) 0.849 (0.853) 0.344 (0.379) 0.813 (0.801)
RF 0.487 (0.535) 0.405 (0.465) 0.442 (0.497) 0.857 (0.855) 0.363 (0.415) 0.820 (0.822)
SVM 0.541 (0.533) 0.448 (0.481) 0.489 (0.506) 0.869 (0.862) 0.418 (0.426) 0.847 (0.832)
Unbalanced NB 0.586 (0.590) 0.252 (0.285) 0.351 (0.383) 0.748 (0.746) 0.257 (0.274) 0.717 (0.701)
NN 0.443 (0.489) 0.441 (0.479) 0.440 (0.482) 0.869 (0.860) 0.367 (0.403) 0.812 (0.799)
RF 0.468 (0.519) 0.429 (0.488) 0.447 (0.502) 0.865 (0.863) 0.372 (0.424) 0.806 (0.817)
SVM 0.544 (0.549) 0.505 (0.513) 0.523 (0.530) 0.885 (0.871) 0.458 (0.456) 0.862 (0.845)

aNB: naive Bayes, NN: neural networks, RF: random forest, and SVM: support vector machines.