Table 2. Residue-based evaluation of different machine learning models and training sets on DB312 (RB264).
Training set | Classifier a | Recall | Precision | F1 | ACC | MCC | AUC |
---|---|---|---|---|---|---|---|
Balanced | NB | 0.625 (0.575) | 0.243 (0.291) | 0.349 (0.386) | 0.728 (0.755) | 0.257 (0.277) | 0.723 (0.708) |
NN | 0.482 (0.474) | 0.384 (0.456) | 0.426 (0.462) | 0.849 (0.853) | 0.344 (0.379) | 0.813 (0.801) | |
RF | 0.487 (0.535) | 0.405 (0.465) | 0.442 (0.497) | 0.857 (0.855) | 0.363 (0.415) | 0.820 (0.822) | |
SVM | 0.541 (0.533) | 0.448 (0.481) | 0.489 (0.506) | 0.869 (0.862) | 0.418 (0.426) | 0.847 (0.832) | |
Unbalanced | NB | 0.586 (0.590) | 0.252 (0.285) | 0.351 (0.383) | 0.748 (0.746) | 0.257 (0.274) | 0.717 (0.701) |
NN | 0.443 (0.489) | 0.441 (0.479) | 0.440 (0.482) | 0.869 (0.860) | 0.367 (0.403) | 0.812 (0.799) | |
RF | 0.468 (0.519) | 0.429 (0.488) | 0.447 (0.502) | 0.865 (0.863) | 0.372 (0.424) | 0.806 (0.817) | |
SVM | 0.544 (0.549) | 0.505 (0.513) | 0.523 (0.530) | 0.885 (0.871) | 0.458 (0.456) | 0.862 (0.845) |
aNB: naive Bayes, NN: neural networks, RF: random forest, and SVM: support vector machines.