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Abstract

Dysphagia is common in Parkinson’s disease (PD) and causes significant morbidity and mortality. 

PD dysphagia has usually been explained as dysfunction of central motor control, much like other 

motor symptoms that are characteristic of the disease. However, PD dysphagia does not correlate 

with severity of motor symptoms nor does it respond to motor therapies. It is known that PD 

patients have sensory deficits in the pharynx, and that impaired sensation may contribute to 

dysphagia. However, the underlying cause of the pharyngeal sensory deficits in PD is not known. 

We hypothesized that PD dysphagia with sensory deficits may be due to degeneration of the 
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sensory nerve terminals in the upper aerodigestive tract (UAT). We have previously shown that 

Lewy-type synucleinopathy (LTS) is present in the main pharyngeal sensory nerves of PD 

patients, but not in controls. In this study, the sensory terminals in UAT mucosa were studied to 

discern the presence and distribution of LTS. Whole-mount specimens (tongue-pharynx-larynx-

upper esophagus) were obtained from 10 deceased human subjects with clinically diagnosed and 

neuropathologically confirmed PD (five with dysphagia and five without) and four age-matched 

healthy controls. Samples were taken from six sites and immunostained for phosphorylated α-

synuclein (PAS). The results showed the presence of PAS-immunoreactive (PAS-ir) axons in all 

the PD subjects and in none of the controls. Notably, PD patients with dysphagia had more PAS-ir 

axons in the regions that are critical for initiating the swallowing reflex. These findings suggest 

that Lewy pathology affects mucosal sensory axons in specific regions of the UAT and may be 

related to PD dysphagia.
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Introduction

Parkinson’s disease (PD) is a multiple system neurodegenerative disorder manifested by a 

broad spectrum of motor and non-motor features [1]. Although the exact cause of PD is 

unknown, the histopathological hallmark of PD in post mortem tissue is accumulation of the 

protein α-synuclein into structures called Lewy bodies and neurites. This finding, called 

synucleinopathy, is believed to cause death of dopamine neurons leading to the classic 

motor symptoms of PD [2, 3]. In addition to brain pathology, independent groups including 

those of Beach [4, 5], Braak [6, 7] and others [8–11] have demonstrated synucleinopathy is 

also present in motor, sensory, and autonomic peripheral nerves. A well-documented organ 

commonly affected by synucleinopathy is the intrinsic nervous system controlling the colon 

where its involvement may directly contribute to the common PD symptom of constipation. 

However, despite the fact that PD patients commonly have swallowing problems, little is 

known about synucleinopathy of motor and sensory nerves of the upper aerodigestive tract 

(UAT); specifically the mouth, pharynx and larynx.

Disordered swallowing, or dysphagia, develops in approximately 50% to 80% of patients 

with PD [12] and is one of the largest contributors to morbidity in PD patients. In the 

majority of the cases, dysphagia is associated with oropharyngeal dysfunction [13]. The 

consequences of oropharyngeal dysphagia can be severe: dehydration, malnutrition, weight 

loss, aspiration, choking, pneumonia, and death [14]. The leading cause of death for people 

with PD is aspiration pneumonia, which occurs when food or saliva enter the lungs. PD 

dysphagia is associated with motor and sensory deficits. Oral stage deficits are common and 

characterized by back and forth movements of the tongue without associated swallows. This 

tongue pumping is considered by some to be pathognomic of the disease. The initiation of 

swallowing is often delayed suggesting a sensory deficit. Once begun swallows are usually 

incomplete with residual food remaining in the UAT.
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The pharynx plays a critical role in swallowing and is known to have specific areas that 

initiate pharyngeal swallowing. Specifically, the sensory input evoking swallowing is from 

peripheral receptive fields in the UAT innervated by the CN V, IX, and X nerves [15, 16]. 

Motor dysfunction of the pharynx could reduce muscle strength and impair pharyngeal 

peristalsis, whereas sensory nerve damage results in dysfunction of the sensory reflex arc 

[17, 18].

We have hypothesized that dysphagia in PD may be associated with direct damage of motor 

and sensory nerves of the UAT by Lewy-type synucleinopathy (LTS). This hypothesis gains 

support from our recent studies which have demonstrated that the main motor and sensory 

nerves innervating the UAT in PD patients have significant amounts of LTS while healthy 

controls have none [19, 20]. Notably, the density of the nerve lesions is greater in PD 

patients with dysphagia versus those without dysphagia. These findings suggest that 

dysphagia in PD may be related to peripheral nerve lesions. Lesions of sensory terminal 

fibers in the oral and pharyngeal regions could cause delayed swallowing initiation (sensory 

dysfunction) and reduced movements of the lingual and pharyngeal muscles (motor 

deficits).

It remains unknown whether the LTS seen in the main nerve trunks in PD is present in the 

terminal sensory axons in the mucosa of the UAT. If so, an important question is whether 

LTS is present in the areas known to be sensory triggers for swallowing. In this study, the 

specific aim was to determine whether LTS is present in the UAT mucosa in PD and, if so, 

whether there are differences in the densities of LTS between PD patients with and without 

dysphagia as defined with the Unified Parkinson’s Disease Rating Scale (UPDRS). Mucosal 

samples of the UAT obtained from autopsied PD subjects with and without dysphagia and 

healthy controls were examined using immunohistochemistry for phosphorylated α-

synuclein (PAS) to study the presence and distribution of sensory LTS.

Materials and Methods

Study Population

In this study, whole-mount specimens (tongue-pharynx-larynx-upper esophagus) were 

obtained from 10 deceased human subjects with clinically diagnosed and 

neuropathologically confirmed PD and 4 age-matched healthy controls (Fig. 1). The 

research subjects were part of the Arizona Study of Aging and Neurodegenerative Disorders 

(AZSAND), a longitudinal clinicopathological study, and were autopsied by the Banner Sun 

Health Research Institute (BSHRI) Brain and Body Donation Program (BBDP) [21]. The 

BBDP has been approved by Western IRB. BSHRI and the Mayo Clinic Arizona are the 

principal institutional members of the Arizona Parkinson’s Disease Consortium (APDC), 

which conducts a longitudinal clinicopathologic study of PD and normal aging subjects with 

annual examinations from entry until death and autopsy.

Clinical and Neuropathologic Assessments

For each of the autopsied cases, detailed clinical and neuropathological data were provided 

by the APDC (Table 1). In the PD group (n = 10), there were five cases with dysphagia and 
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five cases without dysphagia. All subjects received standardized neurologic examinations 

that included assessments for Parkinson’s disease and cognitive function [22]. The clinical 

severity of PD was rated using the Hoehn and Yahr (H&Y) Scale [23] and the Unified 

Parkinson’s Disease Rating Scale (UPDRS) [24]. Specific clinicopathologic diagnostic 

criteria for PD were used [25]. Dysphagia was assessed using item 7 of the UPDRS Part II 

Scale (i.e., swallowing scores: 0, normal; 1, rare choking; 2, occasional choking; 3, requires 

soft food; and 4, requires nasogastric tube or percutaneous endoscopic gastrostomy feeding). 

All subjects at death received comprehensive neuropathological examinations. Gross and 

microscopic neuropathologic assessments were made by a blinded neuropathologist at 

BSHRI (Dr. Thomas G. Beach), who provided a detailed neuropathologic report for each 

subject autopsied by the BBDP. The diagnosis of all subjects was, therefore, 

neuropathologically confirmed.

Tissue Sampling and Rationale

The specimens were obtained from 1 to 2 days after death (mean, 37 h) (Table 1); this 

postmortem interval does not hamper reliable histochemical analysis of autopsied muscle or 

LTS [26–29]. For each specimen, six tissue samples (10 × 10 mm/each) were obtained (Fig. 

2). Specifically, the samples were taken from: (1) lateral posterior tongue (LPT); (2) anterior 

tonsillar pillar (ATP); (3) oropharyngeal posterior wall (OPW); (4) aryepiglottic fold (AEF); 

(5) postcricoid region (PCR); and (6) upper esophagus (UE). These regions in the UAT were 

chosen because: (a) pharyngeal swallowing is best elicited from certain areas of the pharynx 

[15, 16, 30, 31]; (b) the regions that elicit pharyngeal swallowing have rich sensory nerve 

terminals [32]; and (c) they are innervated by different sensory nerves [32, 33]. In the 

oropharynx, LPT and ATP are innervated by the lingual and pharyngeal branches of the 

glossopharyngeal nerve (IX), respectively, whereas the OPW is supplied by the pharyngeal 

branches of the IX and X nerves. In the laryngopharynx, the AEF and PCR are innervated 

by the internal superior laryngeal nerve (ISLN). The UE is supplied by the pharyngeal and 

laryngeal branches of the X nerve [34]. The recurrent laryngeal nerve (RLN) gives some 

branches to supply the UE before it enters the larynx. We hypothesized that the sensory 

nerve terminals in the regions studied could be affected in PD because LTS has been 

identified in the ISLN, IX, and X nerves [19].

Staining Methods

The tissue samples were fixed with 10% neutral buffered formalin overnight, frozen in 

isopentane cooled by dry ice and sectioned (60-μm thick). The sections were stained with 

hematoxylin and eosin to show tissue structure, immunostained for phosphorylated α-

synuclein (PAS) to identify PAS-immunoreactive (PAS-ir) axons, and stained for 

neurofilament to label all axons.

Immunohistochemistry for PAS—The tissue sections were stained with an 

immunohistochemical method for PAS, as previously described [4, 19, 20, 29]. Briefly, the 

sections were (1) pretreated with 1:100 proteinase K (Enzo Life Sciences, Farmingdale, NY) 

diluted in 0.1 mol/L PBS at 37 °C for 20 min; (2) immersed for 30 min in 1% H2O2 in 0.1 

mol/L PBS with 0.3% Triton X-100 (PBS-TX) at pH 7.4; (3) incubated at 4 °C overnight in 

anti-PAS monoclonal antibody (psyn no. 64; Wako Richmond, VA) at 1:1000 dilution in 
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PBS-TX; (4) incubated with a secondary biotinylated antibody (anti-mouse IgG diluted 

1:1000 in PBS-TX; Vectastain kit, Vector Laboratories, Burlingame, CA) for 2 h at room 

temperature; (5) treated for 30 min with avidin-biotin complex (Vectastain, Vector 

Laboratories), with A and B components of the kit both at 1:1000 dilution; and (6) treated 

with 3,3′-diaminobenzidine (Sigma, St. Louis, MO) (5 mg/100 ml) with added saturated 

nickel ammonium sulfate (2/100 mL) and H2O2 (5 μL/100 mL of 1% H2O2) for 30 min in 

the dark. Controls for staining specificity had no primary antibody.

Immunohistochemical Staining for Neurofilament—Adjacent sections were 

immunostained with a monoclonal antibody against phosphorylated neurofilament (NF) 

(SMI-31, Covance Research Products, Berkeley, CA) as a marker for all axons as described 

[11, 35]. Briefly, the sections were (1) treated in PBS containing 0.3% Triton and 2% BSA 

for 30 min; (2) incubated with primary antibody SMI-31 (dilution 1:800) in PBS containing 

0.03% Triton at 4 °C overnight; (3) incubated for 2 h with the biotinylated secondary 

antibody (anti-mouse, 1:1000, Vector, Burlingame, CA); (4) treated with avidin-biotin 

complex method with a Vectastain ABC kit (1:1000 ABC Elite, Vector); and (5) treated 

with diaminobenzidine-nickel as chromogen to visualize peroxidase labeling. Controls were 

stained as previously mentioned except that the incubation with the primary antibody was 

omitted.

Quantification

All stained sections were examined under a Zeiss photomicroscope and photographed. 

Stained sections were assessed by a single investigator (J.C.) without knowledge of subject 

identity or diagnosis. For a given sample, three sections at different spatial levels stained for 

PAS or NF were selected to count PAS-ir and NF-ir axons, respectively. Each of the PAS-ir 

or NF-ir axons was counted separately. For each section, three microscopic fields with a 

high density of PAS-ir or NF-ir axons were identified to count the labeled axons. The 

numbers of the PAS-ir or NF-ir axons in the three fields per section and the three selected 

sections for each sample were averaged. The mean density of the PAS-ir axons in each 

sample was used to evaluate lesion severity using a grading system as described in our 

recent publications with some modifications [19, 20]: −, no lesions; +, 1 to 5 lesions per 

field (mild); ++, 6 to 10 lesions per field (moderate); +++, 11 to 15 lesions per field 

(moderate-severe); ++++, more than 15 lesions per field (severe). The mean number of the 

NF-ir axons in a given sample indicates the density of sensory innervation.

Statistical Analysis

All continuous variables were expressed as mean (SD) or median (interquartile range) 

depending on whether there was evidence that sample data had a normal distribution. 

Categorical variables were expressed as frequencies. Demographic and patient 

characteristics included PD duration, H&Y stages, motor UPDRS, and swallowing score.

Severity of LTS was derived from the number of PAS-ir axons using the following 

categorization: (i) none, 0 lesions; (ii) mild, 1–5 lesions; (iii) moderate, 6–10 lesions; (iv) 

moderate-severe, 11–15 lesions; (v) severe, more than 15 lesions. Ordinal logistic regression 
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models were used to examine the association between the ordered severity and explanatory 

variables.

To evaluate any potential significant relationships with severity of LTS, a multivariable 

model was fitted and estimates of ordinal logistic regression for this model were obtained 

using generalized estimating equations (GEE) method. The GEE analysis was conducted 

using PROC GENMOD in SAS with link function, cumulative logit (clogit), and 

independent correlation structure to capture the within-patient dependencies attributed to 

repeated measurement over regions of UAT. The study focused on evidence of significant 

associations; hence, independent correlation was considered sufficient. The results of this 

analysis were presented as odds ratios (ORs), 95% confidence interval (95% CI), and p 

values. Any p < 0.05 was considered statistically significant. All data analysis was 

performed using SAS version 9.2 (SAS Institute Inc, Cary, NC).

Results

Demographic Characteristics

Demographics and relevant clinical data for PD patients and healthy control subjects 

obtained from standardized research neurologic testing, medical records, and autopsy reports 

are summarized in Table 1. Both PD and healthy control groups had a mean age of 75 years 

(range, 65–80), and the PD group mean disease duration was 16 years (range, 6–30) with 

mean Hoehn & Yahr stage of 3.6 (range, 2–5) (Table 1).

On the basis of the UPDRS Part II Scale, dysphagia occurred in 5 of the 10 PD patients. In 

the 5 dysphagic PD patients, the swallowing score was rated as 1 in 2 cases and 2 in 3 cases 

(Table 1).

Neuropathological Findings in Brains with PD

In this study, all autopsied brains of the PD patients met neuropathologic criteria for PD. 

Microscopic examinations revealed that the substantia nigra and locus ceruleus showed 

moderate to marked depletion or loss of pigmented neurons with Lewy bodies in both 

regions (data not shown). Immunohistochemical staining for PAS showed frequent 

immunoreactive neuronal inclusions and related neurites in the olfactory bulb, brainstem, 

amygdale, and transentorhinal area, with variable densities in the cingulate gyrus and three 

neocortical regions examined (temporal, frontal, and parietal). The major spinal cord 

subdivisions were examined in seven cases; six of these had positive LTS in the spinal cord. 

Using the Unified Staging System for Lewy Body Disorders [36], four cases were classified 

as “neocortical stage” and six were “brainstem and limbic stage” (Table 2). Eight of the PD 

cases also had dementia; of these, four met consensus clinicopathologic criteria for 

Alzheimer’s disease [37] and four did not.

Sensory Innervation Patterns of the Human UAT Mucosa

Sensory nerve fascicles and axon terminals innervating the UAT mucosa was examined 

using NF immunostaining. NF-ir axons were observed in all samples from both the PD and 

normal control subjects. In submucosa, there were abundant NF-ir axons and nerve fascicles 
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in each of the subregions of the UAT mucosa (Fig. 3). The results from NF staining are 

consistent with those revealed by Sihler’s stain used in our previous studies [32]. Both nerve 

staining methods showed that UAT mucosa, especially the oropharyngeal walls and the 

anterior wall of the laryngopharynx, receives rich sensory innervation. There is a dense 

sensory nerve plexus in the submucosa of the UAT. This sensory nerve supply pattern 

constitutes the neural basis for triggering pharyngeal swallowing and airway protection. 

Therefore, PD-induced degeneration of the sensory nerve terminals in the UAT could impair 

initiation of swallowing and various upper airway reflexes.

Lewy Pathology in the UAT Mucosa in PD

Anti-PAS immunohistochemistry showed axonal synucleinopathy lesions in the UAT 

mucosa in all PD samples and in none of the controls (Table 3). In PD, the PAS-ir axons 

were identified predominantly in the UAT submucosa. PAS-ir axons commonly appeared as 

threads and dots in the UAT mucosa. Axonal LTS in the UAT mucosa was also identified 

within nerve fascicles (Fig. 4) and individual axon terminals (Fig. 5).

The severity of LTS in each of the subregions of the UAT mucosa for each subject with PD 

was assessed on the basis of the mean density of PAS-ir axons. For each case, variable 

lesion severity in the six subregions of the UAT mucosa is summarized in Table 3. In this 

series, oropharynx was slightly to moderately affected, whereas moderate to severe lesions 

were identified primarily in laryngopharynx and UE. The regions with high density of PAS-

ir axons include ATP in the oropharynx, AEF and PCR in the laryngopharynx, and UE 

(Table 3).

In the oropharynx, the density or severity of LTS for the LPT was rated as absent (−) in 

seven cases and mild (+) in three cases. OPW exhibited no lesions in two cases, mild lesions 

in five cases, and moderate (++) lesions in three cases. Lesion severity was scored in the 

ATP as absent in one case, mild in three cases, moderate in four cases, and moderate-severe 

(+++) in two cases. Most of the cases (4/6) with moderate to moderate-severe lesions in the 

ATP experienced dysphagia (Table 3).

In the laryngopharynx, the severity of LTS for the AEF was mild in three patients, moderate 

in five patients, and moderate-severe in two patients. Similar lesion severity was revealed in 

the PCR. The patients with moderate-severe lesions in the AEF and PCR experienced 

dysphagia (Table 3).

In the UE, the lesion severity was rated as absent in one subject, mild in three subjects, 

moderate in three subjects, moderate-severe lesions in two subjects, and severe (++++) in 

one subject. Most of the subjects with moderate to severe lesions (4/6) reported to have 

dysphagia (Table 3).

The mean number of PAS-ir axons for each case in each of the subregions of the UAT 

mucosa is given in Table 3. PD patients with dysphagia had more PAS-ir axons (mean, 39) 

in the UAT mucosa as compared with those without dysphagia (mean, 25).

Multivariable analysis of LTS in the UAT mucosa regions examined in PD patients with and 

without dysphagia is presented in Table 4. First of all, we examined the relationships 
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between severity of LTS and both presence of dysphagia and UAT mucosa without 

adjusting for patient characteristics. Unadjusted analysis in Table 4 shows a significantly 

increased risk of severity of LTS in UAT mucosa regions ATP, OPW, AEF, PCR and UE 

when compared to LPT, with odds ratios ranging from 12.7 (OPW vs. LPT) to 89.2 (PCR 

vs. LPT). No other comparisons between the UTA mucosa were statistically significant. 

These results suggest that the severity of LTS has discriminative ability between the LPT 

and the other 5 UAT mucosa regions. Next, we evaluated the association between the 

severity of LTS and dysphagia and UAT mucosa regions, while additionally taking into 

account PD duration, H&Y stages, and motor UPDRS. Data analysis showed a significant 

effect of dysphagia (p = 0.0086) and UAT mucosa region (p = 0.0001) on the severity of 

LTS lesions. There were significant associations with H&Y stages (p < 0.0001) and motor 

UPDRS (p = 0.0306) but the analysis failed to show significant associations with PD 

duration (p = 0.1520). In contrast with absence of dysphagia, presence of dysphagia was 

associated with a decreased risk of severe LTS (OR = 0.3; 95% CI: 0.1, 0.7; p = 0.0086). 

The adjusted analysis in Table 4 shows a significantly increased risk of more severe LTS in 

UAT mucosa regions ATP, OPW, AEF, PCR, and UE, as compared to LPT, with odds ratios 

ranging from 38.1 (OPW vs. LPT) to 545.9 (PCR vs. LPT). Thus, accounting for the patient 

characteristics, the results indicated a significant association between the severity of LTS 

and the presence of dysphagia and UAT mucosa region.

Discussion

The presence and distribution of LTS in the sensory neurons innervating the UAT were 

studied and several notable observations were made. First, this is to our knowledge, the first 

demonstration of LTS in the sensory nerve terminals innervating the UAT mucosa in 

subjects with PD. Specifically, LTS was identified in the submucosal sensory axons in all of 

the PD subjects but not in the healthy controls. Second, PD patients with dysphagia had 

more PAS-ir axons in the UAT mucosa as compared with those without dysphagia. Third, 

the severity of LTS varied in different UAT regions. Overall, the oropharynx was less 

affected than the hypopharynx (laryngopharynx and UE). However, in the oropharynx, one 

of the most sensitive trigger zones for swallowing, the ATP, was much more affected than 

the other oropharyngeal sites. Finally, the regions that had the highest prevalence and 

severity of LTS were ATP, AEF, and UE. These regions are critical for initiating pharyngeal 

swallowing and protecting the glottis from aspiration. These findings are consistent with the 

hypothesis that LTS in the peripheral sensory nerves innervating the UAT mucosa could be 

one of the risk factors leading to dysphagia in PD.

The relative contribution of central or peripheral nervous system pathology to dysphagia in 

PD patients is unclear at this time. It is generally believed that dysphagia in PD is related to 

bradykinesia and rigidity [38]. However, studies have shown that there is no correlation 

between dysphagia and overall muscle rigidity score [13]. Although anti-PD drugs and deep 

brain stimulation have significant therapeutic effects on limb motor functions, their effects 

on swallowing in PD are less impressive and, in some cases, adverse [12, 39, 40]. These 

clinical observations suggest that dysphagia in PD may not be caused solely by a reduction 

in basal ganglia dopamine activity. Other neurotransmitter systems or nondopaminergic 

systems may be involved [41]. For example, the pedunculopontine tegmental nucleus 
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(PPTN) is a cholinergic nucleus that has substantial influence on the medullary central 

pattern generator for swallowing. In PD, degeneration of the neurons in the PPTN has been 

documented and therefore could contribute to dysphagia in PD [42].

Our hypothesis is that peripheral nerve degeneration may play a large role in PD dysphagia. 

Clinical studies have shown strong evidence that pharyngeal swallowing can be impaired by 

decreased pharyngeal sensitivity [43, 44]. In the 1990s, Aviv et al. [43–48] developed a new 

method for sensory testing using a modified endoscope, known as fiberoptic endoscopic 

evaluation of swallowing with sensory testing (FEESST). FEESST allows the assessment of 

swallowing and mechano-sensitivity, respectively. PD patients with dysphagia have been 

demonstrated to have diminished sensation in the laryngopharynx [47, 49–51]. 

Approximately 75% of dysphagic patients have severe laryngopharyngeal sensory deficits 

[47]. The presence of sensory loss in the pharynx is a poor prognostic factor for the 

development of aspiration pneumonia [44]. Using FEESST method, Hammer and colleagues 

[51, 52] assessed airway sensation and swallowing function in PD patients and healthy 

controls. Their studies showed that PD patients exhibited decreased laryngopharyngeal 

sensitivity and greater swallowing impairment compared with controls. These observations 

suggest that pharyngeal dysphagia is related to pharyngeal sensory dysfunction.

Swallowing is a complex neuromuscular procedure modulated by sensory feedback. In the 

human, the ATP and OPW are the most sensitive areas for initiating pharyngeal swallowing 

[15, 30]. When the bolus reaches the fauces and stimulates faucial sensory receptors, the 

involuntary pharyngeal phase of swallowing begins [53, 54]. However, the pharyngeal 

swallow can be impaired by sensory nerve dysfunction caused by neurological disorders 

including PD. Pharyngeal dysphagia is usually caused by an inability to initiate the 

swallowing reflex. This study showed that there was abundant LTS in the ATP in subjects 

with PD. Degeneration of the sensory nerve terminals in the mucosa impairs initiation of 

pharyngeal swallowing. Clinically, there has been some success in the use of sensory 

enhancement of swallowing in dysphagic patients by applying a cold tactile stimulus to the 

ATP. Stimulation of the ATP and other parts of the oropharynx is a method to treat patients 

with neurogenic dysphagia caused by sensory deficits [55–57]. Thermal tactile oral 

stimulation of the ATP on patients with neurologic diseases results in improved triggering of 

the swallowing reflex [58–60]. The improved swallowing may be due to increases of 

sensory input via the pharyngeal branches of the IX and X nerves which innervate the 

pharyngeal walls, including the ATP and OPW [32].

The results from this study suggest that LTS in the pharyngeal sensory nerves may be a 

useful and easily obtainable biomarker of PD. Specifically, mucosal biopsies in living PD 

patients could be low risk objective biomarker of the disease. To date, diagnosis and 

progression measures of PD are based largely on clinical criteria. However, the clinical 

diagnosis of PD is incorrect in up to 50% of parkinsonian subjects with disease duration of < 

5 years [22]. Therefore, there is a pressing need to develop biomarkers for a more precise 

and early diagnosis of PD. Alpha-synuclein aggregation underlies PD pathology that is 

present in both the central and peripheral nervous systems [4, 61, 62]. Strong evidence 

indicates the near-universal presence of LTS in the peripheral nervous system in PD [4]. 

Therefore, biopsy of peripheral tissues has been used to detect LTS in autonomic nerves [63, 
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64]. So far, LTS has been tentatively identified in biopsies of the colon [65–69], 

submandibular gland [5, 63], and skin [70] of PD patients. There is much excitement in the 

PD field about biopsies of peripheral tissues as possible PD biomarkers but thus far testing 

sensitivity has been too low at most sites. For instance, LTS in the skin was identified only 

in 10% of PD patients [70]. There was a relatively low density of colonic LTS per biopsy 

site [65–67,69]. In the colon, LTS was identified only in ~44% of samples [66]. Minor 

salivary gland biopsies of the lower lip have largely been negative [63, 71]. The 

submandibular gland had a relatively high prevalence of LTS and its biopsy may be a useful 

approach for diagnosis of PD [5, 63]. However, a simple, validated, and inexpensive 

biomarker for PD is still lacking. As we have demonstrated abundant LTS in the pharyngeal 

sensory nerves [19] and mucosa of autopsy specimens from PD subjects (the present study), 

UAT may be another site to detect LTS for diagnosis of PD because pharyngeal mucosa 

represents an easily accessible tissue and invasiveness of the biopsy procedure is low. The 

results from this study suggest that LTS in the UAT lining tissues could be detectable using 

pharyngeal mucosal biopsy in living PD patients. Further studies may be needed to test 

whether pharyngeal biopsy is feasible for detecting LTS in living PD patients and determine 

if this approach has diagnostic and/or predictive value.

It should be pointed out that this study has some limitations. For example, the diagnosis of 

dysphagia was based on the UPDRS Scale. This self-administered scale may not be the best 

metric for dysphagia. Objective documentation of dysphagia and its dynamic nature can be 

obtained with modified barium swallows (MBS). Ideally, future studies could be prospective 

with functional correlation between FEESST and pathology (either biopsy or post mortem). 

Such data would be helpful for determining whether LTS peripheral nerve pathology causes 

dysphagia in PD patients and for developing effective therapies.

Conclusions

This study has demonstrated the presence of LTS in the sensory nerve terminals innervating 

the UAT mucosa in PD. In this series, PD subjects with dysphagia had more LTS-positive 

axons in the UAT mucosa versus those without dysphagia while normal controls had none. 

These findings suggest that LTS in the peripheral sensory nerves supplying the UAT mucosa 

could be a risk factor for dysphagia in PD. Further work is warranted to: (1) objectively 

detect dysphagia and precisely determine the relationship between dysphagia severity and 

LTS densities; (2) test whether pharyngeal biopsy is feasible for detecting LTS in living PD 

patients and has the potential for diagnosis of PD; and (3) detect LTS in the peripheral motor 

and sensory nerves controlling the larynx and tongue for a better understanding of the 

mechanisms of dysphagia and aspiration.
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Fig 1. 
Posterior view of a fresh whole-mount specimen provided by BSHRI included entire tongue, 

pharynx, larynx, and upper esophagus with their muscles, mucosa, and their innervating 

nerves, as well as surrounding tissues
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Fig. 2. 
Sampling sites of the mucosa in the upper aerodigestive tract. a Schematic of the human oral 

cavity, illustrating tissue sampling sites in the oropharynx. T tonsil, U uvula. b Posterior 

view of an opened laryngopharynx and upper esophagus (UE) from a subject with PD, 

showing tissue sampling sites. E epiglottis, TB tongue base. The numbers in A & B 

represent sampling sites (enclosed regions). 1 lateral posterior tongue (LPT); 2 anterior 

tonsillar pillar (ATP); 3 oropharyngeal posterior wall (OPW); 4 aryepiglottic fold (AEF); 5 

postcricoid region (PCR); and 6 UE
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Fig. 3. 
Photomicrographs of the mucosal sections of the aryepiglottic fold (AEF) from a PD subject 

(PD 2, 75-year-old man with disease duration of 30 years, Hoehn & Yahr Scale 4, motor 

UPDRS score 66, swallowing score 2). The sections were stained with neurofilament (NF) 

staining, showing sensory innervation of the mucosa. a Low-power view of an 

immunostained section x25. b High-power view of a stained section x100. Note that there 

are numerous darkly stained NF-ir sensory nerve fascicles and individual axon terminals in 

the submucosa
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Fig. 4. 
Photomicrographs of the sections of anterior tonsillar pillar (ATP) from a PD subject (PD 5, 

76-year-old man with disease duration of 12 years, Hoehn & Yahr Scale 4, motor UPDRS 

score 31, swallowing score 2). a A section immunostained with neurofilament (NF) staining, 

showing two NF-ir nerve fascicles with numerous darkly stained axons x100. b An adjacent 

section stained with monoclonal anti-phosphorylated α-synuclein (PAS) antibody (psyn no. 

64), showing PAS-ir axons (threads and dots) in the sensory nerve fascicles x100. c High-

power view of B, illustrating the PAS-ir axons (darkly stained threads and dots) x200. d 
Another section of ATP from the same subject immunostained with psyn no. 64 also showed 

PAS-ir axons (threads and dots) within the sensory nerve fascicles in the submucosa x100
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Fig. 5. 
Comparison of lesion severity in the sub-regions of the upper aerodigestive tract (UAT) 

mucosa between subjects with and without dysphagia. The mucosal sections were 

immunostained with monoclonal anti-phosphorylated α-synuclein (PAS) antibody (psyn no. 

64), showing PAS-ir axons (darkly stained threads and dots). Left column The autopsy 

mucosal samples were obtained from a PD subject with dysphagia (PD 3, 74-year-old man 

with disease duration of 21 years, Hoehn & Yahr Scale 4, motor UPDRS score 66, 

swallowing score 1, lesion severity score: LPT −, ATP +++, OPW ++, AEF +++, PCR +++, 

UE ++++). Right column The mucosal samples were harvested from a PD subject without 

dysphagia (PD 7, 80-year-old man with disease duration of 17 years, Hoehn & Yahr Scale 5, 

motor UPDRS score 40, swallowing score 0, lesion severity score: LPT −, ATP +, OPW +, 

AEF ++, PCR ++, UE +++) x200. Note that the PD subject with dysphagia (PD 3) had more 

PAS-ir axons in the UAT mucosa as compared with the subject without dysphagia (PD 7).
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Table 2

The unified Lewy stage and summary score of LB density for 10 standardized brain regions in 10 PD patients

Case no Unified LB stage Summary score of LB densitya

PD 1 III. Brainstem/Limbic 29

 2 IV. Neocortical 35

 3 III. Brainstem/Limbic 28

 4 IV. Neocortical 29

 5 III. Brainstem/Limbic 30

 6 IV. Neocortical 37

 7 III. Brainstem/Limbic 15b

 8 III. Brainstem/Limbic 27

 9 III. Brainstem/Limbic 11b

 10 IV. Neocortical 36

a
The maximum summary score is 40

b
For this case, only seven regions were examined; therefore, the score is not strictly comparable to the others

LB Lewy body, PD Parkinson disease
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