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Abstract Regulation of bone homeostasis depends on the

concerted actions of bone-forming osteoblasts and bone-

resorbing osteoclasts, controlled by osteocytes, cells

derived from osteoblasts surrounded by bone matrix. The

control of differentiation, viability and function of bone

cells relies on the presence of connexins. Connexin43

regulates the expression of genes required for osteoblast

and osteoclast differentiation directly or by changing the

levels of osteocytic genes, and connexin45 may oppose

connexin43 actions in osteoblastic cells. Connexin37 is

required for osteoclast differentiation and its deletion

results in increased bone mass. Less is known on the role of

connexins in cartilage, ligaments and tendons. Connexin43,

connexin45, connexin32, connexin46 and connexin29 are

expressed in chondrocytes, while connexin43 and con-

nexin32 are expressed in ligaments and tendons. Similarly,

although the expression of pannexin1, pannexin2 and

pannexin3 has been demonstrated in bone and cartilage

cells, their function in these tissues is not fully understood.
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Abbreviations

ATP Adenosine triphosphate

Bglap Gamma-carboxyglutamic acid-containing

protein

BMP Bone morphogenetic protein

cAMP Cyclic adenosine monophosphate

Col1a1 Collage type 1-alpha 1 chain

CTX Carboxy-terminal collagen crosslinks fragments

Cx Connexin

ERK Extracellular signal regulated kinases

FDA Food and Drug Administration

FGF2 Fibroblast growth factor 2

Hapln1a Hyaluronan and proteoglycan link protein 1a

miR microRNA

nd Not determined

ODDD Oculodentodigital dysplasia

OPG Osteoprotegerin

Ot Osteocyte

P1NP Total procollagen type 1 N-terminal propeptide

Panx Pannexin

PKC Protein kinase C

PTH Parathyroid hormone

RANKL Receptor activator of nuclear factor kappa-B

ligand

Runx2 Runt-related transcription factor 2

Sp Specificity protein

Introduction

Musculoskeletal systems are faced with a plethora of

mechanical and systemic signals that require tightly orga-

nized cell responses to occur in order to maintain structural

and functional integrity [1]. Coordinated cellular responses

to these extracellular cues can occur directly or indirectly
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through communicative channels, including gap junctions,

connexin hemichannels and/or pannexins channels. For

example, in bone, osteoblasts and osteocytes form an

extensive interconnected network, which express robust

amounts of connexin43 (Cx43), as well as other connexins

and pannexins [2, 3]. This osteogenic network, intercon-

nected by Cx43 in particular, is vital to how bone responds

to mechanical load and mechanical unloading stimuli, as

well as how bone responds to hormonal and growth factor

cues to regulate bone quality [4, 5]. In other muscu-

loskeletal tissues like tendon, ligaments and cartilage, it is

less clear how the cells that compose these systems use

connexins and pannexins to regulate function. Yet, as it

will be discussed below, growing evidence demonstrates a

substantial contribution of these communicative channels

to the optimal function of these cells. This review will

focus on the presence and roles of connexins and pannexins

in osteoblasts/osteocytes, osteoclasts, tenocytes, chondro-

cytes and ligamentous fibroblasts.

Bone homeostasis is controlled by the coordinated actions

of osteoblasts, the bone-forming cells, and osteoclasts, the

bone-resorbing cells [4]. Osteocytes, cells derived from

osteoblasts that became enclosed by bonematrix, are thought

to be the main regulators of the differentiation and function

of osteoblasts and osteoclasts. Osteoblasts originate from

osteochondroprogenitors, the same cells that give origin to

chondrocytes, and their differentiation occurs through

changes in gene expression that can be affected by changes in

connexin levels. The function and viability of osteocytes are

also affected by connexins. Osteoblast and osteocytes con-

trol osteoclast differentiation by producing the pro-

osteoclastogenic cytokine receptor activator of nuclear fac-

tor kappa-B ligand (RANKL) and the anti-osteoclastogenic

cytokine osteoprotegerin (OPG) [6]. The ratio between these

twomolecules dictates osteoclast differentiation, and, as will

be detailed below, is highly regulated by Cx43 expression.

Furthermore, connexins also affect osteoclast differentiation

directly. In cartilage, tendon and ligament, the role of con-

nexins and pannexins are only just beginning to come into

focus. The data that are coming in suggest that there are some

conserved pathways among cells of the skeletal systems by

which connexins and pannexins may regulate cell signaling,

differentiation, and function.

Expression of connexins and pannexins at tissue
and cellular level

Connexins: gap junctions and hemichannels

Connexins permit the rapid dissemination of shared mole-

cules and ions among cells of themusculoskeletal system via

cell-to-cell communication. Connexins can link cells

directly in the form of classic gap junction channels in which

hexamers of connexins assemble a pore structure in the

plasmamembrane of one cell and then dockswith a connexin

pore on an adjacent cell, forming a continuous, aqueous

channel between the 2 cells. Small molecules roughly 1 kDa

or less can diffuse through these channels, permitting cells to

directly and efficiently share signalmolecules, ions and other

lowmolecular weight molecules [7]. Gap junctions facilitate

both electrical and chemical (i.e., second messenger) cou-

pling [8]. In addition, numerous factors, including

posttranslational modifications, dynamically regulate the

open/closed state of the gap junction channel and the abun-

dance of connexins influence downstream signaling as well.

Therefore, connexins and gap junctions are more than pas-

sive channels that link cells together. Recent data have

suggested that connexins can pass larger biomolecules,

including nucleic acids, suggesting another level of func-

tional coupling of cells [9, 10]. In addition to classic gap

junction channels, unopposed connexin pores, also known as

hemichannels, can function to exchange small molecules

between the intracellular space and the extracellular fluid. As

will be discussed in more depth below, this function may

explain the expression of connexins in tissues with limited

cell-to-cell contact. There are 21 connexin genes [7]. Most

tissues express 1 or more of the genes. Cx43 (gene name

Gja1) is the most abundant and most heavily studied gap

junction protein expressed by skeletal cells. Additionally,

Cx45 (gene name Gjc1), Cx46 (gene name Gja3) and Cx37

(gene name Gja4) have also been described in skeletal sys-

tem and, as will be discussed in greater detail, their

contribution to tissue function is emerging.

Connexins in bone

Cx43 is the most highly expressed connexin in all bone cell

types, including osteocytes, osteoblasts and osteoclasts

[11–14]. Cx45 and Cx46 expression has been detected in

osteoblastic cells [2, 15, 16] and in recent studies, the

expression of Cx37 has been demonstrated in osteoblasts,

osteocytes and osteoclasts [17, 18]. The gap junctional

coupling of bone cells results in the formation of an elab-

orately interconnected functional syncytium among the

bone-embedded osteocytes and bone progenitors and

osteoblasts on bone surfaces.

Connexins in other skeletal tissues

Cartilage is a specialized but flexible connective tissue

made up of collagen fibers and proteoglycans that are

secreted by chondrocytes. Donahue and colleagues repor-

ted the expression of Cx43 and the presence of functional

gap junction channels in chondrocytes isolated from bovine

articular cartilage [19]. Further studies demonstrated that,
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in addition to high levels of Cx43, human chondrocytes

express Cx45, Cx32 and Cx46 [20]. In addition, using an

animal model in which the Cx29 gene was replaced by

LacZ, it was recently shown that this connexin is expressed

in chondrocytes of the fibrous cartilage of the intercalated

discs and in the epiphysis of the vertebrae [21].

Ligaments are composed of fibrous tissue connecting

bones or cartilages, serving to support and strengthen joints.

Expression of Cx43 [22, 23] as well as of Cx32 [24], Cx40

andCx45 [25]was found in cells fromperiodontal ligaments.

Cx43 expression and the presence of gap junctions has also

been detected in medial collateral ligaments [26]. Of note,

the localization of Cx43 staining differs in isolated ligament

cells in vitro from that of intact ligaments.

In tendons, a fibrous tissue synthesized by tenocytes that

attaches muscle fibers to bone or cartilage, microscopy

studies showed the presence of Cx43 in cell processes and

of Cx32 in cell bodies of cells from rat flexor tendon [27].

The same 2 connexins are expressed in equine [28], avian

[29] and sheep [30] tendon. The two connexins exhibit

distinct localization, with Cx43 found in the tip of the cell

processes as well as between cell bodies and Cx32 only

between cell bodies [27].

Pannexins in bone, cartilage, ligament and tendon

There are three pannexins genes, namely Panx1, Panx2, and

Panx3, which encode proteins with strikingly similar struc-

tural topology to connexins. Despite their structural

similarities, pannexins have little sequence homology with

connexins and function exclusively as an unpaired channel,

thereby communicating signals, primarily adenosine

triphosphate (ATP), directly between the cytoplasm and the

extracellular space [31, 32]. Panx1 and Panx3 are broadly

expressed, including in skeletal cells [33, 34]. Panx1 is found

in murine osteoblastic cells [35], whereas Panx3 is expressed

in various osteoblastic cell lines and primary calvaria cells and

in hypertrophic chondrocytes [36–39]. Panx2 was thought to

exhibit a more restricted expression, being most abundant in

the brain, spinal cord and neurons [40–42]. However, recent

studies showed that Panx2 has a wider expression pattern [43]

and can be detected in osteoblastic cells [36]. Panx1 expres-

sion was also found in periodontal ligaments [44], while there

are no reports of pannexin expression in tendons.

Connexins in bone

In vitro studies

In vitro gain-of-function and loss-of-function studies have

made clear that Cx43 controls osteoblast and osteocyte

function and influences cell survival. Early studies

demonstrated that the relative abundance of Cx43 in cells

of the osteoblast lineage impacted their ability to differ-

entiate, with increased coupling via Cx43 promoting

osteoblast differentiation and function and inhibition of

Cx43 reducing osteoblast differentiation and function [45–

48]. In Cx43 knockout models, there is a cell autonomous

dysfunction in the osteoblast lineage, including reduced

expression of markers of osteoblast differentiation [49–54].

Cx43 regulates osteoblastogenesis and cell survival, not

only by the passive exchange of second messengers

between cells, but also by actively modulating signal

transduction cascades. Increasing Cx43 levels in osteo-

blasts or osteocytes increases extracellular signal regulated

kinase (ERK) signaling [55–57]. This activation of ERK by

Cx43 is caused by cell-to-cell communication of signals, as

direct cell-to-cell contact is required for this effect, and the

percentage of cells that become ERK-positive in response

to a specific cue is increased when Cx43 is overexpressed

[58]. Similarly, Cx43 gain-of-function increases protein

kinase C delta (PKCd) activation by fibroblast growth

factor 2 (FGF2) in cultured osteoblasts [58, 59]. Cx43 also

alters protein kinase A-dependent signaling by sequestering

b-arrestin in osteoblasts stimulated with parathyroid hor-

mone (PTH) [60]. In fact, such interactions may represent a

fundamental way that Cx43 influences signaling cascades.

b-arrestin forms a complex with the Cx43 C-terminal

domain in PTH-treated osteoblasts. This interaction with

Cx43 prevents b-arrestin from blunting cyclic adenosine

monophosphate (cAMP)-dependent signaling from the

PTH receptor, leading to enhanced cell survival. Further-

more, deletion of Cx43 or removal of the C-terminal

domain prevents the sequestration of b-arrestin by Cx43

and abolished the ability of PTH to promote osteoblast

survival. Similarly, the Cx43 C-terminus is required for

ERK activation resulting in cell survival [60]. In addition,

PKCd was shown to physically bind to the Cx43 C-ter-

minal domain [61] and interactions with the C-terminus are

required for Cx43 overexpression to enhance osteoblast

signaling and gene expression following FGF2 adminis-

tration [62]. Another example of this structure–function

relationship between the C-terminal domain of Cx43 and

signaling cascades in cells of the osteoblast lineage is the

interaction of Cx43 with a5b1 integrin in osteocytes [63,

64]. In vitro studies show that the interaction between Cx43

and a5 integrin permits the opening of Cx43-based

hemichannels in response to fluid flow sheer stress. Once

opened, these osteocyte Cx43-based hemichannels have

been implicated in the release of autocrine/paracrine

effectors, including ATP and prostaglandin E2 [65–67].

Cx43 can modulate osteoblast/osteocyte function by

regulating numerous effectors. Increasing or decreasing

Cx43 expression or function in osteoblast cell lines alters

specificity protein 1 (Sp1) recruitment to osteoblast
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promoters, leading to changes in gene expression [68, 69].

This effect is mediated downstream of ERK activation with

Cx43 supporting robust ERK activity and concomitant Sp1

recruitment, while disruption of Cx43 function attenuates

ERK activation leading to diminished Sp1 recruitment

[56]. Indeed, the modulation of an ERK/Sp1 axis by Cx43

has been shown in other cell systems, suggesting functional

conservation [70–72]. In bone cells, this Cx43-dependent

recruitment of Sp1 can also enhance the recruitment and

transcriptional activity of specific protein 7 (Sp7)/osterix, a

master regulator of osteoblastogenesis, to osteoblast pro-

moters [68]. Similarly, Cx43-dependent ERK activation

promotes cell survival signals downstream of bisphospho-

nates [55, 57]. Cx43 can also effect signaling through an

inositol polyphosphate/PKCd cascade to influence another

master regulator of osteoblastogenesis, runt-related tran-

scription factor 2 (Runx2) [58, 59, 73]. In addition, loss of

Cx43 reduces the bone morphometric protein 2 (BMP2)-

responsiveness of osteoblasts [74].

Overall, these Cx43-influenced signals impact the

expression of osteoblast genes involved in the control of

differentiation (i.e., Runx2 and Sp7/osterix), matrix pro-

duction (i.e., collage type 1-alpha 1 chain (Col1a1),

gamma-carboxyglutamic acid-containing protein (Bglap)/

osteocalcin) collagen processing and crosslinking (i.e.,

lysyl oxidase), osteoclastogenic factors (i.e., OPG and the

RANKL/OPG ratio) and sclerostin [45, 51–53, 62, 75–78].

Notably in most of these examples, increasing Cx43 pro-

duction enhances signaling and the expression of osteoblast

genes, while decreasing Cx43 attenuates osteoblast differ-

entiation. However, in vivo experiments on the role of

Cx43 in bone have shown that context matters. For

example, during mechanical loading, loss of Cx43 increa-

ses the anabolic response of bone, whereas during

mechanical unloading, Cx43 deletion can diminish bone

loss and even in this context this view is somewhat over-

simplified, as these responses can differ in periosteal

osteoblasts and endosteal osteoblasts [52, 78–81]. A few

in vitro studies highlight the context dependence of the role

of Cx43 in osteoblast/osteocyte function. Loss of Cx43 has

been shown to reduce the inhibitory effects of endothelin-1

on osteoblasts [82, 83], perhaps by disrupting calcium-

dependent signaling events [84]. Similarly, loss of Cx43

increases b-catenin levels in cultured osteocytes, enhancing
their mechano-responsiveness [85].

Interestingly, mounting in vitro and in vivo evidence

demonstrates that heterogeneous cell-to-cell coupling can

influence bone cell function, with osteocytes [86–88],

fibroblasts [89], endothelial cells [90–93] and megakary-

ocytes [90] influencing osteoblast function when

interconnected by Cx43-containing gap junctions. In

addition, osteoblastic Cx43 expression has been shown to

contribute to the maintenance of the hematopoietic niche

[94] and to even indirectly regulate skeletal muscle func-

tion [95].

Beyond the indirect control of osteoclasts by the

osteoblast/osteocyte RANKL/OPG/Cx43 axis, little is

known about the direct role of connexins in bone-resorbing

osteoclasts. Osteoclasts also express Cx43 [96]. Blocking

of Cx43 in human and rodent osteoclasts in vitro can

impact osteoclast fusion and function in vitro [96–98].

Furthermore, strong expression of Cx43 is observed in the

giant osteoblasts found in patients with Paget’s disease and

giant cell tumors of bone, suggesting a role for Cx43 in the

formation of these cells [97]. In contrast, a clear role for

Cx37 in osteoclastogenesis has been shown [17]. Osteo-

clasts derived from Cx37 knockout mice are smaller, with

fewer nuclei and exhibit markedly reduced expression of a

host of osteoclast markers as well as increased Notch

signaling.

In vivo studies

Genetically modified mouse models

Mice with global deletion of Cx43, which results in peri-

natal death, exhibit delayed ossification due to dysfunction

of osteoblastic cells [16, 49]. Mice with deletion of Cx43 in

cells of the osteoblastic lineage are viable and exhibit a

bone phenotype that is progressively more profound, as the

cells in which the connexin is deleted are less differentiated

[51, 75, 78, 99]. Thus, deletion of Cx43 from osteochon-

droprogenitors using the Dermo1/Twist2 promoter to target

Cre recombinase expression leads to decreased bone mass

and reduced length of long bones [51]. Deletion in com-

mitted osteoblast progenitors using Cre recombinase under

the control of the 2.3-kb fragment of the collagen 1a1 gene

also results in reduced bone mineral density [75], but mice

are not shorter than their littermates expressing Cx43 [95].

This suggests that Cx43 expression in osteochondropro-

genitors, but not in committed osteoblasts, is required for

normal long bone growth. Deletion of Cx43 from mature

osteoblasts, using the human osteocalcin promoter to drive

Cre expression, or from osteocytes only, using the 8-kb

fragment of the dentin matrix protein 1 promoter, does not

affect either bone mineral density or longitudinal growth

[52, 53, 99].

A recent study shows that deletion of Cx43 from

osteoblast progenitors using the osterix-Cre mice results in

delayed intramembranous ossification [74]. However, it has

been shown that mice expressing the osterix-Cre show a

defect in craniofacial bone development even in the

absence of any floxed gene [100] and, therefore, the pres-

ence of Cre under the control of the osterix promoter might

contribute to the intramembranous ossification defect.

Nevertheless, mice with Cx43 deletion in osterix-
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expressing cells exhibit a similar cortical bone phenotype

[74] as other mice with bone cell-specific Cx43 deletion, as

will be detailed below.

Further support for a role of Cx43 in osteoblast differ-

entiation was provided by studies in which microRNA 206

(miR-206) was overexpressed under the control of the 2.3-

kb fragment of the collagen1a1 promoter [101]. These

animals exhibit decreased mass of trabecular and cortical

bone and low levels of Cx43. In addition, in vitro experi-

ments showed that the decrease in alkaline phosphatase

induced by miR-206 expression is reversed by transfection

with Cx43, which is a target of miR-206. While the

decrease in Cx43 protein levels might be responsible in

part for the phenotype of miR-206 transgenic mice, other

genes are involved, because the phenotype of miR-206

transgenic mice is more profound than those in which Cx43

was deleted using the same promoter [75].

Despite the difference in bone mass and size, all animal

models of Cx43 deletion in cells of the osteoblastic lineage

exhibit increased periosteal bone formation and endocor-

tical bone resorption, resulting in widening of the marrow

cavity and the external perimeter of long bones, albeit the

effect is more profound when the connexin is deleted

earlier in the osteoblastic lineage [51, 53, 74, 78, 79].

These mice display increased cortical osteocyte apoptosis

[52, 53, 99], periosteal bone formation and a high RANKL/

OPG ratio, which favors osteoclast differentiation [51, 53,

78], resulting in increased bone resorption. Loss of osteo-

cytic Cx43 reproduces many of the features of Cx43

deletion in cortical bone [53], suggesting a fundamental

role of osteocytes in the gap junction network. However,

the increasing severity of the skeletal phenotype in models

were Cx43 is deleted in less mature osteoblastic cells

implies that Cx43 plays a role in osteoblast function as

well. In addition to its role in bone mass and cortical bone

structure, osteocytic Cx43 might play a role in regulating

intracortical bone resorption and the removal of sur-

rounding bone matrix by osteocytes, a process known as

osteocytic osteolysis [5], as suggested by the increased

osteocytic lacunar size in mice lacking Cx43 in osteoblasts

and osteocytes [102].

Mutations in the Cx43 gene associated with oculoden-

todigital dysplasia (ODDD) [103] and craniometaphyseal

dysplasia [104] result in skeletal manifestations in humans.

These abnormalities have been reproduced in 2 animal

models in which mutated Cx43 genes (i.e., G138R and

G60S) are expressed in all cells and tissues [105–107]. In

addition, expression of the G138R-Cx43 in osteochon-

droprogenitors recapitulates the skeletal phenotype of mice

with global expression of the mutated gene [51]. Recent

studies showed that, besides the decreased bone mass, mice

expressing G60S-Cx43, a dominant-negative mutant that

disrupts gap junction assembly and function, exhibit

changes in the bone marrow with progressive bone marrow

atrophy and increased adipocytes [107, 108]. These phe-

notypic changes were not reported for mice carrying the

G138R-Cx43 ODDD mutation, which does not alter gap

junction assembly, but that forms communication-deficient

gap junction plaques [105] or in any of the mouse models

of bone-specific deletion of Cx43. The mechanism by

which mutated G60S Cx43 increases adipogenesis remains

to be determined.

Recent evidence shows that Cx43 expression in

osteoblastic cells not only controls bone mass and struc-

ture, but also skeletal muscle growth and function [95].

Thus, mice in which Cx43 was deleted using the 2.3-kb

fragment of the Col1a1 promoter to target Cre expression

exhibit lower weight and strength of fast twitching muscles

than littermates controls expressing Cx43. These effects of

osteoblastic Cx43 have been linked to a decrease in

undercarboxylated glu-osteocalcin. Indeed, glu-osteocalcin

promotes myotube formation in vitro and rescues the effect

of Cx43 deletion on muscle mass and strength in vivo. The

decrease in muscle mass is associated with reduced body

weight without changes in body size. On the other hand,

mice lacking Cx43 in mature osteoblasts or in osteocytes

do not exhibit reduced body weight [52, 53, 99], suggesting

that the regulation of muscle development by Cx43 is

restricted to its expression in immature osteoblasts.

In addition to the regulation of osteoclast differentiation

through Cx43 expression in osteoblasts and osteocytes [51,

53, 78], the gap junction protein is also required for osteo-

clast differentiation in a cell-autonomous manner. This was

reported recently in a study in which Cx43 was deleted using

the human cathepsin K promoter to target Cre expression to

pre-osteoclasts [109]. These mice exhibit fewer osteoclasts

on the trabecular bone of the distal femur and increased

cortical thickness and reduced trabecular spacing, suggesting

reduced osteoclastic bone resorption [109].

As in mice, deletion of Cx43 in other vertebrates also

results in a bone phenotype, with limb [110, 111] and face

[112] abnormalities in chicken. Like in mice, complete

deletion of Cx43 in zebrafish is lethal, but mutation of

Cx43 results in the so-called short-fin phenotype, with

short bony segments and reduced cell proliferation in the

fin skeleton [113]. Recent studies showed that hyaluronan

and proteoglycan link protein 1a (Hapln1a) and

semaphorin3d both work downstream of Cx43 to regulate

cell proliferation and joint formation in zebrafish fin bones

[114].

Bone-acting stimuli and Cx43 in bone cells

Cx43 not only is required for bone development and

structure under basal (i.e., non-stimulated) conditions, as

evidenced by the genetic manipulations, but also for the
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response of the skeleton to bone-acting stimuli. In partic-

ular, the bone-protecting bisphosphonate drugs [115]

preserve osteoblast and osteocyte viability by opening

Cx43-based hemichannels [116, 117] and the survival

effect of the drugs is abolished in mice lacking Cx43 in

osteocytes [99].

Intermittent administration of PTH is the only Food and

Drug Administration (FDA)-approved treatment to

increase bone mass [118]. Cx43 expression appears to be

required to obtain a full anabolic response to intermittent

PTH administration in mice, as PTH-induced mineral

appositional rate, a measure of the work of osteoblast

teams, is reduced in mice lacking Cx43 in osteoblastic cells

[75]. On the other hand, deletion of Cx43 in osteocytes

does not impair the ability of the hormone to increase bone

mass, but PTH does not increase endocortical bone for-

mation or mechanical properties in cortical bone of mice

lacking osteocytic Cx43, suggesting that part of the effect

of the hormone required the expression of Cx43 in osteo-

cytes [119].

In vitro studies showed that Cx43 expression is required

for the response of osteoblastic and osteocytic cells to

mechanical stimulation [120]. Based on this finding, it was

hypothesized that the response to mechanical loading is

eliminated, or at least reduced, in the absence of Cx43 in

osteoblasts and/or osteocytes. However, work of several

groups showed that, instead, bone formation induced by

mechanical loading is enhanced in mice in which Cx43 was

deleted from osteochondroprogenitors [80], from mature

osteoblasts and osteocytes [78] or from osteocytes only

[85]. This suggests that Cx43 restrains the response to

loading likely through its function in osteocytes. It has

been proposed that Cx43 sequesters b-catenin, thereby

inhibiting Wnt signaling, known to increase bone forma-

tion [85]. Thus, in the absence of Cx43, b-catenin is free

and Wnt signaling is increased. This primes osteoblastic

cells to respond to mechanical signals by a yet to be

identified mechanism. However, the detailed molecular

pathway that mediates this inhibitory effect of Cx43 on

bone formation induced by mechanical forces remains to

be determined [120].

Osteoblastic Cx43 also participates in the response to

lack of mechanical forces as demonstrated by reduced bone

loss and a lack of increase in osteoclasts in mice lacking

Cx43 in osteoblasts and osteocytes subjected to unloading

by tail suspension compared to control mice expressing

Cx43 [52, 79]. In addition, absence of Cx43 in osteoblasts

and osteocytes impairs fracture healing by a combination

of decreased bone formation and bone resorption [121].

Interestingly, the effect of Cx43 deletion in fracture healing

appears to be opposite to that of normal bone, since the

RANKL/OPG ratio is decreased, while the levels of the

Wnt inhibitor sclerostin (i.e., the product of the Sost gene)

are increased and b-catenin is decreased in the fracture

[122]. In addition, the effect of Cx43 deletion on fracture

healing can be reversed by increasing b-catenin stability

[122]. These pieces of evidence raise the possibility that

Cx43 has distinct roles in bone acquisition/maintenance

versus bone healing.

Aging also affects Cx43 expression and function. Thus,

osteoblastic cells from old rats (i.e., 12 and 24/28 months

old) exhibit decreased gap junction communication in

response to PTH or cholera toxin, compared to cells from

younger (i.e., 4 months old) animals [123]. On the other

hand, no changes in Cx43 expression in osteoblastic cells

isolated from young versus old rats were found. Similar

results were shown in mice, with no change in mRNA

levels for the gene when it was measured in vertebral bone

from 6- to 24-month-old mice [124]. However, in this case,

PTH increased the levels of the Cx43 gene in both young

and old mice. A more recent study showed that Cx43

protein expression is decreased in regenerated bone from

aged (i.e., 21 months old) rats compared to mature

(6 months old) animals, which is associated with reduced

nitric oxide and prostaglandin E2 production following

mechanical stimulation [125]. The old bones also exhibit

decreased lacunar and osteocyte density. Whether the

decrease in osteocyte viability and the accumulation of

empty lacunae with old age result from decreased Cx43

protein expression or function remains to be determined.

Channel versus cytoplasmic domains: what we know

about the function of Cx43 domains in bone cells

Most of the studies in which the role of Cx43 in bone was

investigated using genetic tools involved complete deletion

of the molecule, precluding the possibility of understanding

the role of the different connexin domains in the overall

phenotype [3]. Although the Cx43 variants associated with

ODDD result from point mutations in particular amino

acids, there is not always a direct relationship between the

site of the mutation and the consequence in channel

activity, ability to form gap junction channels versus

hemichannels, or in the interaction and regulation of sig-

naling molecules through the C-terminus domain [103].

A recent study described the skeletal phenotype of 2

mouse models with mutated Cx43 expressed in osteocytes.

In particular, in 1 model with the point mutation R67W,

Cx43 has the ability to form functional hemichannels, but

not gap junction channels, while in the other model, with a

deletion of amino acids 130–136 (i.e., D130–136), Cx43
lacks channel permeability [126] and therefore cannot form

either functional hemichannels or gap junction channels

[127]. Mice expressing the D130–136 mutant exhibit

increased bone mass, whereas R67W mice are undistin-

guishable from wild-type controls. No changes in
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cancellous bone was observed in either mice, but cortical

bone was affected in D130–136 Cx43 animals, resulting in

a phenotype that resembles that of mice with complete

deletion of Cx43 from osteocytes [53, 77]. Similarly, cor-

tical osteocyte apoptosis was increased in mice expressing

the mutated D130–136 Cx43 in osteocytes [127] as in mice

lacking Cx43 in these cells [53]. On the other hand,

D130–136 Cx43 animals, but not mice lacking Cx43 from

osteocytes, display increased osteocyte apoptosis in can-

cellous bone. This discrepancy could be due to the

purported low levels of Cx43 in cancellous bone, which

could not be decreased further in mice lacking Cx43 in

osteocytes. On the other hand, overexpression of D130–136
Cx43 might be toxic for osteocytes in this bone compart-

ment. The expression of the anti-osteoclastogenic cytokine

OPG is decreased in D130–136 Cx43 mice as in mice with

deletion of Cx43 in osteocytes. However, whereas the

former also have reduced levels of the pro-osteoclastogenic

cytokine RANKL, the animal model with complete dele-

tion of Cx43 exhibits high RANKL expression [3].

We recently analyzed the bone phenotype [119] of mice

expressing a copy of a truncated form of Cx43 lacking the

C-terminus tail (i.e., Cx43D245) in all cells and tissues

[128]. Even though these mice still express a copy of the

full length connexin, they exhibit decreased cancellous

bone volume due to deficient osteoblast function, sug-

gesting that truncated Cx43 acts as a dominant negative,

similar to the ODDD mutant [107]. This bone phenotype

differs from the lack of effect of deleting Cx43 in mature

osteoblasts and osteocytes [3] or of expressing channel-

deficient Cx43 in osteocytes [127] in the cancellous bone

compartment.

The current evidence for the role of the Cx43 domains in

bone cells is shown in Table 1. Overall, Cx43-based

channel function in osteocytes appears to be required for

proper cortical bone acquisition and material strength,

whereas the C-terminus domain is required to reach normal

cancellous bone volume and osteoblast function. On the

other hand, absence of channel activity increases bone

mass and osteoblast function in cancellous bone, and the

lack of the C-terminus domain results in increased cortical

bone strength. In summary, Cx43 domains exert distinct

functions depending on the bone compartment study,

controlling bone accrual and bone cell function and sur-

vival [53, 119, 127].

Cx37, a recently found bone connexin that regulates bone

mass

In addition to Cx43, studies showed that Cx37 is also

expressed in osteoblasts, osteocytes and osteoclasts [17,

18]. Global deletion of Cx37 result in increased bone mass,

an effect that is more pronounced in male than in female

mice [17]. Consistent with this gender-specific effect of

Cx37 deletion, men, but not women, carrying the Cx37-

319P allele exhibit higher total body, lumbar spine, femoral

neck and trochanter bone mineral density compared to

individuals carrying the Cx37-319S allele in a Japanese

population [129]. The murine high bone mass phenotype is

due to decreased osteoclast differentiation, resulting in

decreased osteoclast number and bone resorption without

altering osteoblast differentiation or function [17].

Pannexins in bone

In vitro studies

Panx1 and 3 are expressed by osteoblasts [33], but their

role is only beginning to be uncovered. Panx3 is a direct

target of the osteoblastogenic transcription factor Runx2

and its expression increases during osteoblast differentia-

tion [130]. Overexpression of Panx3 promotes the

osteogenic differentiation of C2C12 cells in culture,

including inducing the expression of Sp7/osterix and

osteocalcin [37]. Conversely, short hairpin RNA-mediated

knockdown of Panx3 inhibits osteoblastogenesis. In addi-

tion, ex vivo adenoviral transduction of newborn mouse

metatarsals with a Panx3 expression construct enhanced

osteoblastogenesis and increased bone length. Panx3 car-

ries out this function by serving not only as a direct channel

between the cytoplasm and extracellular space, but perhaps

by also acting as a calcium channel in the endoplasmic

reticulum whose function converges on Akt signaling

networks. Furthermore, Panx3-based channel activity can

promote osteogenic differentiation through increased

b-catenin activity and the attenuation of protein kinase

A-signaling permitting cell cycle exit and subsequent dif-

ferentiation [38]. While it has been suggested that Panx3

may function as a gap junction-like channel for direct cell-

to-cell communication [131], this is based on the use of

relatively non-selective inhibitors that impact both gap

junction and pannexin channel functions. Indeed, a recent

paper has suggested that many of the hemichannel activi-

ties ascribed to Cx43 may be rather due to pannexin

activities [132]. Panx1 is virtually unstudied in osteoblast

or osteocytes and neither Panx1 nor 3 have been reported in

osteoclasts.

In vivo studies

In vitro studies have shown that pannexins are involved in

osteoblast differentiation and function as described above.

However, in vivo evidence for the role of pannexins in

bone cell biology is lacking. Even though mice with global

deletion of Panx1 and 3 have been generated [133], their
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bone phenotype or lack thereof has not been reported.

Nevertheless, a preliminary study presented as an abstract

showed that the increase in RANKL, a cytokine required

for osteoclast differentiation, which occurs in the area

surrounding apoptotic osteocytes following microdamage

is abolished in mice lacking Panx1 [134].

Connexins in cartilage, ligaments and tendons

In vitro studies

Cartilage

Cx43 is expressed in both articular chondrocytes as well as

growth plate chondrocytes [135], but its role is quite

intriguing, as these cells are generally functioning in virtual

isolation free from many direct cell-to-cell contacts. While

these cells can form classic gap junction in culture [19,

136], it is generally thought that the role of Cx43 in

chondrocytes may be related to hemichannel activity [137–

140]. Cyclic loading of articular chondrocytes has been

shown to open Cx43-based hemichannels and leads to the

release of ATP, which may be part of a mechanotrans-

duction pathway [137, 138]. Furthermore, fluid flow shear

stress has been shown to activate Cx43-based hemichan-

nels in cultured chondrocytes, which in turn affects

extracellular prostaglandin E2 levels [139], a model that

closely mimics observations made in osteocytes [65, 67].

Analogous to the role of Cx43 in osteoblasts, inhibition of

Cx43 has been shown to restrict the differentiation of

mesenchymal stem cells down the chondrogenic lineage,

although in contrast to osteoblasts, this effect is indepen-

dent on cell-to-cell contacts [140].

An interesting association has been made between Cx43

levels and osteoarthritis-related changes in the joint.

In vitro, Cx43 is increased by the pro-inflammatory cyto-

kine interleukin 1 in chondrocytes [141]. In synovial cells

[141, 142], Cx43 can increase calcium wave propagation

between cells [136] and can as such influence signaling

cascades and osteoarthritis-associated gene expression

[143–145]. In vivo data implicating Cx43 in osteoarthritis

pathology will be discussed below.

Tendon

Tendon cells express Cx43 and Cx32, forming a 3-di-

mensional network in vivo [27]. In tenocytes exposed to

mechanical load, Cx43 and Cx32 have opposing functions

[29]. Cyclic tensile loading increases collagen secretion, an

effect that is reduced by knockdown of Cx32 expression,

but increased by knockdown of Cx43 expression. This may

be consistent with a recent report showing downregulation

of Cx43 protein expression following static tensile load

[146]. However, loss of gap junctional coupling among

tenocytes during aging has also been implicated in the

reduced potential of specific tendons to repair [147].

Despite evidence that Cx43 inhibits tenocyte repair

Table 1 Skeletal effect of altering Cx43 gene expression or its domains in osteocytes

Mice Ot-Cx43 cKO [53] Ot-D130-136 Cx43 [127] Ot-R67W Cx43 [127] Cx43D245 (global) [119]

Bone mass – : – –

Cancellous bone area/tissue area – – – ;

Cancellous bone formation nd : – ;

Cancellous osteocyte apoptosis – : – –

Cortical osteocyte apoptosis : : – –

Cortical bone area/tissue area ; ; – –

Cortical thickness – : – :

Marrow cavity area : : – –

Cortical bone material strength ; ; ; –

Cortical bone mechanical strength – :/– – :

Periosteal bone formation : : : –

Endocortical bone formation – – – –

OPG levels in bone/osteocytes ; ; – nd

RANKL levels in bone/osteocytes : ; – nd

Circulating resorption marker – (CTX) – (CTX) : (CTX) – (CTX)

Circulating formation marker – (Osteocalcin) – (P1NP) : (P1NP) – (Osteocalcin)

CTX carboxy-terminal collagen crosslinks fragment, nd not determined, OPG osteoprotegerin, Ot osteocyte, P1NP total procollagen type 1

N-terminal propeptide, RANKL receptor activator of nuclear factor kappa-B ligand
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capacity, interleukin 1 increases Cx43 expression in teno-

cytes, where it may play a role in cell survival following

strain [148].

Ligament

Ligamentous fibroblasts express Cx43, Cx40, Cx45 and

Cx32 [23–25]. As in the other skeletal tissues, it seems that

mechanical strain opens Cx43-based hemichannels in

ligament cells leading to the release of ATP [149]. In

addition, an increase in Cx43 expression is associated with

pathologic mineralization of the posterior longitudinal

ligament in the cervical spine [150]. Ligamentous cells

isolated from patients with an ossified posterior longitudi-

nal ligament have increased expression Cx43 and of

osteogenic genes, including osteocalcin, alkaline phos-

phatase and collagen I, relative to control non-ossified

posterior longitudinal ligament cultures [150]. Further-

more, these changes in osteoblast gene expression can be

inhibited by Cx43-targeting small interfering RNA. In

addition, these ossified posterior longitudinal ligament cells

have a more robust osteogenic response to mechanical

strain, which depends on Cx43 expression [151]. Indeed,

Cx43 expression in ligament cells appears to be enhanced

by mechanical strain [151, 152]. Like in many other

skeletal tissues, Cx43 influences ERK signaling in liga-

mentous fibroblasts and can regulate osteogenic genes

during cyclic mechanical tension [153].

In vivo studies

Cartilage

Little is known about the role of connexins in cartilage

in vivo. Cx43 is expressed by growth plate and articular

chondrocytes [135] and chondrocytes in the meniscus [154]

in vivo. Human chondrocytes also express Cx45, Cx32 and

Cx46 [20]. Direct cell-to-cell communication has been

shown in the superficial zone of articular chondrocytes

[155]. A paradigm challenging study has even shown that

chondrocytes in situ may form long cell processes,

5–150 lm in length, that permit communication through

gap junction channels [156]. Increased presence of gap

junction plaques and Cx43 expression have been found in

synovial lining cells obtained from the knee of patients

with osteoarthritis [157]. Similarly, Cx43 production is

increased in the cartilage of the knee and femoral head [20]

and in the shoulders of patients with osteoarthritis, sug-

gesting that the molecule might have a role in the

pathogenesis of this disease [158]. Consistent with this,

Cx43 levels in osteoarthritic cartilage correlate with the

expression of several pro-inflammatory and catabolic

factors [158]. In line with this notion, silencing of Cx43

expression protected against inflammation and joint

destruction in a model of rheumatoid arthritis in rats [159].

Tendon

The expression of Cx43 and Cx32 has been studied in fetal

and adult tendons obtained from horse [28], rat [27, 160]

and sheep [30]. These studies show that the two connexins

are present throughout tendon development, although with

a different pattern of expression and localization. Their

level is high in fetal life and decreases in adult tissue, and

these changes accompany the decrease in the proliferation

index and cellularity of the tendons, as well as the change

from round to elongated cell nuclei [27, 28, 30, 160]. This

suggests that Cx43 and Cx32 could be involved in the

maturation of the tendon. However, further studies are

required to confirm this possibility.

Ligaments

As for tendons, little is known on the role of connexins in

ligaments in vivo. A study showed that Cx43 is increased

in periodontal ligaments following experimental tooth

movement [23]. Increases in Cx43 expression were found

in spinal ligaments with ectopic bone formation [150].

Silencing Cx43 production inhibits the increase in

osteoblastic genes after mechanical stimulation [151],

suggesting that Cx43 plays a role in the progression of

ectopic spinal ligament ossification.

Pannexins in cartilage, ligaments and tendons

In vitro studies

Beyond its expression in these tissues, very little is known

about how pannexins can impact the function of these

cells. Panx3 is both necessary and sufficient to induce

chondrogenic differentiation of ATDC5 and primary

chondrocytes in vitro [39]. Furthermore, Panx3 expression

in chondrocytic cells reduces intracellular cAMP levels,

protein kinase A activity and diminishes the proliferative

response to cAMP, suggesting that Panx3 regulates the

switch from proliferation to chondrocyte differentiation

[39].

In periodontal ligament cells, Panx1 interacts with P2X7

receptors as part of mechanical strain responsive mecha-

nisms for ATP release [44]. Furthermore, this complex is

involved in the secretion of interleukin 1b, perhaps through
the regulation of vesicular secretion [44]. However,

detailed molecular mechanisms still remain to be defined.
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In vivo studies

To date, there are no reported studies in which pannexins

were manipulated in cartilage, ligaments or tendons.

Although studies with global deletion of pannexins do not

report any gross abnormalities in these tissues, the possi-

bility that pannexins are involved in the development or

function of these tissues cannot be ruled out.

Conclusions

Extensive research has shown the fundamental role of

Cx43 expression in osteoblast and osteocyte differentia-

tion, intracellular signaling and in bone acquisition and

maintenance, as well as in the response to stimuli that

affect bone mass and strength. Furthermore, recent stud-

ies began to examine the domains of connexins that are

responsible for their effect on bone, thereby uncovering a

complex role of Cx43 and its cytoplasmic C-terminus and

transmembrane channel domains depending on the bone

envelope investigated. In addition to Cx43, recent studies

show that Cx37 also is involved in bone homeostasis, yet

in this case controlling osteoclast differentiation and bone

resorption. On the other hand, little is known about the

role of connexins in other skeletal tissue. Similarly, the

role of pannexins in bone, cartilage, tendon and ligaments

is beginning to be revealed. Understanding the dynamics

of cell-to-cell signaling via connexins and pannexins will

enable the development of novel therapeutic strategies to

optimize the musculoskeletal system and/or to enhance

the effectiveness of current therapeutic agents by

manipulating connexin and pannexin expression or

activity.
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