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Abstract
The study investigations were focused on assessing the influence of a 35-year-old munici-

pal waste landfill on environmental mercury pollution. The total Hg content was determined

in the soil profile, groundwater, and the plants (Solidago virgaurea and Poaceae sp.) in the

landfill area. Environmental pollution near the landfill was relatively low. The topsoil layer,

groundwater and the leaves of Solidago virgaurea and Poaceae sp. contained 19–271 μg

kg-1, 0.36–3.01 μg l-1, 19–66 μg kg-1and 8–29 μg kg-1 of Hg, respectively. The total Hg con-

tent in the soil decreased with the depth. The results are presented as pollution maps of the

landfill area based on the total Hg content in the soil, groundwater and plants. Statistical

analysis revealed the lack of correlation between the total Hg content in the soil and plants,

but a relationship between the total concentration of Hg in groundwater and soil was shown.

The landfill is not a direct source of pollution in the area. The type of land morphology did

not influence the pollution level. Construction of bentonite cut-off wall bypassing MSW land-

fill reduces the risk of mercury release into ground-water environment.

Introduction
Mercury is a global contaminant posing severe risks to the health of ecosystems and humans
worldwide. The environmental contamination of land, air, water, and wildlife in various eco-
systems with Hg around the world due to the natural release and extensive anthropogenic use
of Hg has been a global concern for decades [1].

Global emissions of Hg in 2005 from landfills and waste utilization are estimated at 187 Mg,
which is 8.1% of the total emissions from anthropogenic sources. However, the estimate from
this sector exhibits large uncertainties due to the lack of field measurement data [2]. India pro-
duces the most Hg, with a measurement of 77.4 Mg [3], followed by China with 14.1 Mg [4],
North America with 13.0 Mg [5] and Europe with 10.1 Mg [6].
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Landfilling remains the predominant management method for the disposal of municipal
solid waste (MSW) in Poland. Used batteries, electric equipment, lighting equipment, control-
measuring devices, mercury amalgams and used paint tins are common items in municipal
waste landfills [7]. Wastes containing Hg that are deposited in landfills may become long-term
sources of environmental pollution to the air, water and land through leaching [8].

The Hg content in municipal wastes is difficult to determine. Hg is occasionally recovered
from waste, but this is often financially inviable. Concentration of Hg in municipal landfill can
range from 0.033 to 46.2 mg kg-1 [9,10]. Intense source reduction efforts have been imple-
mented to reduce the Hg content in municipal waste landfills, resulting in a rapidly declining
trend from 1.8 mg Hg/kg in 1995 to 0.5 mg Hg/kg in 2009 [11]. However, the increasing quan-
tities of MSW generated by society constantly adds to increasing the Hg load into landfills.

Landfill leachate contains a variety of pollutants that may potentially contaminate the
groundwater and affect the quality of surface and well waters. Concentration of Hg in a munic-
ipal waste landfill leachate can range from 0.05 to 160 μg/l [12,13,14]. Tang et al. [15] proved
that sewage treatment system can significantly reduce particulate Hg in leachate, ground water
and surface units and evaluated the THg concentration at 0.1–1.02 g/L.

Despite numerous reports devoted to municipal waste management and the resulting haz-
ards, the actual influence of such objects on the basic elements of the environment (water, soil,
plants) is still not fully known [6], [16]. Hg properties, such as toxicity, mobility and ability to
migrate over large distances, require continuous monitoring of the concentration of this metal,
particularly in the vicinity of locations commonly considered as potential sources of pollution
by Hg (e.g., municipal waste landfills).

The current study focuses on the influence of a municipal waste landfill on the pollution of
basic elements of the natural environment, i.e., soil, water and plants, by Hg. The working
hypothesis is that Hg concentration in particular components of the environment increase
according to the groundwater flow.

Materials and Methods
No specific permissions were required for the study area. We obtained permissions to collect
samples from waste landfill "Łubna". The field studies did not involve endangered or protected
species. Specific location of study: 52°01049@N 21°08056@E'

Study area
The landfill is located within the watershed on the Warsaw Plain, which is part of the plateau
where the Vistula River flood plain is present. The direction of inflow and outflow groundwa-
ters is presented in Figs 1–3. Two major geomorphological formations have been distinguished:
post-glacial denudated and non-denudated plateau and river valleys.

Waste disposal on the landfill began in 1978 on an unprepared and moist ground. The first
remedial and preserving works were introduced in 1996. They were based on a construction
plan and verified and updated according to the observational assessment of the environmental
processes occurring on the landfill. During recent years, the daily amount of mixed municipal
waste disposed was 400–700 tons, and the peak value achieved was 2500 t/day.

Improvement of groundwater quality was also achieved by introducing leachate transport
to waste treatment plants since 1997. In order to treat the waste directly in the locality, a biolog-
ical treatment plant was introduced at the landfill site [17]. The recognized geological structure
of the landfill area shows that the soil is stratigraphically and lithologicallly diverse, i.e. due to
its formation, diverse.
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Fig 1. Contamination of the environment with THg based on the accumulated concentration of this element in soil.

doi:10.1371/journal.pone.0133130.g001

Fig 2. Contamination of the environment with THg based on the accumulated concentration of this element in plants (Poaceae sp. and Solidago
virgaurea).

doi:10.1371/journal.pone.0133130.g002
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The first groundwater table is located within topsoil composed of fluvioglacial sands. The
drilled depth of the groundwater table is in the range of 0.1–1.8 m. Groundwater flow is deter-
mined by infiltration of rainfall and local drainage. The analyzed aquifer is contaminated by
the landfill leachate and contaminants washed out from precipitation, all coming from infiltra-
tion through the waste disposed in the landfill from 1978 to 1998 (before construction of a cut-
off wall). After the completion of the cut-off wall construction in June 1998, the process of
leachate infiltration through the first aquifer and to ditches was successfully eliminated. The
existing drainage, network of ditches and cut-off wall bypassing the landfill resulted in signifi-
cant changes of the groundwater flow direction and velocity, in comparison to the primary pat-
tern of hydroisohypses [18].

Reclamation works on the landfill in the late 1990s included construction of a bentonite
cut-off wall sealing the sides of the object, mainly focused on preventing the migration of pol-
lutants in the first aquifer horizon. The scheme of the introduced reclamation solutions is pre-
sented in S1 Fig.

Fig 3. Contamination of the environment with THg based on the concentration of this element in
groundwater.

doi:10.1371/journal.pone.0133130.g003
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Sampling and methodology
The study material included soil, plants and groundwater samples collected from the landfill
vicinity. Fifteen study plots were selected for the study. The area was characterized by a variable
morphology: forest areas, grassy wastelands, arable fields, and ditches draining the landfill.

Soil samples were collected from three depth levels from each plot (0–0.2, 0.2–0.5 and 0.5–
0.8 m). Twelve samples of soil and plant leaves were collected from each location: grass from
the family Poaceae sp. and Solidago virgaurea. Groundwater was collected using a submersible
pump in piezometers used in the monitoring system from depths of 0.25–0.75 m. 15 research
areas of 100 m2 each, i.e. around each of the installed piezometers, were chosen for this study.
Consequently, 12 plots of 1 m2 were selected randomly within every research area. 6 soil sam-
ples of 0.5 kg each from every analysed depth were collected from all 1 m2 plots whereas plant
sample was collected from the whole surface of 1 m2 plot, i.e. all the plants growing on the plot
were cut and analysed. Water samples of 0.5 l each from piezometers were collected 6 times
from each analysed depth at the same time, stored in the laboratory refrigerator and analysed
on the following day. Mixed sample for analysis was prepared from all the collected individual
samples of soil and plant leaves. The material for analysis was dried at 20°C. The obtained
results were converted to dry weight determined at 105°C.

The total Hg (THg) content was determined in the plants, soils and groundwater. In the
analyzed samples, the THg was determined in an air-dried mass of soil and plants using an
AMA-254 Analyzer, which allowed for fast analysis of Hg without the need of an initial stage
of preparation. The material for analysis was dried at 20°C. Analytical material was not dried at
a higher temperature due to potential loss of mercury during this process. The obtained results
were converted to dry weight determined at 105°C, The results of THg in soil and plants were
calculated to dry mass.

To provide quality control (QC), the elemental content in the plant samples was determined
using certified reference materials from NIST- USA. The obtained results were in good agree-
ment with the certified values. The recovery range was from 97 to 99% and accuracy 2–3%.

Examining biological factors is beneficial to assess the degree of pollution by metals and their
accumulation, mobility, translocation, and interaction in the environment. Several parameters
were calculated in order to quantitatively characterize the origin and transfer of Hg:

1. Biological Accumulation Coefficient (BAC), which expresses the ratio of metal concentra-
tion in plants to its concentration in soil (0–0.2 m);

BAC ¼ Hgplant
Hgsoil

2. Enrichment Factor (EFsoil), which is the relative abundance of a chemical element in soil
compared to the relative abundance with respect to the local background (50 μg kg-1);

EFsoil ¼
Hgsoil

Hgsoil; background

1. Mobility ratio, which expresses the ratio of metal concentration in soil (0–0.2 m) to its con-
centration in groundwater;

MR ¼ Hgsoilð0�0:2mÞ
Hggroundwater
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2. Enrichment Factor in the soil profile.

EFprof ¼
Hgsoilð0�0:2mÞ
Hgsoilð0:2�0:5mÞ

Data analysis
Basic descriptive statistics were used to determine the variability of the studied properties.
Additionally, analysis of correlation was conducted, with application of the Spearman rank
correlation to determine the relationships between the Hg content in soil, groundwater and
plants. Cluster analysis was conducted to group similar variables i.e. Hg concentrations. Euclid-
ean squared distance was used as a measure of multivariate similarity andWard’s methods was
used for agglomeration of objects. Statistical analysis was conducted using the software Statis-
tica 10, with a significance level of 0.05. Maps presenting the Hg content in the investigated
area were made by interpolation using Inverse Distance Weighting tools in Geostatistical Ana-
lyst of ArcGIS 9.3 software (ESRI, Redlands, CA.).

Results
The average concentration of THg near the Łubna municipal landfill in the topsoil (0–0.2 m)
ranged from 19 μg kg-1 d.m to 271 μg kg-1 with a median of 52 μg kg-1. At the depth of 0.2–0.5
m, the concentration ranged from 3–169 μg kg-1 (median at 12 μg kg-1), and the concentration
was 1–26 μg kg-1 (median at 4 μg kg-1) in the lowest analyzed horizon (0.5–0.8 m). The THg
content in the studied soils decreased with the depth of the soil profile, a fact commonly con-
firmed in the literature [19,20]. The value of the EFprof in the soil profile (profile 0–0.2 m/0.2–
0.5 m) was always higher than 1 (1.2–17.0) on all surfaces.

The concentration of THg in the lowermost layer of the soil (0.5–0.8 m) was much lower
than the background value. Therefore, for this layer, a map was not drawn, and the statistical
analysis comparing it with other results was not conducted. The distribution of isolines on the
maps (Fig 1) indicates that soil in both profiles to the west and south of the landfill contained
more THg than in the northern and eastern part of the study area. Land morphology (forest
areas, grassy wastelands, arable fields, ditches draining the landfill and surface runoff direction)
did not influence the degree of pollution, which indicates that the pollution level was influ-
enced by the deposition of Hg compounds from the air and from earlier years.

The content of THg in plants was less variable than in the soils and reached lower values.
Leaves of Solidago virgaurea (dicotyledonous plant) contained from 19 μg kg-1 to 66 μg kg-1

(median at 37.3 μg kg-1), and the Poaceae sp. (monocotyledonous plants) contained much less,
at 8–29 μg kg-1 (median at 15.2 μg kg-1). The maps (Fig 2) show the THg content in plants
from particular surfaces; the isolines have a different distribution. The highest THg concentra-
tion was noted in leaves of Solidago virgaurea, growing in the north-western part of the study
area, and in Poaceae sp. from the south-western and south-eastern part of the area. Land man-
agement did not influence the THg content in plants. There was no correlation between the
THg content in both plant groups (Table 1).

The Biological Coefficient Accumulation (BAC) values for Solidago altissima and topsoil
were low, averaging approximately 0.81, exceeding 1 in only two locations. Poaceae sp. had an
average of 0.30 and did not exceed 1 in any location (Table 2).

The content of THg in groundwater was variable, between 0.36 μg l-1 and 3.01 μg l-1

(median at 0.98 μg l-1). The highest pollution was noted in the south-eastern region and the
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lowest in the northern part of the study area (Fig 3). Land morphology had no influence on the
content of THg in groundwater. Statistical analysis of the results has shown a significant rela-
tionship between THg content in the soil layers at 0–0.20 m and 0.20–0.5 m and its concentra-
tion in groundwater. The ratio between the topsoil and groundwater content (Mobility Ratio—
MR) ranged from 24 to 175.

Discussion
In the literature, the level of Hg geochemical background in the topsoil has a wide range of
20–300 μg kg-1 [21]. According to the Forum of European Geological Surveys and the Geo-
chemical Atlas of Europe, the average concentrations of Hg in European soils are 61 μg kg-1

(5–1350 μg kg-1) [22]. In USA, values of 35 μg kg-1, 10–550 μg kg-1, and 35 μg kg-1 are reported
for agricultural land, grasslands, and mixed forests, respectively [23]. The background Hg value

Table 1. Correlation coefficients of Spearman correlation between the content of THg in soil, plants and groundwater.

Soil (depth) Plant

0.0–0.2 m (0.2–0.5 m) S. virgaurea Poaceae sp.

soil (0.2–0.5 m) 0.81

S. virgaurea 0.45 0.32

Poaceae sp. 0.52 0.42 0.42

Groundwater 0.64 0.59 0.17 0.51

In bold are coefficients indicating statistically significant relationships at significance level α = 0.05.

doi:10.1371/journal.pone.0133130.t001

Table 2. Values of biological factors.

No BAC1 BAC2 EFsoil EFprof MR

1 2.05 0.42 0.21 2.38 24.1

2 0.69 0.21 0.58 2.48 47.3

3 0.67 0.14 0.70 7.00 175.0

4 0.86 0.53 0.40 3.27 40.0

5 2.22 0.65 0.26 7.67 34.3

6 0.70 0.37 0.30 3.86 14.8

7 0.79 0.62 0.38 1.79 27.4

8 0.15 0.04 3.01 1.60 112.4

9 0.96 0.26 0.77 3.29 70.4

10 0.79 0.32 0.38 17.00 49.3

11 0.29 0.14 2.29 2.22 75.2

12 1.16 0.53 0.21 6.33 27.5

13 0.27 0.08 1.62 1.22 66.7

14 0.18 0.10 2.50 18.75 75.0

15 0.29 0.11 2.20 2.68 62.5

BAC1 (Biological Accumulation Coefficient) the ratio of THg concentration in S. virgaurea to its

concentration in soil (0–0.2 m); BAC2 (Biological Accumulation Coefficient) the ratio of THg concentration in

Poaceae sp. to its concentration in soil (0–0.2 m); EFsoil (Enrichment Factor), relative abundance of a

chemical element in a soil compared to the relative abundance respect to local background (50 μg kg-1);

EFprof (Enrichment Factor) in soil profile Hg soil (0–0.2 m)/Hg soil(0.2–0.5 m); MF (Mobility ratio) expresses the

ratio of metal concentration in soil (0–0.2 m),to its concentration groundwater

doi:10.1371/journal.pone.0133130.t002
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of soil in China was shown to be 65 μg kg-1 [24], compared to Australia, where it ranged from
1 μg kg-1to 100 μg kg-1 [25]. In Poland, the background level was assumed to be 50 μg kg-1 [26].
The degree of soil pollution in the Łubna landfill area was not high. In the surface soil layer
(0–0.2 m), the level of THg pollution on 50% of the study plots was lower than the background
for Poland at 50 μg kg-1.

In polluted areas, the THg content in soil may be significantly higher. The agricultural soil
in Europe contains a maximum of 1150 μg kg-1 (median at 0.30 μg kg-1), and the grazing land
soil maximum value is 3120 μg kg-1 (median at 0.35 μg kg-1) [27]. The THg content in the top-
soil in Beijing varied between 10–966 μg kg-1 (median at 185 μg kg-1) [28]. In Berlin, the maxi-
mum value was 7120 μg kg-1 (median at 190 μg kg-1), while the soil samples taken in the
surroundings of Berlin had a median value of 50 μg kg-1 THg [29]. THg concentrations and
distribution in soil around Hg mines in the Big Bend region, Texas (USA), approximately
300 m from an inactive THg mine, contained elevated concentrations at 3800–11000 μg kg-1,
which were considerably higher than the THg in soil collected from the baseline sites at 30–
50 μg kg-1 located 24 km from the mines [30]. The level of soil contamination by THg in the
Łubna MSW area may be defined as low.

In Poland, the THg content in soils was also variable. The Geochemical Atlas of Poland [31]
reported soil values from< 50 μg kg-1 to 7550 μg kg-1 and arable soil values from< 50 μg kg-1

to 4750 μg kg-1. In Gdańsk, the THg concentrations in the soil of the burial ground ranged
from 37 to 4817 μg kg-1 [32]. Arable soil in an industrialized area (Upper Silesia) contained
20–460 μg kg-1 of THg (median at 60 μg kg-1) [33] and in the Legnica-Głogów copper basin,
soils from industrialized areas contained a maximum of 5130 μg kg-1, while forest soils con-
tained 1970 μg kg-1 and soils from arable lands had 2740 μg kg-1 [34].

In the EU directive [35], a maximum tolerable THg content in fodder such as grass is 100 μg
kg-1. The THg content in the studied soils was much lower in all samples than the value admis-
sible by the EU directive, with a maximum of 66 μg kg-1. De Temmerman et al. [36] determined
the background concentration in Lolium perenne at 5–20 μg kg-1, and Carpi et al. [37] noted
higher background concentrations of 33 μg kg-1 in Lolium multiflorum.

Plants accumulate Hg mainly from air deposition [38,39,40]. Tomiyasu et al. [41] did not
find any relationship between the THg content in leaves of Solidago altissima and its concen-
tration in soil. Similarly, Niu et al. [42] noted a lack of relationship for Lolium perenne, who
suggested the application of this plant in biomonitoring of Hg pollution in air

The background level of THg in groundwater was< 1.00 μg l-1 [43,44]. The concentration
of THg in groundwater, depending on the location, attained different values. For example, in
Poznań (Poland), it reached 0.8–4.1 μg l-1, with a mean of 1.3 μg l-1 [45]. In Bavaria, 3 MSW
landfills showed values<0.04 μg l-1 [46]. In New Jersey (USA), in an urbanized area, the con-
centration ranged from 0.3–1980 0.04 μg l-1 [47]. In the Kathmandu Valley (Nepal), in an
industrial area, the maximum value was 300 μg l-1 [48].

The total mercury concentration in leachates fromMSW landfills is also variable. Matwiejc-
zyk et al. [49] determined concentrations of THg at 0.3–0.7 μg l-1 in leachates from 22 MSW
landfills in Upper Silesia (Poland), while Kulikowska & Klimiuk [13] noted concentrations of
17 μg l-1 in MSW landfills in Bartoszyce (Poland). Øygard et al. [50] found concentrations of
0.013–0.027 μg l-1 from four MSW landfills in Norway, Ilgen et al. [46] noted< 0.04–1.9 μg l-1

in 12 MSW landfills in Bavaria (Germany), Olivero-Verbel et al. [51] noted<0.015 μg l-1 in
Cartagena town (Colombia), The maximal admissible concentration of THg in potable water
in EU countries [52] is 1 μg l-1, whereas Polish Law [53] allows an annual mean concentration
of THg at 0.05 μg l-1 in surface waters. The hydrogeochemical background for THg in ground-
water in Poland is 0.05–1.00 μg l-1, whereas the range of 1.0–5.0 μg l-1 was determined for
water of insufficient quality due to natural processes and human activity.
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Groundwater is considered a source of Hg distribution fromMSW landfills [13,47, 49]. The
obtained results indicate that the groundwater pollution near the MSW landfill is higher than
the background level. However, it is not high, and only 50% of the samples exceed the admissi-
ble level for potable water. The isoline distribution on the map does not indicate unambigu-
ously that the landfill is the source of pollution. The statistical analysis of the results points to a
significant relationship between the THg content in soil layers of 0–0.2 m and 0.2–0.5 m and
its concentration in groundwater. Based on the dendrogram (Fig 4), the THg content in
groundwater is correlated to the topsoil content, whereas it is not related to the THg content in
plants. The content in Poaceae sp. and Solidago virgaurea was rather poorly related, which is
indicated by the level at which the dendrogram branches are connected. The research showed
that the construction of cut-off barrier bypassing MSW landfill decreased emission of Hg into
the waters outflowing from the landfill. This has been proven by low content of Hg in the soil
and water as well as in plants.

Conclusions
Environmental pollution near the Łubna MSW landfill reflected in the content of THg in three
soil layers, plants and groundwater was relatively low. The concentration of Hg in soil
decreased with depth, and in the lowest analyzed layer (0.5–0.8 m), it was below the back-
ground level. In the topsoil (0–0.2 m), the level of pollution by THg on 50% of the analyzed sur-
faces was lower than the background level of 1.0 μg l-1 and did not exceed the admissible level
for potable water in Poland (1 μg l-1).

Fig 4. Results of cluster analysis determining the similarities between the THg content in various objects.

doi:10.1371/journal.pone.0133130.g004
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Plants accumulate Hg mainly from air deposition. The statistical analysis indicated a lack of
connection between THg content in soil and plants (Solidago virgaurea and Poaceae sp.).
Leaves of the dicotyledonous plant Solidago virgaurea contained more THg (median at 37.3 μg
kg-1) than the monocotyledonous Poaceae sp. (median at 15.2 μg kg-1). The content of THg in
both plant groups was much lower in all samples than the maximum, tolerable Hg content in
fodder given in a EU directive at 100 μg did does not indicate the influence of the land mor-
phology (i.e., forest areas, grassy wastelands, arable fields, direction of runoff surface water and
ditches draining the landfill) to THg content in soil, plants and groundwater. It also did not
point to the landfill as a direct pollution source. Deposition of Hg compounds from the atmo-
sphere and the influence of other historical pollution sources controlled the pollution level in
specific locations.

Supporting Information
S1 Fig. Scheme of the reclamation belt surrounding the landfill.
(TIF)
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