Skip to main content
. 2015 Jul 15;10(7):e0132850. doi: 10.1371/journal.pone.0132850

Table 2. Neyman-optimized allocation as a function of sample size and stratum.

A
nh[h] = sample per size per stratum[h]
sample size nh[1] nh[2] nh[3] nh[4] ∑(nh)
330 75 67 72 116 330
660 102 103 110 345 660
990 126 134 94 636 990
1320 143 138 128 911 1320
1650 114 1 1 1534 1650
B
Nh[h] = total houses/stratum[h]
sample size Nh[1] Nh[2] Nh[3] Nh[4] ∑(Nh)
330 694 649 439 197 1979
660 569 611 454 345 1979
990 445 520 378 636 1979
1320 314 380 374 911 1979
1650 180 134 131 1534 1979
C
πh = h[h]/Nh[h]
sample size h = 1 h = 2 h = 3 h = 4
330 0.11 0.10 0.16 0.59
660 0.18 0.17 0.24 1.00
990 0.28 0.26 0.25 1.00
1320 0.46 0.36 0.34 1.00
1650 0.63 0.01 0.01 1.00
D
upper boundary limits (persons per residence)
sample size h = 1 h = 2 h = 3 h = 4
330 8.50 14.50 24.50 86.00
660 7.50 12.50 19.50 86.00
990 6.50 10.50 14.50 86.00
1320 5.50 8.50 11.50 86.00
1650 4.50 5.50 6.50 86.00

Table 2a: Optimal samples per stratum as a function of sample size. Table 2b: Optimal allocation of residential structures per stratum as a function of sample size. Table 2c: The inclusion probability πh = h[h]/Nh[h] as a function of sample size. Table 2d: The upper strata boundaries as a function of sample size.

Table 2a lists the number of residential structures to be sampled in each stratum for optimal stratification of the variable “persons per residential structure.” Table 2b is the total number of residential structures per stratum, while Table 2c specifies the ratios of samples per stratum divided by the total number of residential structures per stratum. These ratios are not constant for each sample size because the optimization was constrained by Neyman allocation, rather than proportional allocation. Table 2d lists the upper boundary limits as a function of sample size.