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Abstract
DNAmethylation is a widespread epigenetic modification that plays an essential role in

gene expression through transcriptional regulation and chromatin remodeling. The emer-

gence of whole genome bisulfite sequencing (WGBS) represents an important milestone

in the detection of DNAmethylation. Characterization of differential methylated regions

(DMRs) is fundamental as well for further functional analysis. In this study, we present

swDMR (http://sourceforge.net/projects/swdmr/) for the comprehensive analysis of DMRs

from whole genome methylation profiles by a sliding window approach. It is an integrated

tool designed for WGBS data, which not only implements accessible statistical methods to

perform hypothesis test adapted to two or more samples without replicates, but false discov-

ery rate was also controlled by multiple test correction. Downstream analysis tools were

also provided, including cluster, annotation and visualization modules. In summary, based

onWGBS data, swDMR can produce abundant information of differential methylated

regions. As a convenient and flexible tool, we believe swDMR will bring us closer to unveil

the potential functional regions involved in epigenetic regulation.

Introduction
DNAmethylation, catalyzed by DNAmethyltransferases (DNMTs), occurs primarily on car-
bon 5 position of cytosine bases and plays a pivotal role in transcriptional regulation, chromo-
some stability, genomic imprinting, X-inactivation and tissue differentiation[1–5]. Evidence
suggests that regions of methylated DNA are correlated with the expression of several tissue-
specific genes[4] and shown influences on activating coding regions across the genome[6, 7].
Aberrant DNAmethylation was reported to be implicated in the etiology of various diseases
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and may promote the development of cancer[8, 9]. Therefore, identification of genomic
regions with differential methylation level, termed as differentially methylated regions
(DMRs), represents the most important and fundamental step in dissecting these functional
regions that may be involved in transcriptional regulation.

Recently, the advent of the whole genome bisulfite sequencing (WGBS) has made a stride in
the progress of DNAmethylation analysis at single-base resolution[10–14]. This high-through-
put technology has been applied to quantitative measurement of whole genome DNAmethyla-
tion (methylome). Subsequently, precision DMRs could be identified from this single-base
resolution methylome. Conventional practice uses bisulfite treatment deaminating unmethy-
lated cytosines to uracil, which is later converted into thymine in DNA, making DNA sequence
contain only A, T and G. High-throughput sequencing generates ternary reads of lower com-
plexity, followed by algorithmic tools to align reads to reference and statistical analysis to dis-
cern cytosine and methylated cytosine. Many previous studies working on identifying DMRs
fromWGBS data have been successfully implemented, which provided novel insights about
genomic placement and functional consequences of DNAmethylation in cancer[8, 9].

To date, a number of tools have been developed and available for DMRs identification from
methylomes. For example, dmrFinder[15], QDMR[16] and methylMnM[17] are designed for
the analysis of DMR based on microarray, MeDIP-seq or MRE-seq data. To perform methy-
lome DMR detection at single-base resolution, CpG_MPs[18], DSS[19], bsseq[20], eDMR[21],
methylSig[22], MOABS[23], ComMet[24] and BiSeq[25] adopt different strategies (Table 1).
Most of them require samples with two more replicates except CpG_MPs, ComMet and BiSeq.
Despite the fact that proper replicates are essential to reduce bias from individual sequencing
data, the high cost of WGBS diminished the feasibility of these approach, thus identifying
DMRs from methylome without replicates receives more popularity.

To facilitate the identification of DMRs from those methylomes without replicates, we
developed swDMR which integrates multiple statistical methods based on a sliding window
approach to suffice easy detection, annotation and visualization of DMRs fromWGBS across
multiple samples.

Implementation

Data input
swDMR requires input files containing basic information of methylation cytosine across multi-
ple samples, including chromosome numbers, genomic coordinates, type of cytosine (CG,
CHG and CHH), numbers of methlylated cytosine (C) and unmethylated cytosine (T) (Fig
1A). Various WGBS data aligners[26], such as Bismark, BRAT, BS-Seeker, MethyCoder,
SOCS-B and B-SOLANA, were not integrated in swDMR, but they can be selected for users to
easily align reads through WGBS to the reference genome and generate methylation informa-
tion of each cytosine. To make swDMRmore convenient, we recommend user to use Bismark
to prepare input data of swDMR, given that the output of Bismark could be used to swDMR
directly.

DMR detection and annotation
Once the input file has been determined, the following procedures will be applied to detect
DMR (Fig 1B–1F).

Firstly, with a sliding window algorithm based on defined window size and step size, the
whole genome are divided into multiple fragments with overlapping regions of equal length.
Those sliding windows, which are used for further statistical analysis, should meet the three cri-
teria as follows: a) the depth in each cytosine position should be more than defined threshold
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Table 1. Software of DMR detection.

Software Method Samples Replicates

DSS Dispersion shrinkage estimate Gamma-Poisson or Beta-Binomial distributions two groups yes

bsseq Smoothing t-test two groups yes

methylSig Beta-binomial two groups yes

eDMR Expectation maximization (EM) algorithm to fit to a bimodal normal distribution two groups yes

MOABS Beta-Binomial hierarchical model two groups yes

BiSeq Design for targeted BS data (RRBS) two or groups no

CpG_MPs Combined hotspot and entropy theory two or more no

ComMet Use HMM model to identify DMR (a tool of bisulfighter). two no

doi:10.1371/journal.pone.0132866.t001

Fig 1. Workflow of swDMR. (A) Prepare methylation information of cytosines for swDMR. (B) Cut genome into fragments with defined window and step size.
(C) Adjust P value with FDR correction method. (D) Merge overlapped potential DMR regions. (E) Filter out regions with larger P value than cutoff. Blue
fragments represent overlapped region; green fragments represent potential DMR; pink fragments represent non-potential DMR; Red regions represent
DMRs.

doi:10.1371/journal.pone.0132866.g001
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in each sample. The filteration is based on the depth of each cytosine which is defined by user.
It is flexible that users can adjust the thresholds based on the sequencing depth freely. Mean-
time, we provide default thresholds (default is 4) for 30X data; b) number of selected cytosine,
remaining through previous condition, should be larger than defined value; c) after calculating
mean methylation level of each sample, the fold changes and differences of mean methylation
level between the two samples with maximum and minimummethylation level should be
larger than defined values, respectively. Secondly, choose one suitable statistical method to per-
form hypothesis test. swDMR has integrated several commonly used methods, containing both
parametric and non-parametric methods (T-test, Wilcoxon, Chisquare, Fisher, ANOVA and
Kruskal wallis test), adapted to DMR detection for multiple samples. Each sliding window will
acquire one P value with the selected statistics test method. Thirdly, false discovery rate (FDR)
method, proposed by Benjamini and Hochberg[27] to corrected P value, will be implemented.
Those regions with adjusted P value less than the cutoff of FDR are defined as potential DMRs.
Then, we proposed an extension function. Through the extension function, we merged two
potential DMRs if the distance between the two potential DMRs was less than the threshold
user-defined. The merged potential DMRs would be subject to statistical test previously
selected to guarantee that the merged region is significantly different. The current extension
step will stop until the re-performed P value exceeds the pre-defined cutoff. Then a new exten-
sion of the left potential DMRs will start. After repeating extension steps, those merged regions
with P value less than user-defined cutoff are then defined as candidate DMRs. Lastly, the
DMR length distribution will be calculated. To obtain global trends of DNAmethylomes in
DMRs among multiple samples, swDMR perform complete linkage hierarchical clustering of
the methylation level to the corresponding samples, using the heatmap.2 R function in gplots
package. BEDTools[28] is implemented for flexible annotation of DMRs by comparing the
chromosome coordinate of DMRs with the corresponding annotation information in GFF/
GTF/BED format. To reveal the overview of DNAmethylation patterns for one specific DMR,
the methylation information of DMRs with up- and down-stream flanking regions were plot-
ted. swDMR also provides WIG format files to query against UCSC genome browser [29], in
which functional genomic elements of relevant DMRs can be visualized optionally. Alterna-
tively, WIG format file can be also visualized on IGV[30] with self-defined elements.

Comparison with other DMR detection methods
Some existing tools, such as CpG_MPs, ComMet and BiSeq have been applied to DMR detec-
tion without replicates. BiSeq, which is mainly designed for analyzing targeted bisulfite
sequencing data, may not make a good performance for WGBS; while CpG_MPs, which com-
bined hotspot algorithm and entropy, can be applied to DMR detection without replicates.
ComMet, a tool packaged in Bisulfighter[24], employed HMMmodel to detect DMR without
replicates. Finally, to confirm the practical utility of swDMR to samples without replicates,
CpG_MPs and ComMet were implemented to do the comparison with swDMR.

Simulation data
We took chromosome 21 to simulate two methylome data sets of bisulfite sequencing with
bimodal distribution (Fig 2A).

DMR detection was applied with CpG_MPs, ComMet and swDMR respectively. By default,
a window size of 1000bp and a step size of 100bp were defined. The coverage of CpGs in
defined regions should be at least 5X and the fold change of methylation level should be at least
1.5 with more than 0.2 differences between compared samples. The number of CpGs in those
regions is required at least 5, the P value and FDR value of candidate DMRs by fisher exact test
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should be less than 0.01. To implement CpG_MPs, we defined more than 5 CpGs in the hot-
spot region. Then, CpG_MPs and ComMet were applied using the above parameters.

CpG_MPs, ComMet and swDMR identified 759, 6,827 and 1,822 DMRs respectively (Fig
2B). We found that swDMR identified more DMRs with absolute methylation level difference
ranging from 20% to 40% while CpG_MPs preferred to identify DMRs with larger absolute dif-
ference of methylation level (Fig 2C). However, ComMet identified 74.21% DMRs with abso-
lute differential methylation level less than 10% (Fig 2C). Compared with CpG_MPs and
swDMR, ComMet identified the most regions in high or low methylation levels of two samples
(Fig 2D), which indicated that those DMRs identified by ComMet with low absolute difference
of methylation level would be false positive. In conclusion, with the additional manipulation of
differential methylation level which is necessary for DMRs detection, swDMR find more
DMRs than CpG_MPs.

Real data
Considering the high potential false positive, ComMet was not implemented to the subsequent
analysis.

Fig 2. Simulation data and DMR detection comparison. (A) Simulation DNAmethylation level distribution of two samples. (C) Distribution of absolute
differential methylation level in DMR. (C) Venn diagram of ComMet (lightgreen), CpG_MPs (darkorchid) and swDMR (cornflowerblue). (D) Scatter plot of
DNAmethylation level in DMRs of simulation data to three DMR detection methods. Color (ranged from gray to yellow with contour line) represents intensity
of DMRs.

doi:10.1371/journal.pone.0132866.g002
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To compare CpG_MPs and swDMR in real data set, we obtained single-base resolution
methylome data of three cell lines (human embryonic stem cell (hESC), fibroblast-like cells
differentiated from hESCs (hESC-Fibro) and primary neonatal foreskin fibroblasts (Fibro),
respectively) from GEO database with accession GSE19418[12]. Previous study uncovered
decrease of global DNA methylation level during the differentiation process from hESC to
hESC-Fibro and from hESC-Fibro to Fibro. For DMRs detection with CpG_MPs, we used the
same parameters as used in simulation data. Meanwhile, using swDMR with other same
parameters, fisher exact test and ANOVA were applied to DMRs detection for two samples
and three samples, respectively.

Two samples
Methylome of hESC and Fibro were used for DMR detection.

After DMR detection process, swDMR and CpG_MPs identified 137,187 and 129,925
DMRs respectively. About 62.57% (81,297 in 129,925) DMRs identified by CpG_MPs have
intersections with that of swDMR (Fig 3A). These DMRs were annotated to gene features (For
example: UTR, CDS, Promoter, Upstream, Downstream, et al. S1 Table). Given the fact that
promoters are generally with hypomethylation and aberrant DNA methylation in promoter
plays vital role in gene expression, we focused on genes with DMRs overlapped with their pro-
moters. In this comparison, there were 1,922 genes with DMRs in promotors jointly found by
swDMR and CpG_MPs, while 1,156 and 2,013 genes were exclusively found by CpG_MPs and
swDMR respectively (Fig 3B). Among 2,013 swDMR specific genes, several genes are related
with hESC and Fibro development, such as HOXD11, HOXD9 and HOXD8 (Fig 3C). By GO
enrichment analysis of those three part genes were processed by an R package GOstats, we
found that those 1,922 shared genes were significantly enriched in 255 biology processes (P
value< 0.01, S2 Table), including multicellular organismal process, tissue development, cell
migration, anatomical structure development, system development, developmental process,
stem cell differentiation et al. These processes are closely related to hESC developing to Fibro.
Also, up to 1,156 specific genes of CpG_MPs were enriched in 59 processes (P value< 0.01, S3
Table). Most of them were related to metabolic process. It is also noted that the 2,013 specific
genes exclusively found by swDMR were enriched in 176 processes (P value< 0.01, S4 Table).
Moreover, we found several processes related to differentiation were reappearing, including
anatomical structure development, organ morphogenesis, multicellular organismal process,
system development and embryonic organ morphogenesis, et al.

Multiple samples
Methylome of hESC, hESC-Fibro and Firbo were applied to DMR detection for multiple
samples.

When DMR detection was accomplished, we obtained 92,868 and 60,976 DMRs for
swDMR and CpG_MPs respectively (S1 Table). There are 65.88% (40,169 in 60,976) DMRs of
CpG_MPs overlapped with that of swDMR, and related to 1,473 genes which were annotated
by DMRs (Fig 3D and 3E).

Then, enrichment analysis of biology process was performed with the same procedures used
for two samples. Two hundred and fifteen significantly enriched biology processes (P
value< 0.01, S5 Table) were obtained with same method of two samples DMR detection.
Amounts of development related processes were enriched, such as multicellular organismal
process, system development, cell motility, cell differentiation, embryonic appendage morpho-
genesis, skeletal system development. Of the specific 421 genes of CpG_MPs, 15 biology pro-
cesses were identified (P value< 0.01, S6 Table). Of the specific 2,641 genes of ANOVA, 185
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Fig 3. Comparison of swDMR and CpG_MPs in two and three samples. (A, D) Venn diagram of DMRs detected by fisher exact test through swDMR and
CpG_MPs to two samples respectively. (B, E) Venn diagram of genes with DMRs overlapped in their promoters (promoter: -1.3kb of TSS and +0.2kb of
TSS). (C, F) swDMR specific genes with methylation level of hESC, hESC-Fibro and Fibro. Methylation of each CpG ranges from 0 to 1. Red lines represent
DMRs of swDMR and CpG_MPs. Blue track represents RefSeq genes.

doi:10.1371/journal.pone.0132866.g003
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biology processes were enriched (P value< 0.01, S7 Table). Multicellular organismal process,
anatomical structure morphogenesis, developmental process and embryonic organ develop-
ment were also identified. Among those 2,641 specific genes, methylation of KLF4 promoter
increases with the differentiation process. swDMR identified longer region than that of
CpG_MPs. In addition, swDMR also identifies longer region in FOXO4 promoter (Fig 3F).
Lower methylation in promoter of FOXO4 in Fibro may be active as a negative regulator of cell
cycle and involve in growth and differentiation.

In DMR detection of either two or three samples, swDMR find more genes related to devel-
opment from hESC to hESC-Fibro as well as hESC-Fibro to Fibro. It provided abundant infor-
mation to comprehend the DNA methylome of differentiation process.

DMR annotation
swDMR also provides other useful tools to further comprehensively annotate DMRs, such as
length distribution of DMRs, cluster analysis and visualization. Take DMR detection of three
cell lines with ANOVA in swDMR for example. Statistical analysis of length distribution
showed that DMRs are distributed especially numerous in 1000bp (Fig 4A). Through clustering
analysis, complete linkage hierarchical clustering of the methylation level for each C in the CG
sequence context was acquired (Fig 4B). The similiarity between hESC and hESC-Fibro is
higher than that between hESC-Fibro and Fibro. The boxplot of methylation level of DMRs
could be acquired (Fig 4C). It also suggests the decreasing trend of DNAmethylation level
from hESC, hESC-Fibro to Fibro in DMRs, consistent with the whole genome methylome
change during differentiation[12]. Subsequently, all DMRs were mapped to genomic features
and distribution of DMRs in different genomic features were obtained through enrichment
analysis (Fig 4D). And a significant DMR covered the whole HOXD12 gene related to develop-
mental regulation (Fig 4E). 21 DMRs were identified in the region around HOXD family
genes and visualized on UCSC genome browser with default track option and CpG island
option (S1 Fig).

Performance
swDMR is well balanced with speed and memory consumption that can identify DMRs across
samples from the large dataset of WGBS efficiently. It implements Perl and R language, and
can run in parallel to accelerate the process of DMRs detection. Here, we performed swDMR
with whole genome bisulfite sequencing data on high-performance computer with Red Hat
4.1.2–48 operate system, AMD CPU (2.2GHz) with multiple CPUs. It took about 6 hours to
finish DMR detection on 10 threads. In terms of memory consumption, it costs less than 30
Mb memories in DMR detection, annotation and visualization, and about 260 Mb memories in
clustering analysis.

Perspectives
Our main objective in developing swDMR is to provide comprehensive survey of DMRs detec-
tion fromWGBS data. swDMR is capable of identifying DMRs and conducting comparison
analysis based on methylation profiles of two or multiple samples without replicates. In addi-
tion, versatile statistical methods have been integrated into swDMR to suffice individual analyt-
ical demands. Currently, swDMR only provides paralleled DMR cluster analysis, annotation
and visualization of DMRs. To better uncover the role of DMRs in epigenetic regulation and
the potential function regions related to gene transcriptional regulation, we expect continuous
efforts will be made to improve swDMR. In the future, swDMR will implement some databases
and existing toolkits, such as KEGG[31], WEGO[32] and DAVID[33] for gene ontology and
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Fig 4. Results of swDMR. (A) Length distribution of DMR. (B). Methylation level cluster analysis of three samples (hESC, hESC-Fibro, Firbo). (C)
Methylation level boxplot of three samples. (D) Enrichment analysis of genome features (5-UTR, 3-UTR, CDS, Intron, Upstream, Downstream). (E) A specific
DMR related to HOXD12 gene.

doi:10.1371/journal.pone.0132866.g004
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pathway enrichment analysis. Furthermore, swDMR will take into consideration of additional
factors (transcription factors, histone modifications and other functional elements et al.) that
can cooperate with DNA methylation to regulate transcriptional. Additionally, we will apply
ENCODE data[29, 34] to investigate the potential functions and mechanisms of DMRs in
human functional elements. Extended identification of imprinted loci with allele-specific DNA
methylation (ASM) will be developed soon, and is expected to greatly facilitate epigenetics
studies of complex disease[35]. In conclusion, swDMR is a robust software under active devel-
opment that can flexibly and precisely identify DMRs fromWGBS data, and lay a solid founda-
tion for further functional genomics analysis.

Supporting Information
S1 Fig. WIG visualization. TheWIG format file produced by swDMR was visualized on
UCSC genome browser. 21 DMRs were displayed across regeion of HOXD family genes.
(EPS)

S1 Table. DMR of two or three samples identified by fisher exact test, ANOVA of swDMR
and CpG_MPs and DMR distribution of different gene features.
(XLS)

S2 Table. Biology process enrichment of swDMR and CpG_MPs shared genes with DMR
located in promoter in two samples DMR detection.
(XLS)

S3 Table. Biology process enrichment of CpG_MPs specific genes with DMR located in
promoter in two samples DMR detection.
(XLS)

S4 Table. Biology process enrichment of swDMR specific genes with DMR located in pro-
moter in two samples DMR detection.
(XLS)

S5 Table. Biology process enrichment of swDMR and CpG_MPs shared genes with DMR
located in promoter in three samples DMR detection.
(XLS)

S6 Table. Biology process enrichment of CpG_MPs specific genes with DMR located in
promoter in three samples DMR detection.
(XLS)

S7 Table. Biology process enrichment of swDMR specific genes with DMR located in pro-
moter in three samples DMR detection.
(XLS)
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