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Abstract

For two-stage randomized experiments assuming partial interference, exact confidence intervals 

are proposed for treatment effects on a binary outcome. Empirical studies demonstrate the new 

intervals have narrower width than previously proposed exact intervals based on the Hoeffding 

inequality.
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1. Introduction

In a randomized experiment, it is commonly assumed that an individual only has two 

potential outcomes: an outcome on control, and an outcome on treatment. That an individual 

has only two potential outcomes assumes no interference (Cox, 1958) between individuals, 

i.e., an individual’s potential outcomes are unaffected by the treatment assignment of any 

other individual in the study. There are many settings where this assumption of no 

interference is clearly violated (Hong and Raudenbush, 2006; Sobel, 2006; Rosenbaum, 

2007).

Partial interference holds when individuals can be partitioned into groups such that there is 

no interference between individuals in different groups. In settings where partial interference 

holds, two-stage randomized experiments have been suggested as a study design for drawing 

inference about treatment (i.e., causal) effects. Two-stage randomized experiments proceed 

by (i) randomizing groups to treatment strategies and (ii) randomizing individuals within 

groups to different treatments based on the treatment strategy assigned to their group in 

stage (i). Two-stage randomized experiments are found in many fields of study, e.g., 

infectious diseases (Baird et al., 2012), medicine (Borm et al., 2005), economics (Duflo and 
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Saez, 2003), and political science (Ichino and Schündeln, 2012; Sinclair et al., 2012). 

Building upon ideas in Halloran et al. (1991), Hudgens and Halloran (2008) defined and 

derived unbiased estimators for the direct, indirect, total, and overall effects of treatment in a 

two-stage randomized experiment assuming partial interference. Liu and Hudgens (2014) 

showed that Wald-type confidence intervals based on these estimators perform well when 

the number of groups is large; however, often the number of groups may not be large 

enough. For example, Moulton et al. (2001) describe a group-randomized vaccine trial 

involving approximately 9,000 individuals but only 38 groups. Tchetgen Tchetgen and 

VanderWeele (2012), henceforth TV, proposed exact confidence intervals using the 

Hoeffding inequality for these four effects in a two-stage randomized experiment with 

partial interference. Unfortunately, as will be shown below, the TV intervals can be very 

wide and conservative.

In this paper, we propose different exact confidence intervals based on inverting exact 

hypothesis tests that tend to be less conservative than TV. The remainder of the paper is 

organized as follows. In §2, treatment effects in the presence of interference are defined and 

existing inferential results are reviewed. In §3, the assumption of stratified interference is 

presented and bounds are derived for the causal effects under this assumption. In §4 the 

proposed new exact confidence intervals are described by inverting certain permutation 

tests. In §5 a simulation study is conducted comparing the TV, asymptotic, and new exact 

confidence intervals. §6 concludes with a discussion. An R package is available 

implementing the proposed confidence intervals.

2. Preliminaries

2.1. Estimands

Consider a finite population of N individuals partitioned into k groups with ni individuals in 

group i for i = 1, …, k. Assume partial interference, i.e., there is no interference between 

individuals in different groups. Consider a two-stage randomized experiment wherein h of k 

groups are assigned to strategy α1 and k–h are assigned to α0 in the first stage, where 

strategy αs specifies that  of ni individuals will receive treatment. For example, strategy 

α0 might entail assigning (approximately) 1/3 of individuals within a group to treatment 

whereas strategy α1 might entail assigning (approximately) 2/3 of individuals within a group 

to treatment (see TV for further discussion about different types of treatment allocation 

strategies). Let Si = 1 if group i is randomized to α1 and 0 otherwise so that Pr[Si = 1] = h/k. 

In the second stage, individuals will be randomized to treatment conditional on group 

assignment in the first stage. Let Zij = 1 if individual j in group i is assigned treatment and 0 

otherwise. Let Zi = (Zi1, …, Zini) be the random vector of treatment assignments for group i 

taking on values , the set of all vectors of length ni composed of  elements 

equal to 1 and  elements equal to 0. Additionally, let Zi(j) denote the random vector of 

treatment assignments in group i excluding individual j taking on values 

.

Let yij(zi) be the binary potential outcome for individual j in group i when group i receives 

treatment vector zi. A randomization inference framework is adopted wherein potential 
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outcomes are fixed features of the finite population of N individuals and only treatment 

assignments S and Z are random (as in Sobel (2006); Rosenbaum (2007); Hudgens and 

Halloran (2008)). Define the average potential outcome for individual j in group i on 

treatment z = 0, 1 under strategy αs as

(1)

where . Henceforth, let  and 

. For treatment z under strategy αs define the group average potential outcome 

as , and the population average potential outcome as ȳ(z; αs) ≡ 

k−1 Σi ȳi(z; αs). Define the average potential outcome for individual j in group i under 

strategy αs as

(2)

the group average potential outcome as , and the population 

average potential outcome as . Define the direct effect of treatment 

for strategy αs as DE(αs) = ȳ(0; αs) − ȳ(1; αs), the indirect effect of α0 versus α1 as IE(α0, 

α1) = ȳ(0; α0) − ȳ(0; α1), the total effect as TE(α0, α1) = ȳ(0; α0) − ȳ(1; α1), and the 

overall effect of α0 versus α1 as OE(α0, α1) = ȳ(α0) − ȳ(α1); see Hudgens and Halloran 

(2008) and TV for additional discussion regarding these effects.

2.2. Existing Inferential Results

Hudgens and Halloran (2008) derived unbiased estimators for all population average 

potential outcomes, and thus for the four causal effects. Noting that Pr[Si = s] and Pr[Zij = z|

Si = s] are known by design, the estimator

(3)

where  is unbiased for ȳ(z; αs). 

Additionally, the estimator

(4)
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is unbiased for ȳ(αs). Unbiased estimators for the effects of interest follow immediately: 

, 

and .

TV proposed exact confidence intervals based on the Hoeffding inequality for the effects of 

interest in a two-stage randomized experiment where partial interference is assumed. In 

particular, for any γ ∈ {0, 1},  is a 1 − γ exact confidence interval 

for DE(αs) where  is given in equation (17) of TV for s = 0, 1. Additionally, 

, and 

 are all 1 − γ exact confidence intervals for their target 

parameters where ε*(γ, α0, q0, α1, q1, k) is given in Theorem 3 of TV.

Liu and Hudgens (2014) examined conditions under which Wald-type intervals 

 and Chebyshev-type intervals 

 are valid, large sample confidence intervals for DE(αs), 

where z(1−γ/2) is the 1 − γ/2 quantile for the standard normal distribution and  is 

an estimator of the variance of  for s = 0, 1. They also considered Wald and 

Chebyshev-type confidence intervals for the indirect, total, and overall effects.

3. Bounds Under Stratified Interference

Exact randomization based inference about the four effects is challenging without further 

assumptions as the experiment reveals only N of the  total 

potential outcomes. One such additional assumption is stratified interference (Hudgens and 

Halloran, 2008), which assumes that individual j in group i has the same potential outcome 

when assigned control or treatment as long as a fixed number of other individuals in group i 

are assigned treatment, i.e.,

(5)

Under (5), individual j in group i only has four potential outcomes, which we denote by 

yij(z; αs) for z, s = 0, 1, so that the experiment reveals the observed outcome Yij = Σz,s=0,1 

1{Zij = z; Si = s}yij(z; αs) for each individual and thus N of the 4N total potential outcomes. 

Furthermore, (5) implies that ȳij(z; αs) = yij(z; αs), and that 

 where .

Under (5), the observed data form bounded sets for all effects contained in the interval [−1, 

1]. The bounded sets have widths less than two where here and in the sequel the width of a 

set is defined to be the difference between its maximum and minimum values. Consider 

 for illustration. For the Σi Σj(1 − Si)(1 − 

Zij) individuals with Si = Zij = 0, yij(0; α0) is revealed; however, for the N − Σi Σj(1 − Si)(1 − 
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Zij) individuals with Si = 1 or Zij = 1, yij(0; α0) is missing and only known to be 0 or 1. Let y⃗

(z; αs) be the N-dimensional vector of potential outcomes for treatment z under strategy αs. 

Under (5), a lower bound for DE(α0) is found by filling in all missing potential outcomes in 

y⃗(0; α0) as 0 and all missing potential outcomes in y⃗(1; α0) as 1. An upper bound for DE(α0) 

is found by filling in all missing potential outcomes in y⃗(0; α0) as 1 and all missing potential 

outcomes in y⃗(1; α0) as 0. Simple algebra shows that width of the bounded set for DE(α0) is 

equal to 2 − (k − h)/k. The width of this bounded set approaches 1 as (k − h)/k → 1, i.e., as 

more groups are randomized to α0.

Similar logic leads to bounds for the other effects. The width of the bounded set for DE(α1) 

is equal to 2 − h/k which approaches 1 as h/k → 1. The width of the bounded set for IE(α0, 

α1) is equal to  which approaches 1 as the proportion of 

individuals assigned Zij = 0 approaches 1. The width of the bounded set for TE(α0, α1) is 

equal to  which approaches 1 as the 

proportion of individuals with Si = Zij = 0 or Si = Zij = 1 approaches 1. Lower and upper 

bounds for OE(α0, α1) can be derived similarly but the corresponding width does not have a 

simple closed form.

4. EIT Confidence Intervals

In addition to leading to unbiased estimators and bounds, the observed data can be used to 

form 1 − γ confidence sets for the four effects. The confidence sets are formed by inverting 

hypothesis tests about the potential outcomes that define the effect of interest. This section is 

divided into two parts: §4.1 outlines how the confidence sets are formed and §4.2 presents a 

computationally feasible algorithm for constructing an interval that contains the exact 

confidence set. Henceforth this interval is referred to as the exact inverted test (EIT).

4.1. An Exact Confidence Set

The methods to follow can be generalized to any effect, so consider DE(α0). Inference about 

DE(α0) concerns the vectors y⃗(0; α0) and y⃗(1; α0), which are partially revealed by the 

experiment. A hypothesis about these vectors is considered sharp if it completely fills in the 

potential outcomes not revealed by the experiment. A sharp null H0 : y⃗(0; α0) = y⃗0(0; α0), y⃗

(1; α0) = y⃗0(1; α0) maps to a value of DE(α0), which we denote DE0(α0). Only sharp null 

hypotheses that are compatible with the observed data need to be tested as other sharp nulls 

can be rejected with zero probability of making a type I error. Thus for each sharp null to be 

tested, the implied null value DE0(α0) will be a member of the bounded set derived in §3. 

There are B1 = 2Σi(1−Si)ni4ΣiSini sharp null hypotheses to test, as individuals with Si = 0 have 

only one missing potential outcome with two possible values {0, 1}, and individuals with Si 

= 1 have two missing potential outcomes with four possible values {0, 1} × {0, 1}.

After filling in the missing potential outcomes under H0, the null distribution of the test 

statistic  can be found by computing the statistic, denoted by , for each of 

the c = 1, …, C1 possible experiments under H0, where 
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 and  is the set of all possible values of the 

vector S such that . A two-sided p-value to test H0 is given by 

. If p0 < γ, H0 is rejected. 

Note p0 is a function of the null hypothesis vectors y⃗0(0; α0) and y⃗0(1; α0). Let p(DE0(α0)) 

denote the set of all p0 which are functions of compatible vectors y⃗0(0; α0) and y⃗0(1; α0) that 

map to DE0(α0). A 1 − γ confidence set for DE(α0) is {DE0(α0) : max{p(DE0(α0))} ≥ γ}. P-

values, and thus confidence sets, can be found in an analogous manner for the other effects.

4.2. A Computationally Feasible Algorithm

Finding the exact confidence set for DE(α0) described above entails testing B1 hypotheses, 

where each hypothesis test involves C1 randomizations. As N becomes large, the 

computational time necessary to perform B1×C1 operations grows exponentially. For 

illustration of the problem, consider two examples in which h = 1 of k = 1 groups are 

assigned α0, in which  of n1 = 20 individuals are randomized to treatment such that 

B1 = 220 and . Suppose there are two cases of observed data: (a) 5 of 

10 unexposed experienced an event, and 5 of 10 exposed experienced an event, and (b) 8 of 

10 unexposed experienced an event and 2 of 10 exposed experienced an event. Figure 1 

displays a plot of DE0(α0) versus p(DE0(α0)) for both examples. The bounded set and 95% 

exact confidence set for DE0(α0) are, respectively, {−0.5, −0.45, …, 0.45, 0.5} and {−0.35, 

−0.3, …, 0.3, 0.35} in (a) and {−0.2, −0.15, …, 0.75, 0.8} and {0.15, 0.2, …, 0.75, 0.8} in 

(b).

A computationally feasible algorithm is given below for approximating the confidence sets. 

The algorithm entails testing a targeted random sample of B2 of the B1 total sharp null 

hypotheses, and computing p-values for each sampled sharp null based on a random sample 

of C2 of the C1 possible randomizations. The set of computed p-values are then used to 

approximate the confidence set endpoints using local linear interpolation. For intuition 

underlying the interpolation step, consider the piecewise linear function that connects the 

maximum p-values for each compatible value of DE(α0) in Figure 1. Finding the x-

coordinates for the intersection points of this function and a horizontal line at γ will 

conservatively approximate the lower and upper 1 − γ confidence limits for DE(α0). This 

suggests the following targeted, local linear interpolation algorithm for estimating the lower 

bound of a confidence set for DE(α0). An analogous algorithm can be used to target the 

upper limit of the confidence set for DE(α0).

Let  denote the lower bound for DE(α0), and ŷ(z; α0)l and ŷ(z; α0)u denote the 

lower and upper bounds, respectively, for ȳ(z; α0).

1. Test the unique sharp null about y⃗(0; α0) and y⃗(1; α0) that maps to . If the 

corresponding p-value p0 ≥ γ, let  be the lower limit of the confidence set 
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and do not proceed. Otherwise, let  and let pl = 1 − 1/B2. Let 

 and  = {p0}.

2. Fill in the missingness in y⃗(0; α0) with samples from a Bernoulli distribution with 

mean  and fill in the missingness in y⃗

(1; α0) with samples from a Bernoulli distribution with mean 

 where qp(a, b) = (1 − p)a + pb, and 

f(x) = x if 0 ≤ x ≤ 1, f(x) = 0 if x < 0, and f(x) = 1 if x > 1.

3. If the sampled sharp null maps to a value , add DE0(α0) to 

the set , add the corresponding p0 to , and if p0 ≥ γ then update l to equal 

DE0(α0). Otherwise, do not compute a p-value corresponding to the sampled sharp 

null and let pl = pl − 1/B2.

Repeat Steps 2 and 3 B2/2 − 1 times.

Let t be the function from  to  that maps each p-value p0 in  to the null value of 

DE0(α0) in  which corresponds to the sharp null hypothesis which generated p0. Let  = 

{max{p ∈  : t(p) = l} : l ∈ }. Let r1 = min{r ∈  : r ≥ γ} and let r2 = max{r ∈  : r < γ}. 

Let li = t(ri) for i = 1, 2. The lower limit of the confidence set l* is found by local linear 

interpolation by finding the x-coordinate for the point at which a line drawn from (l2, r2) to 

(l1, r1) intersects a horizontal line at γ, i.e., l* = l2+(γ−r2)(l2−l1)/(r2−r1). The upper limit u* 

is found analogously. As B2 → B1 and C2 → C1, the interval [l*, u*] will contain the exact 

confidence set described in §4.1 with probability approaching 1.

The algorithms for approximating confidence sets for IE(α0, α1) and TE(α0, α1) are 

analogous. For OE(α0, α1) the algorithm is modified slightly as it involves all four vectors y⃗

(z; αs), z, s = 0, 1. Let ŷ(αs)l and y⃗(αs)u be the lower and upper limits, respectively, for 

ȳ(αs) under (5). If p0 < γ for OE(α0, α1)l, set  and fill in the missingness in y⃗

(0; α0) and y⃗(1; α0) with samples from a Bernoulli distribution with mean 

 where pl = 1 − 1/B2. A p-value is computed if 

 and if not pl = pl − 1/B2. If p0 ≥ γ for OE(α0, α1)l, l is set to 

equal OE0(α0, α1). The upper endpoint can be approximated using an analogous approach.

The R package interferenceCI is available on CRAN (Rigdon, 2015) for computing EIT 

confidence intervals via this algorithm for the four effects assuming stratified interference 

when the outcome is binary. The Wald, Chebyshev, and TV intervals are also computed in 

the package.

5. Comparisons Via Simulation

A simulation study was carried out to compare the asymptotic, TV, and EIT confidence 

intervals. The simulation proceeded as follows for fixed values of α0, α1, DE(α0), DE(α1), 

IE(α0, α1), k, ni = n for i = 1, …, k such that N = kn:

0 Potential outcomes were generated by first fixing the vectors y⃗(z; αs) for z, s = 0, 

1 to be length N vectors of all 0s. Group membership was assigned by letting 

Rigdon and Hudgens Page 7

Stat Probab Lett. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



elements n(i − 1) + 1, …, ni of each vector belong to group i = 1, …, k. Then, 

N(0.5+DE(α0)/2) elements in y⃗(0; α0) were randomly set to equal 1 and 

N(0.5−DE(α0)/2) elements in y⃗(1; α0) were randomly set to equal 1. Then, N(0.5 

+ DE(α0)/2 − IE(α0, α1)) elements in y⃗(0; α1) were randomly set to equal 1. 

Finally, N(0.5 + DE(α0)/2 − IE(α0, α1) − DE(α1)) elements in y⃗(1; α1) were 

randomly set to equal 1.

1 Observed data were generated by (i) randomly assigning h of k groups to 

strategy α1 and (ii) randomly assigning  of n individuals per group to 

treatment for s = 0, 1. Observed outcomes followed based on these treatment 

assignments and the potential outcomes from step 0.

2 For each effect, 95% confidence intervals were computed using the observed 

data generated in step 1.

3 Steps 1–2 were repeated 1000 times.

In the simulation we let k = n = 10 or k = n = 20 with h = k/2,  under α0, 

under α1, DE(α0) = 0.95, DE(α1) = 0.3, and IE(α0, α1) = 0.5 (such that TE(α0, α1) = 0.8 and 

OE(α0, α1) = 0.395). In the targeted sampling algorithm, B2 = C2 = 100 such that B2/B1 and 

C2/C1 were less than 10−20 for all effects. Table 1 displays average widths and coverages for 

Wald, EIT, Chebyshev, and TV. Wald and Chebyshev fail to achieve nominal coverage for 

DE(α0) when k = n = 10 and Wald additionally fails to cover for DE(α0) when k = n = 20 

and for IE(α0, α1) and TE(α0, α1) when k = n = 10. As guaranteed by their respective 

constructions, EIT and TV achieve nominal coverage for all setups; however, EIT has 

narrower width than TV in all setups. In fact, EIT is an order of magnitude narrower than 

TV in three instances: DE(α0), TE(α0, α1), and OE(α0, α1) when k = n = 20.

6. Discussion

In this paper new exact confidence intervals have been proposed for causal effects in the 

presence of partial interference. The new intervals are constructed by inverting permutation 

based hypothesis tests. These intervals do not rely on any parametric assumptions and 

require no assumptions about random sampling from a larger population. The confidence 

intervals are exact in the sense that the probability of containing the true treatment effects is 

at least the nominal level. As there may be many vectors of potential outcomes that map to 

one value of the causal estimand, a computationally feasible algorithm was proposed in §4.2 

to approximate the exact confidence intervals. Empirical studies demonstrate the new exact 

intervals have narrower width than previously proposed exact intervals based on the 

Hoeffding inequality. Nonetheless, the empirical coverage of the proposed intervals still 

tends to exceed the nominal level, suggesting one possible future avenue of research would 

be to develop alternative intervals which are less conservative and narrower but maintain 

nominal coverage.
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Figure 1. 
Plot of DE(α0) versus p(DE(α0)) for examples (a) and (b) as outlined in §4.2.
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