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Genomic analysis provides insights into the role of copy number variation in disease, but 

most methods are not designed to resolve mixed populations of cells. In tumors, where 

genetic heterogeneity is common1–3, very important information may be lost useful for 

reconstructing its evolutionary history. Here we show that with flow-sorted nuclei, whole 

genome amplification (WGA), and next generation sequencing we can accurately quantify 

genomic copy number within an individual nucleus. We apply single nucleus sequencing 

(SNS) to investigate tumor population structure and evolution in two breast cancer cases. 

Analysis of 100 single cells from a polygenomic tumor revealed three distinct clonal 

subpopulations that likely represent sequential clonal expansions. Additional analysis of 100 

single cells from a monogenomic primary tumor and its liver metastasis suggested that a 

single clonal expansion formed the primary tumor and seeded the metastasis. In both 

primary tumors, we also identified an unexpectedly abundant subpopulation of genetically 

diverse ‘pseudodiploid’ cells that do not travel to the metastatic site. In contrast to gradual 

models of tumor progression, our data indicate that tumors grow by punctuated clonal 

expansions with few persistent intermediates.

In SNS we isolate nuclei by flow-sorting and amplify DNA using whole genome 

amplification (WGA) for massively parallel sequencing (Supplementary Fig. 1). We achieve 

low coverage (~6%) of the genome of a single cell, sufficient to quantify copy number from 

sequence read depth. Several features of our data analysis were designed for SNS and differ 

from previous methods4–6 for measuring copy number from sequencing data. In contrast to 

using fixed intervals to calculate copy number, we use variable length bins but with uniform 

expected unique counts, which correct for biases that have been reported7–9 in WGA 

(Supplementary Figure 2; see Methods). For each single cell, we typically achieve a mean 

read density of 138 per bin (SEM±5.55, n=200). Over-replicated loci called ‘pileups’ that 

have been previously reported in WGA10–12, do occur in our data but not at recurrent 
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locations in different cells (Supplementary Fig. 3). Pileups are sufficiently randomly 

distributed and sparse so as not to affect counting at the resolution we have chosen (54 kb). 

Assuming that single cells will have discrete copy number states, we segment the variable 

bins and calculate integer copy number profiles (Supplementary figure 4; see Methods).

To validate our method, we compared the sequence counting profile of DNA from a single 

SK-BR-3 cell (Fig. 1a) with DNA from one million cells (Fig. 1b). The major amplifications 

(RD2, TPD52, ERBB2, BCAS1) and deletions (DCC) are detected in both profiles, as are 

much more abundant but less dramatic small changes in copy number. To demonstrate how 

reproducible small differences are, we assessed data for a complex region on chromosome 

8q13.2-q24.23 that contains more than thirty segments with differing copy number. These 

data were reproducible in both a single cell (Fig. 1c) and a million cell sample (Fig. 1d). We 

also compared the sequence read profiles from several single cells and from a million cells 

to each other and to the profile of array CGH from bulk DNA (Supplementary Fig. 5). In all 

instances the profiles showed very high (r2 > 0.85) correlation. The reproducibility and 

variation between single cell copy number profiles was also investigated by comparing 

seven single cells from a culture of SK-BR-3 and seven from normal human fibroblasts. 

These data are displayed as heat maps (Fig. 1e–f), which show that some genomic variation 

exists between cells. The diploid fibroblast cultures showed no random events; we observed 

only a few consistent events at levels expected for heritable copy number variations.

We next selected two high grade (III), triple negative (ER−, PR−, Her2−) ductal carcinomas 

(T10, T16P) and a paired metastatic liver carcinoma (T16M) to study tumor population 

structure and infer tumor evolution by single cell analysis. T10 was selected to study 

primary tumor growth, because it was previously shown13 to be genetically heterogeneous 

(polygenomic), and T16P was selected because it was classified as genetically homogeneous 

(monogenomic).

T10 was macro-dissected into 12 sectors to preserve anatomical information, and nuclei 

were flow-sorted from six sectors (S1–S6) for SNS (Fig. 2a). FACS analysis showed four 

major distributions of ploidy: a hypodiploid fraction (F1) exclusive to sectors 1–3; a diploid 

2N fraction (F2) in all sectors; and two sub-tetraploid fractions (F3 and F4) in sectors 4–6. 

We selected 100 single cells from multiple sectors and ploidy fractions for sequencing and 

calculation of integer copy number profiles (Supplementary Table 1).

Breast tumors are typically mixtures of cancer cells with normal tissue, stroma, and 

infiltrating leukocytes. By histopathology, T10 was assessed to contain 63% normal and 

37% tumor cells and noted to be heavily infiltrated with leukocytes. Most of the diploid 

nuclei from F2 had flat genome profiles, characteristic of normal cells. Nearly two-thirds 

(31/47) of these diploid profiles showed narrow deletions in the T-cell receptor loci or one 

or more immunoglobulin variable region loci, consistent with infiltration by immunocytes 

(data not shown). Of the remaining sixteen nuclei from F2, twelve showed no discernable 

aberrations, but four nuclei exhibited aberrant profiles with diverse chromosome gains and 

losses. Each of these ‘pseudodiploid’ nuclei profiles appeared unrelated to the others or to 

those of the major tumor cell populations found in fractions F1, F3 and F4.
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To determine population substructure we calculated pair-wise distances between the 100 

integer copy number profiles, and built a tree using neighbor-joining14 (Fig. 2b). The 100 

profiles clustered into four subpopulations (D+P, H, AA and AB) regardless of their sector 

of origin. The D+P subpopulation contains predominantly flat diploid (D) profiles, but also 

pseudodiploid (P) cells that have diverged by varying degrees from the diploids. The three 

major ‘advanced’ tumor subpopulations (H, AA and AB) are highly clonal with complex 

genomic rearrangements, and together comprise slightly less than half the cells of the tumor. 

These cells were isolated from the hypodiploid (F1) and two sub-tetraploid (F3 and F4) 

ploidy fractions, respectively. We had previously identified these subpopulations by 

profiling millions of cells by array CGH13, but we could not determine if they were 

composite mixtures of different tumor clones. By SNS we can now see that each 

subpopulation is composed of cells that share highly similar copy number profiles, likely 

representing three clonal expansions. Each subpopulation (H, AA and AB) is clearly related 

to the others by many shared genomic alterations, but they have also diverged and developed 

distinct attributes (for example, a massive 50-fold amplification of the KRAS oncogene in 

AB). The H cells display the characteristic ‘sawtooth’ pattern15 comprising broad 

chromosomal deletions (Fig. 2c). They are anatomically segregated in the sectors S1–S3 of 

the tumor, whereas the AA and AB clones are intermixed and occupy sectors S4–S6.

To understand the relationship between subpopulations, we clustered profiles by 

chromosome breakpoints (which are directly related to the steps by which tumor cells 

diverge). We identified 657 copy number breakpoints and used them to build a phylogenetic 

tree, which closely resembles the structure of the neighbor-joining tree based on copy 

number (Supplementary Fig. 6). We also applied biclustering16 to construct a heat map of 

breakpoints, and ordered it based on the copy number tree to show which breakpoints were 

common or divergent between the major subpopulations (Supplementary Fig. 7a). Although 

there is considerable variation within each subpopulation, no obvious further population 

substructure was evident. To estimate the common ancestors, we constructed a phylogenetic 

lineage using the consensus breakpoint patterns from the major tumor subpopulations (Fig. 

2c). This lineage shows that the n1 common ancestor diverged a significant distance from 

the diploid cells, but that the distance between n1 and n2 is very small. By contrast, the 

divergence of the subpopulations after n1 and n2 is very large, with AB showing the greatest 

phylogenetic distance from the diploids. We thus infer that the three subpopulations 

emerged when the tumor was much smaller.

We investigated a second tumor to determine whether these findings extend. We isolated 52 

cells from a primary breast tumor (T16P) and 48 cells from its associated liver metastasis 

(T16M). Each tumor was macro-dissected into 6 sectors, three of which were flow-sorted 

(Fig. 3a–b). Both T16M and T16P showed diploid peaks (F1) and a single aneuploid 

tetraploid peak (F2) of roughly equal cell count in all sectors (Supplementary Table 2), 

consistent with histological sections showing approximately 50% tumor and 50% normal 

(stromal) cells with low leukocyte infiltration in both samples. To explore population 

substructure we again constructed neighbor-joining trees from the integer copy number 

profiles, combining the primary and metastasis cells (Fig. 3c). We again observed numerous 

pseudodiploid cells, but a single subpopulation of aneuploid cells very diverged from the 
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diploid population. As for T10, the 12 pseudodiploid cells from T16P displayed diverse 

genomic lesions with no clear relationships to each other or to he main tumor lineage. Of the 

24 normal diploids in the primary, two had deletions of the T-cell receptor. There were no 

pseudodiploid cells among the 26 diploid cells from the metastasis.

These data suggest that the primary tumor mass formed by a single clonal expansion of an 

aneuploid cell, and that one of the cells from this expansion subsequently seeded the 

metastatic tumor with little further evolution. There are no branches of the tree 

corresponding to cells intermediate between the aneuploid subpopulation and the diploid 

root. Although closely related, the primary and metastatic aneuploid cells cleanly separate 

using the Euclidean metric (Fig. 3c), suggesting the two populations have not mixed since 

seeding the metastasis. The differences in the profiles that distinguish the primary and 

metastatic tumor populations are in the degree of copy number change rather than 

breakpoints (Fig. 3d). In a hierarchical tree created from breakpoints alone, we cannot 

cleanly separate primary from metastatic aneuploid cells (Supplementary Fig. 6b). 

Moreover, when we calculate common breakpoints in the single cell profiles and apply 

biclustering to ordered samples (Supplementary Fig. 7b), a large number of breakpoints are 

common to both populations and no breakpoints cleanly distinguish them. By these 

analyses, no further population substructure is evident.

In contrast to the clear clonal relationships among aneuploid subpopulations, pseudodiploid 

cells are unusual in showing remarkable genomic heterogeneity (Fig. 4). Pseudodiploid 

profiles are characterized by nonrecurring copy number changes (including whole 

chromosome arms) that are not shared between any two pseudodiploid cells, nor with the 

corresponding tumor profiles (Fig. 4e). These data suggest that unlike the aneuploid cells, 

pseudodiploids do not undergo clonal expansions in the tumor. Nevertheless, they comprise 

a substantial proportion of the diploid gated cells: 8% in T10 (4/47) and 33% in T16P 

(12/36), or approximately 4% and 24% of the tumor mass, respectively. In contrast, the 18 

profiles from single nuclei of normal adjacent breast tissue are all flat (Fig. 4a). The relative 

abundance of pseudodiploid cells in primary tumors indicates that they may emerge from an 

ongoing aberrant process that generate genomic diversity in the tumor.

In principle, we can learn about DNA sequence mutations from SNS data. However, the 

sparse sequence coverage makes this analysis problematic. By combining data from multiple 

cells, belonging to well defined subpopulations, we can perform global and regional analysis 

at the many nucleotide positions where sufficient numbers of sequence reads overlap. When 

examined this way, losses of heterozygosity are unequivocally significant, and map in large 

contiguous genomic blocks that correlate well with copy number loss (Supplementary Fig. 8 

and Supplementary Table 3). The extensive LOH detected in all of the T10 subpopulations 

and in T16 suggests that both cancers passed through a hypodiploid stage.

Our study demonstrates that we can obtain robust high-resolution copy number profiles by 

sequencing a single cell and that by examining multiple cells from the same cancer, we can 

make inferences about the evolution and spread of cancer. Moreover, the identification of 

pseudodiploid cells shows that these methods can identify cell types previously undetectable 

by other methods. Our findings are consistent with previous findings17 using bulk DNA, 
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which suggests that copy number profiles in primary tumors are highly similar to the 

metastases. Thus the metastatic cells emerge from a main advanced expansion, and not from 

an earlier intermediate or a completely different subpopulation. This is consistent with 

recent deep-sequencing studies of primary-met pairs, all suggesting that metastatic cells 

arise late in tumor development18–19.

There are many gradual models for tumor progression, including clonal evolution20, the 

mutator phenotype21,22, and stochastic progression23. While we have examined only two 

cancers in depth, both display a pattern of tumor growth which we call ‘punctuated clonal 

evolution’, borrowing a term from species evolution used to explain gaps in the fossil 

record24. Explicitly, the tumor subpopulations are each distant from their root, without 

observable intermediate branching. In contrast to gradual models, this pattern reflects the 

sudden emergence of a tumor cell whose rate of effective population growth dramatically 

exceeds its rate of genomic evolution.

METHODS

Samples

The frozen ductal carcinoma T10 (CHTN0173) was obtained from the Cooperative Human 

Tissue Network, and T16P and T16M were obtained from Asterand (Detroit, MI) Pathology 

shows that both tumors were poorly differentiated and high grade (III) as determined by the 

Bloom-Richardson score, and triple-negative (ER−, PR− and Her2/Neu−) as determined by 

immunohistochemistry. The cell lines used in this study include a normal male immortalized 

skin fibroblast (SKN1) and a breast cancer cell line (SK-BR-3). Normal breast tissue was 

obtained from Dr. Hanina Hibshoosh from Columbia University.

Single Nucleus Sequencing (SNS)

Nuclei were isolated from cell lines and from the frozen tumor using an NST-DAPI buffer 

(800 mL of NST [146 mM NaCl, 10 mM Tris base at pH 7.8, 1 mM CaCl2, 21 mM MgCl2, 

0.05% BSA, 0.2% Nonidet P-40]), 200 mL of 106 mM MgCl2, 10 mg of DAPI, and 0.1% 

DNase-free RNase A. The frozen tumor was first macro-dissected into 12 sectors of equal 

size using surgical scalpels and nuclei were isolated from six sectors for FACS by finely 

mincing a tumor sector in a Petri dish in 1.0–2.0 mL of NST-DAPI buffer using two no. 11 

scalpels in a cross-hatching motion. The cell lines were lysed directly in a culture plate using 

the NST-DAPI buffer, after first removing the cell culture media. All nuclei suspensions 

were filtered through 37-μm plastic mesh prior to flow-sorting.

Single Nuclei were sorted by FACS using the BD Biosystems Aria II flow cytometer by 

gating cellular distributions with differences in their total genomic DNA content (or, ploidy) 

according to DAPI intensity. First a small amount of prepared nuclei from each tumor 

sample was mixed with a diploid control sample (derived from a lymphoblastoid cell line of 

a normal person) to accurately determine the diploid peak position within the tumor and 

establish FACS collection gates. Before sorting single nuclei, a few thousand cells were 

sorted to determine the DNA content distributions for gating. A 96-well plate was prepared 

with 10ul of lysis solution in each well from the Sigma-Aldrich GenomePlex© WGA4 kit. 
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Single nuclei were deposited into individual wells in the 96-well plate along with several 

negative controls in which no nuclei were deposited.

Whole genome amplification was performed on single flow-sorted nuclei as described in the 

Sigma-Aldrich GenomePlex WGA4 kit (cat # WGA4-50RXN) protocol. WGA fragments 

from the frozen breast tumor and SK-BR-3 single cells were used directly for Single-read 

library construction using the Illumina Genomic DNA Sample Prep Kit (cat # FC-102-1001) 

and following standard protocol with a gel purification size range of 300-250bp. WGA 

fragments from the fibroblast cell line were first sonicated using the Diagenode Bioruptor© 

using the following program: 2 times, 7 minutes with 30 seconds high on/off mode in ice 

cold water. Sonication removes a specific 28bp adapter sequence that is added on during 

WGA, and improves the total number of sequencing reads per lane.

Single-read libraries from single nuclei were sequenced on individual flow-cell lanes using 

the Illumina GA2 analyzer for 76 cycles. Data was processed using the Illumina 

GAPipeline-1.3.2 to 1.6.0 Sequence reads were aligned to the human genome (HG18/

NCBI36) using the Bowtie alignment software44 with the following parameters: ‘bowtie –S 

–t –m 1 –best –strata –p16’ to report only top scoring unique mappings for each sequence 

read. To eliminate PCR duplicates, we removed sequences with identical start coordinates.

Read Depth Counting in Variable Bins

Copy number is calculated from read density, by dividing the genome into an ‘bins’ and 

counting the number of unique reads in each bin. In previous copy number studies read 

density was calculated using bins with uniform fixed length 16–19. In contrast we use bins of 

variable length, that adjust size depending on the mappability of sequences to regions of the 

human genome. In regions of repetitive elements, lower numbers of reads are expected and 

thus the bin size is increased. To determine interval sizes we simulated sequence reads by 

sampling 200 million sequences of length 48 from the human reference genome (HG18/

NCBI36) and introduced single nucleotide errors with a frequency encountered during 

Illumina sequencing. These sequences were mapped back to the human reference genome 

using Bowtie15 with unique parameters as described above. We assigned a number of bins to 

each chromosome based on the proportion of simulated reads mapped. We then divided each 

chromosome into bins with an equal number of simulated reads. This resulted in 50009 

genomic bins with no bins crossing chromosome boundaries. The median genomic length 

spanned by each bin is 54kb. For each cell the number of reads mapped to each variable 

length bin was counted. This variable binning efficiently reduces false deletion events when 

compared to uniform length fixed bins as shown in Supplementary Fig. 2b and 2c. For a 

single cell we typically measure 138 sequence reads per bin.

Integer Copy Number Quantification

Single cells will have integer copy number states that we can infer from sequence read 

counts, as follows. Unique sequence reads are counted in variable bins (Supplemental Fig. 

4a) and segmented using the Kolmogorov-Smirnov (KS) statistic (Supplemental Fig. 4b). To 

estimate the integer differences of copy number states, we calculate Gaussian kernel 

smoothed density plots using Splus (MathSoft, Inc.), showing the difference between 
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median bin counts for all pair-wise combinations of different segments (Supplemental Fig. 

4c–e) The uniform steps between groups are very apparent, and is a general property of 

single cell data. We then convert our KS-segmented data into profiles of integer copy 

number as follows. We take the differential bin count of the second peak, denoted by an 

asterisk in Supplemental Fig. 4a, to represent a copy number “increment” of 1. We then 

divide every bin count in the profile by the increment and round to infer the integer copy 

number. We show in Supplemental Fig. 4f–g how closely the segmentation profile agrees 

with the integer copy number profile. However, for diploid or near diploid cells there are 

few to no steps from which to observe the increment, and we use a different method, taking 

the increment as the median bin count on the autosomes divided by two.

Gene Annotations

Amplifications and deletions identified in the single cell copy number profiles were 

annotated to identify UCSC genes. Cancer genes were identified using a compiled database 

from the cancer gene consensus and the NCI cancer gene index (Sophic Systems Alliance 

Inc., Biomax Informatics A.G).

Neighbor-joining Trees of Copy Number Profiles

Integer copy number profiles of single cells were used to calculate Neighbor-joining trees 

using a Euclidean distance metric with Matlab (Mathworks). Branches were flipped to orient 

nodes within subpopulations and trees were rooted using the last common diploid node.

Common Breakpoint Detection

Breakpoints are defined as bins with a copy number different than the previous bin in 

genome order. A transition from a lower copy number to a higher copy number (in genome 

order) is considered to be a different event than the opposite transition. To find breakpoint 

regions we count each breakpoint in each cell and the immediately neighboring bins. A 

contiguous set of bins with counts greater than 1 is designated a breakpoint region. This 

results in a set of common breakpoint regions. Each cell is then scored for the occurrence of 

each of these events, a one meaning the cell has a copy number transition of that type (low 

to high or high to low) in that genomic region and a zero meaning no copy number transition 

of that type in that region.

Hierarchical Tree of Chromosome Breakpoints

We used chromosome breakpoints patterns to build a neighbor-joining tree. To eliminate 

breakpoints events with a high standard deviation, we limited our analysis to breakpoint 

regions covering no more than seven adjacent bins (N = 657). Using a Euclidean metric, we 

calculated a distance matrix from the binary chromosome breakpoint patterns identified in 

the single cells using Matlab (Mathworks). From this distance matrix we constructed a tree 

using average-linkage.

Heatmap of Chromosome Breakpoints

The heatmap is based on the same set of breakpoints used to build the neighbor-joining tree. 

Blue indicates the presence of an event, and white means no event. The columns are ordered 
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as in the tree. The rows are ordered to show clearly which of the subsets of the four main 

groups in the tree share which events. The groups are ordered by subpopulation. A four 

dimensional binary vector represents each of the 16 possible subsets of these groups (subset 

vector). Each breakpoint is represented by a four dimensional vector of the percent of cells 

in each group having an event at that breakpoint (the “breakpoint vector”). The angle from 

each breakpoint vector to each subset vector is computed as well as the length of each 

projection vector. If the length of the projection vector is less than 0.05 the breakpoint vector 

is assigned to the empty (0,0,0,0) subset, otherwise it is assigned to the subset vector with 

the smallest angle to the breakpoint vector. The rows are ordered by subset vector in the 

following order: (1,1,1,1), (0,0,0,1), (0,0,1,0), (0,1,0,0), (1,0,0,0), (0,0,1,1), (0,1,0,1), 

(1,0,0,1), (0,1,1,0), (1,0,1,0), (1,1,0,0), (0,1,1,1), (1,0,1,1), (1,1,0,1), (1,1,1,0), (0,0,0,0). 

Within each subset the rows are in descending order by the number of cells in that subset 

having an event and then in ascending order by the number of cells not in that subset having 

an event.

Analysis of LOH Point Mutations in Tumor Subpopulations

PCR duplicates were removed from mapped sequence reads and bases with a quality score 

below 30 were excluded from analysis. We then determined the set of observed nucleotide 

types for each cell sequenced from the T10 and T16P and T16M tumors and every position 

in the genome. For each subpopulation we classified a position as the observed nucleotides 

only if one or two nucleotide types were each observed in five or more cells in the 

subpopulation. For each grouping of subpopulations DH, DA, if a classification was made in 

every subpopulation in the group, we translated the classifications into the generic 

nucleotides (a,b) based upon the order in which they were seen in the group, from left to 

right. We counted the resulting classifications of positions for each group by class, and 

determined whether long blocks of identical classifications along a chromosome were 

expected by chance. To establish the significance of our classification counts we repeated 

our analysis 100 times with randomly permuted cell labels within each group of 

subpopulations. We eliminated any effects from differing subpopulation size in a separate 

set of runs of the same analysis, each with 24 randomly selected cells in every 

subpopulation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Comparison of SK-BR-3 Single Cells to Millions
(a) The integer copy number profile for a single SK-BR-3 cell is shown compared to (b) a 

sequence count profile using millions of cells. (c–d) A region on chromosome 8q13.2-

q24.23 is plotted showing the integer copy number profile (in red or blue) and a ratio of raw 

bin counts in grey for (c) a single cell, and (d) a million cells (e) A heatmap of SK-BR-3 

copy number profiles comparing a million cell sample (SM) to seven single cells (S1–S7). 

(f) A heatmap of SKN1 normal fibroblast profiles comparing a million cell sample (FM) to 

seven single cells (F1–F7).
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Fig. 2. Analysis of 100 Single Cells from Polygenomic Breast Tumor
(a) T10 was macro-dissected into 12 sectors, and nuclei were isolated from six sectors and 

flow-sorted by ploidy. FACS profiles show four distributions of ploidy (F1–F4) which were 

gated to isolate 100 single cells. (b) Neighbor-joining tree of integer copy number profiles 

showing four major branches of evolution (c) Phylogenetic tree of consensus profiles show 

the common ancestors and evolutionary distance between subpopulations. Integer copy 

number profiles from single cells are displayed below, and pie charts indicate the percentage 

of cells that constitute each subpopulation.
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Fig. 3. Analysis of 100 Single Cells from a Monogenomic Breast Tumor and its Liver Metastasis
(a–b) Primary breast tumor T16P was macro-dissected and 52 nuclei were isolated from 

three sectors for FACS showing two distributions of ploidy (F1 and F2). (b) Liver metastasis 

T16M was macro-dissected and 48 nuclei were isolated from three sectors for FACS also 

showing two ploidy distributions (F1 and F2). (c) Neighbor-joining tree of combined integer 

copy number profiles from the primary and the metastatic tumors. (d) Comparison of 

primary and metastatic aneuploid consensus copy number profiles.
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Fig. 4. Genetically Diverse Pseudodiploid Cells in the Diploid Fractions of Tumors
(a–d) Hematoxylin and eosin stained tissues sections are displayed in the upper panels with 

normal (N) and tumor (T) cells percentages indicated. Lower rows display bin counts and 

copy number profiles of single cells isolated from the 2N gated ploidy distributions, and the 

total number of cells analyzed is indicated below each column. The columns are: (a) normal 

breast tissue cells; (b) pseudodiploid cells in T10; (c) pseudodiploid cells in T16P; and (d) 

diploid-gated nuclei from T16M. (e) Bin counts and copy number profiles of single cells 

from the major aneuploid tumor subpopulations.
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