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Abstract

BACKGROUND—Multilevel studies of neighborhood impacts on health frequently aggregate 

individual-level data to create contextual measures. For example, percent of residents living in 

poverty and median household income are both aggregations of Census data on individual-level 

household income. Because household income is sensitive and complex, it is likely to be reported 

with error.

METHODS—To assess the impact of such error on effect estimates for neighborhood contextual 

factors, we conducted simulation studies to relate neighborhood measures derived from Census 

data to individual body mass index, varying the extent of non-differential misclassification/

measurement error in the underlying Census data. We then explored the relationship between the 

form of variables chosen for neighborhood measure and outcome, modeling technique used, size 

and number of neighborhoods, and categorization of neighborhoods to the magnitude of bias.

RESULTS—For neighborhood contextual variables expressed as percentages (e.g. % of residents 

living in poverty), non-differential misclassification in the underlying individual-level Census data 

always biases the parameter estimate for the neighborhood variable away from the null. However, 

estimates of differences between quantiles of neighborhoods using such contextual variables are 

unbiased. Aggregation of the same underlying individual-level Census income data into a 

continuous variable, such as median household income, also introduces bias into the regression 

parameter. Such bias is non-negligible if the sampled groups are small.

CONCLUSIONS—Decisions regarding the construction and analysis of neighborhood contextual 

measures substantially alter the impact on study validity of measurement error in the data used to 

construct the contextual measure.

Within epidemiology there is a large literature on the effects of non-differential 

measurement error or misclassification of individuals’ exposures on the magnitude of 

statistical association: such error usually biases an epidemiological effect estimate to the 

null1. For instance, in a study of the effect of personal income on body mass index (BMI) 

(e.g. 2), non-differential measurement error in income assessment would decrease the 
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apparent association between income and BMI. There is a smaller literature on the effects of 

exposure measurement error in cross-sectional ecologic studies, such as a study relating the 

proportion of residents living below poverty across counties to the proportion of people in 

those counties who are obese3,4. For this type of study, data on individual poverty status is 

aggregated to determine the proportion of residents in each county who live in poverty; if 

there is misclassification of individuals’ poverty status, effect estimates are biased away 

from the null4.

However, there is almost no literature on how non-differential measurement error or 

misclassification of exposure affects multilevel studies of neighborhood health effects on 

individual’s health outcomes. Multilevel neighborhood health effect studies typically 

include individual level outcome measures in a study population (e.g. individual’s BMI), 

individual level predictors measured from the study participants (e.g. age, race/ethnicity, 

gender, income) and neighborhood level contextual predictors derived from Census data 

(e.g. neighborhood poverty rates). One of the goals of such studies is to quantify the effect 

of a neighborhood context feature (e.g. neighborhood poverty) on individual outcomes after 

adjusting for individual covariates. Neighborhood contextual measures are often computed 

by aggregating data collected from individuals during the Decennial Census, American 

Community Survey, or another large social survey. Sensitive information, including income, 

is likely to be measured with error in these surveys5. A detailed review has suggested that 

under-reporting and over-reporting are about equally common6; for many outcomes, 

researchers might reasonably expect such error to be non-differential. It has previously been 

argued that non-differential measurement error in survey data causes bias away from the null 

for effect estimates relating outcome variables measured at the individual level in a study 

population to a neighborhood contextual variable created by aggregating individual-level 

survey data from respondents who live in each neighborhood7. However, the potential 

magnitude of the bias has not been documented, nor has the quantitative relationship 

between the extent of measurement error and bias.

For a given neighborhood context measure created by aggregating data collected from 

individuals, an investigator may have several options as to how to create a contextual 

variable8. For instance, ‘median household income’ and ‘proportion of residents living in 

poverty’ are both commonly used neighborhood contextual variables derived from the same 

individual-level Census data on income. Similarly, the investigator has several options for 

categorizing neighborhoods by a contextual variable9. For example, an investigator may 

choose to compare neighborhoods with less than 5% of residents living in poverty with 

neighborhoods where more than 20% of residents live in poverty or may choose to compare 

highest quintile to the lowest quintile of neighborhoods ranked by the percent of residents 

living in poverty. The effects of these choices on the extent of bias in calculated effect 

estimates when the underlying data includes measurement error have not been documented.

Here we demonstrate the bias that occurs in the effect estimate for the influence of 

neighborhood contextual variables on individual level outcomes when there is measurement 

error or misclassification in the individual level data that is used to create the contextual 

variable. We demonstrate how choices an investigator makes in creation of contextual 

variables, such as the use of proportions as opposed to means, impact bias in the effect 
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estimate, and how further manipulating the data to express continuous measures as 

categories affects bias.

METHODS

Overview

We use a combination of health survey data, Census data, mathematical derivation, and 

simulations to explore bias in effect estimates for neighborhood contextual variables derived 

from the aggregation of individual-level data that is likely to have been measured with error. 

We use as our model the association between survey respondent’s BMI and zip code-level 

socio-economic status (SES), accounting for individual-level covariates, as assessed in the 

New York City (NYC) Community Health Survey (CHS), a population based health survey 

of residents of NYC conducted by the New York City Department of Health and Mental 

Hygiene that collected self-reported data on height and weight and zip code10.11-13. We 

simulate error in the Census data, then assess the bias created by that error given several 

study design options: 1) form (continuous or dichotomous) of outcome variable, 2) form 

(continuous or dichotomous) of the household-level variable aggregated by the Census to 

create the zip code SES estimate, 3) modeling technique (GEE vs. Mixed), and 4) population 

size of neighborhoods and number of neighborhoods used in the study and, 5) categorization 

of neighborhoods (none, quantile-based, or external cut-point) for final effect estimation. 

Non-differential misclassification of a neighborhood-level variable aggregated from 

dichotomous measures can be simulated without needing to access underlying per-

household Census data; analyses focused on zip code poverty rate were performed using the 

CHS dataset linked to zip code level Census data. However, since simulations of 

measurement error of a neighborhood-level variable aggregated from an underlying 

continuous measure (e.g. zip code median household income) require the individual-level 

continuous data, we created completely simulated datasets to study the effects of 

measurement error in continuous data. These datasets were simulated to resemble the CHS 

dataset in general distribution of variables, though population sizes were typically smaller 

than zip codes to avoid computational overload (NYC zip codes vary widely but average 

about 40,000 residents). Our simulation was adapted from work by Clarke, et al14; SAS 

code for the simulation is included in eAppendix 1. Details of the scenarios investigated are 

provided as Table 1.

Survey Data Source

We used data from the 2002 to 2004 NYC Community Health Survey (CHS) and the 2000 

US Census to provide a baseline estimate of association between neighborhood poverty rates 

and body mass index and obesity status12,13. Using the residential zip code, individual-level 

outcome and covariate data were linked to Census data on the proportion of zip code 

residents living below the poverty line. Analyses of BMI, individual demographic variables, 

and appended neighborhood characteristics were approved by the Columbia University 

Medical Center Institutional Review Board.
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Measures

The BMI of CHS respondents was computed from self-reported height and weight data, and 

obesity was defined as BMI of 30 or more15. The respondents also reported their age, 

gender, and race, which for this exercise was coded as black or non-black. The CHS 

measures respondent’s SES as the ratio of reported family income to the US poverty 

threshold as reported by the US Census.

Contextual Variables Aggregated from Dichotomous Individual-Level Census Measures

To assess the effects of non-differential misclassification error in Census data used to 

estimate the proportion of residents in each zip code living in poverty, we first used mixed 

models to assess the association between zip code poverty rate and CHS respondent’s 

individual-level BMI after adjusting for individual age, sex, race, and poverty status. 

Treating the actual Census data as the truth, we created data sets in which in the poverty rate 

(PR) was assumed to have been measured with error using the formula:

where Se = sensitivity and Sp = specificity for the determination of whether an individual 

Census respondent lived in poverty. We modeled the association between neighborhood 

poverty rate observed with varying amounts of misclassification in the underlying Census 

data and CHS respondent’s individual-level BMI after adjusting for individual age, sex, race 

and poverty status. Analyses were conducted for Se and Sp ranging from 50% to 100%, and 

effect estimates calculated from zip code level data that incorporated error were compared to 

the effect estimate at 100% Se and Sp to calculate magnitude of bias. Analyses were 

repeated with obesity status rather than BMI as the outcome and using GEE based 

approaches with clustering on zip codes and robust standard error estimation16 rather than 

mixed models. Finally, we repeated analyses with neighborhood poverty rates further 

transformed into categories based on quintile cut-points across the distribution of zip codes.

Researchers sometimes use externally-defined cut-points to categorize neighborhoods (e.g. 

neighborhoods with a greater than 20% poverty rate are classified as high poverty). Since 

misclassification of individual-level measures can result in re-categorization of 

neighborhoods with respect to the cut-points, the impact of misclassification on 

neighborhood effect estimates is dependent on the distribution of neighborhoods with 

respect to the cut-points. For example, a neighborhood whose underlying poverty rate is 

19.9% is more likely to be re-categorized above a 20% cut-point than one whose underlying 

poverty rate is 10%. Because we did not want our analysis to be affected by the specifics of 

NYC zip codes, we analyzed this scenario using simulated datasets rather than the CHS. 

Each dataset had 200 neighborhoods with 4,000 residents each, for a total of 800,000 

observations, and individuals followed approximately the same distribution of socio-

demographic predictors and associations between BMI and age, race, sex, and income as the 

CHS data. Using this framework, we simulated 100 datasets. Within each dataset, we varied 

sensitivity and specificity in the individual poverty measurements, aggregated individual 

measurements that reflected varying degrees of error to create estimates of neighborhood 

poverty rates, and computed the estimated effect on BMI of living in a neighborhood with a 
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poverty rate measured at over 20% compared to living in a neighborhood with a poverty rate 

measured at under 5%. Finally, we compared estimates calculated using neighborhood 

poverty rates aggregated from erroneous individual-level measures to estimates calculated 

using perfectly measured individual-level measures to estimate magnitude of bias due to 

measurement error.

Contextual Variables Aggregated from Continuous Individual-Level Census Measures

Publicly available Census data does not include individuals’ or households’ incomes, and so 

simulations of measurement error in reported income could not be conducted directly using 

Census data. Therefore we estimated the effects of measurement error in income data within 

a simulated dataset with 200 neighborhoods with 4,000 residents each; we then sampled 200 

individuals from each neighborhood to serve as study subjects. Within the simulated dataset, 

we used mixed models to assess the effect of neighborhood mean income on individual-level 

BMI after adjusting for individual age, sex, race, and income to poverty line. We introduced 

random measurement error into the measure of income in the simulated Census data as 

follows:

We re-computed mean income within each neighborhood with the erroneous measure and 

modeled the association between neighborhood mean income and BMI after adjusting for 

individual-level age, sex, race, and income to poverty line. We repeated the introduction of 

random error for varying degrees of error 50 times each at each level from 1% noise to 50% 

noise and compared the resulting effect estimate to the estimate computed at 0% noise. To 

assess the effect of categorization of neighborhood mean income, we repeated the 

introduction of measurement error but computed effects of mean income on BMI comparing 

neighborhoods categorized as the highest and lowest quintiles of observed mean income. To 

assess the effect of neighborhood population size from which neighborhood mean income 

was estimated, we simulated datasets with 20% noise and 100 neighborhoods, and varied the 

number of residents per neighborhood from 20 to 4000. Finally, to assess the effect of 

number of neighborhoods on magnitude of bias due to random measurement error, we 

simulated datasets with individual income measured at 20% noise while number of study 

neighborhoods ranged from 5 to 400.

Software

All analyses were conducted using SAS 9.2, using PROC MIXED for mixed models with 

BMI as an outcome, PROC GLIMMIX using a logit link for mixed models with obesity as 

an outcome, and PROC GENMOD for all GEE models. All models within the CHS dataset 

were clustered on zip code, and all models in the simulated datasets were clustered on the 

simulated neighborhood designation.
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RESULTS

Effect of Misclassification when Dichotomous Individual Level Data are Used to Create 
Contextual Variables

When analyzed using a mixed model, the proportion of zip code residents living in poverty 

was significantly positively associated with higher BMI among CHS respondents after 

adjustment for individual level covariates. As increasing amounts of non-differential 

misclassification of individual-level poverty status was factored into the Census data derived 

measure of the proportion of zip code residents living in poverty, the estimated association 

between neighborhood poverty rate and individual-level BMI increased (Figure 1) as did the 

standard error of the estimate. The extent of inflation in both the group-level parameter 

estimate and the estimate’s standard error was  times its true value, where Se and 

Sp are sensitivity and specificity of the designation of an individual in the Census data living 

in poverty. The algebraic basis for this formula is presented in eAppendix 2.

When obesity status was used as the outcome variable, misclassification in the underlying 

Census data similarly caused a bias away from the null. Analyses of the BMI and obesity 

outcomes using GEE models resulted in the same extent of bias as analyses using mixed 

models. The model intercept estimate was unaffected by variation in sensitivity but was 

biased away from the null under conditions of imperfect specificity for both GEE and mixed 

models. Parameter estimates for other variables in the model were not affected by 

measurement error in the neighborhood contextual variable. Because inflation in the 

parameter estimate was matched by an inflation in the standard error, significance tests were 

unaffected by the bias.

In many studies, neighborhoods are categorized for analysis either using cut-points based on 

the distribution of the data itself, such as quintiles of poverty rate, or using externally 

defined cut-points, such as above or below 20% poverty. When the data were analyzed 

categorizing neighborhoods into quintiles of poverty rate, misclassification in the underlying 

Census data used to estimate poverty rate did not cause bias in estimates of the effect of 

neighborhood poverty on BMI. That is, associations between quintiles of zip code poverty 

rate and BMI under circumstances of misclassification in the individual level Census data 

were the same as for associations between quintiles of zip code poverty rate measured with 

no misclassification in the underlying Census data. The algebraic basis for this result is 

presented in eAppendix 3. When neighborhoods were categorized based on externally 

defined cut-points, bias was generally away from the null. Figure 2 shows bias in effect 

estimates comparing individual’s BMI in neighborhoods with 5% or fewer households living 

in poverty to neighborhoods with 20% or more households living in poverty for varying 

levels of sensitivity in classifying individuals in regards to poverty status in the underlying 

Census data.
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Effect of Measurement Error when Continuous Individual Level Data are Used to Create 
Contextual Variables

Simulation analyses showed that non-differential measurement error in the underlying 

individual level income data used to estimate mean neighborhood income did not 

consistently bias the estimated effect of mean neighborhood income on BMI – both bias 

towards the null and bias away from the null occurred across simulations. In simulations in 

which measurement error in the individual-level income data caused an expansion in the 

range of the zip code-level mean income data, bias towards the null occurred, conversely 

when the range was compressed, bias away from the null occurred. However, non-

differential measurement error in the underlying income data did not systematically expand 

or compress the range of the zip code-level mean income values.

Generally, the magnitude of bias was: positively correlated with the extent of noise in the 

individual-level data used to estimate mean neighborhood income; inversely correlated with 

the number of neighborhoods included in the analysis; and inversely correlated with number 

of individuals used to estimate neighborhood mean income. When the number of individuals 

used to create the neighborhood estimate exceeded 4,000 (the approximate number of 

residents in a US Census tract), estimates were never biased more than 0.5% towards or 

away from the null. However, studies estimating neighborhood context from sources less 

comprehensive than the Census may be more substantially biased. For example, in a study 

with 15 neighborhoods for which neighborhood income is estimated from only 30 surveyed 

residents each, noise levels at 25% resulted in effect estimates biased as high as 100% above 

and as low as 100% below the true value. eFigures 1 to 3 illustrate these three relationships 

over repeated simulations. Categorizing neighborhoods in quintiles for comparison did not 

remove the bias.

DISCUSSION

This paper explores the effects of non-differential misclassification and measurement error 

in individual-level data that are used to create estimates of neighborhood-level contexts for 

neighborhood health effects studies. It is common for investigators to use Census data to 

create measures of neighborhood income/poverty, educational attainment and ethnic 

composition and then to assess whether the neighborhood level contextual variable predicts 

individual-level outcomes in a study population. Due to the wealth of data available for 

download from the Census the researcher has many options as to the form these contextual 

measures might take. Blakely previously asserted that measurement error in the individual-

level data that underlie these types of contextual measures would cause bias away from the 

null in the contextual variable’s beta coefficients7. Here we document the extent of the bias 

described by Blakely and additionally show that: the presence of bias in the beta coefficient 

is determined by the form of the contextual variable; standard errors of beta coefficients are 

also affected by this type of non-differential measurement error; that the model intercept can 

also be affected by this type of non-differential measurement error; and that the bias is 

identical for continuous and dichotomous outcomes and when data are analyzed with GEE 

and mixed models. Figure 3 summarizes the effects of the various choices a researcher 
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might make in constructing neighborhood contextual measures when there is measurement 

error or misclassification in the data being aggregated to create the contextual measure.

The form a researcher selects for a neighborhood-level contextual variable has implications 

for how measurement error in the individual-level data that underlies the contextual measure 

impact the effect estimates derived from a study. When the neighborhood-level variable is 

expressed as a proportion of residents having a dichotomous individual-level state, the beta 

coefficient for the contextual measure will be biased away from the null in the presence of 

misclassification error for the individual-level state (e.g. as in 17). If a contextual measure 

expressed as a proportion is further transformed into a quantiled categorical variable (e.g. 

quintile categories across the observed distribution of proportion of residents living in 

poverty, as in 8,18), non-differential misclassification error in the underlying individual-level 

Census data does not produce bias in the estimated association between the dependent 

variable and increasing quantiles of the contextual variable. However, when neighborhoods 

are categorized using pre-defined cut-points (e.g. neighborhoods with >20% poverty 

classified as high poverty and neighborhoods with ≤ 20% poverty classified as low 

poverty 8) non-differential misclassification in the underlying Census data will usually cause 

a bias away from the null. Analyses using internal versus external cut-points to categorize 

neighborhoods behave differently in the presence of non-differential misclassification in the 

underlying Census data because misclassification causes re-categorization of neighborhoods 

when external cut-points are used but not when internal cut-points are used. Suppose that 

when ranked by true poverty rate, the 20th percentile neighborhood has a 5% poverty rate 

and the 80th percentile neighborhood has a 20% poverty rate, but the Census actually 

measures individuals’ poverty status with 90% sensitivity and 100% specificity. With this 

imperfect measure, the first quintile cut-point will be 4.5% and the fifth quintile will be 

18%, but the rank order of neighborhoods by poverty rate is unchanged. Thus, 

misclassification of individuals’ poverty status in the Census data does not alter which 

neighborhoods will be classified as being in the lowest and highest quintile of poverty rate. 

However, when neighborhoods are defined as low poverty if their poverty rate is < 5% and 

high poverty if their poverty rate is >20%, misclassification of individuals’ poverty status in 

the Census data alters some neighborhood’s classifications: a neighborhood whose true 

poverty rate is 5.1% will be included in the low-poverty group and a neighborhood whose 

true poverty rate is 21% will be excluded from the high poverty group. This shuffling of 

neighborhoods across categories defined by externally set cut-points can cause bias towards 

or away from the null; bias away from the null was more common in our simulations (Figure 

2).

Measurement error in individual-level Census data expressed as a continuum (e.g. income) 

and aggregated to a contextual variable also expressed as a continuum (e.g. mean household 

income) does not cause a consistent direction of bias in the beta coefficient relating the 

neighborhood contextual variable to the dependent variable. Random error in the underlying 

individual-level Census income data produces random error in the neighborhood-level mean 

income data for each neighborhood, but when the number of residents sampled to derive the 

neighborhood mean income measure is large, the random error in the neighborhood estimate 

is small. As a result, the magnitude of bias in the resulting effect estimate is likely to be 
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negligible if the number of measurements per neighborhood aggregated to create the 

neighborhood measure is as large as a Census tract.

Our analysis focused on the simplified view of measurement error that investigators 

frequently hope for: that measurement error is non-differential with respect to true exposure 

level, true outcome level, and error in measured outcome. We show that even under these 

assumptions, bias away from the null can occur. We note, however, that such assumptions 

often do not hold in reality; measurement error may be correlated with the true value (e.g., 

income may be disproportionately under-reported by those with higher incomes) or with 

measurement error in the outcome19. Such scenarios may cause bias towards or away from 

the null and warrant more complex simulations than we have presented here.

Our simulations of misclassified dichotomous individual-level data assumed deterministic 

misclassification across all neighborhoods. If misclassification is treated as random error 

(i.e. the misclassification rate may vary between neighborhoods, though the variability is 

unrelated to the outcome), as explored in the simulations of Jurek, et al20, re-ordering of 

neighborhoods may occur, though because the proportion of individuals misclassified is 

related to the true proportion of individuals with a trait, rank order changes are minimal and 

so quantiling still minimizes the effects of non-differential misclassification.

Outside of the area of neighborhood health effects research there are several areas of 

research worth noting where these types of contextual variables created through the 

aggregation of individual-level data are commonly used. For example, no individual-level 

income data is available in the Surveillance, Epidemiology, and End Results (SEER), 

database, so it has been suggested that measures derived from Census data on the patient’s 

Census tract of residence are the best available indicator of socioeconomic status21. Though 

such analyses frequently assess the resulting tract measures in quantiles (e.g.22), analyses 

that do not may be affected by non-differential measurement error in the underlying Census 

data. It is likely that the validity of studies of educational and health outcomes in schools in 

which classroom or school level contextual measures are created by aggregating student 

level data is threatened by the measurement issues identified here as well. The socio-

economic context of a school or classroom is often of interest as a predictor of outcomes and 

is often operationalized as the proportion of students receiving free or reduced price school 

lunch (e.g. 23,24). This measure has been criticized as including measurement error25. Within 

a classroom only a small number of students may contribute to continuously distributed 

contextual measures (e.g. mean family income (e.g. 26)) and these studies often only study a 

modest number of classrooms or schools (e.g. 27). Thus, such studies fall within the design 

parameters where measurement error in the estimation of a contextual variable will produce 

considerable bias.

In conclusion, measurement error in the individual-level data that underlie the construction 

of neighborhood level contextual variables can significantly impact estimates of 

neighborhood effects on individual-level health outcomes. However, by carefully choosing 

the form of the contextual variable and/or transforming the contextual data into quantiles 

bias can be reduced.
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Figure 1. Bias in effect estimate for the association between neighborhood poverty rate and Body 
Mass Index among residents of New York City for decreasing sensitivity or specificity in the 
measurement of individual-level poverty in population Census data
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Figure 2. Bias in estimated difference in Body Mass Index for subjects living in a neighborhood 
with > 20% of residents living in poverty compared to living in a neighborhood with < 5% of 
residents living in poverty for a range of sensitivity in the individual-level poverty measure used 
to estimate neighborhood poverty rate
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Figure 3. A summary of the results of choices researchers make operationalizing neighborhood 
constructs on bias in effect estimates. The top graph depicts individual-level Census data for 
income for two hypothetical zip codes and two common aggregations of these data to create zip-
code level contextual measures. The black arrows extending from the data points on the two 
lower graphs depict the effects of non-differential measurement error in the Census income data 
on estimates of the zip code-level contextual measures, and the black arrows below the graphs 
illustrate the bias resulting from analytic decisions under these conditions
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Table 1
Analyses Performed to Assess the Effect of Non-Differential Measurement Error in 
Individual-level Variables Aggregated to Create Neighborhood Contextual Measures in 
Multi-level Studies

Form of measurement error Dataset Variations Tested

Dichotomous individual-level
variable: (e.g. non-differential
misclassification of household-level
poverty)

New York City Community
Health Survey

1 Magnitude of measurement error

2 Modeling strategy (GEE vs. mixed models)

3 Outcome form (continuous vs. dichotomous)

4 Effect estimation (quantile comparison vs. direct 
interpretation of slope)

Multiple Simulated Datasets
Modeled on the New York
City Community Health
Survey

1 Effect estimation (externally-defined cut-points)

Continuous individual-level 
variable:
(e.g. non-differential error in
household-level income)

Multiple Simulated Datasets
Modeled on the New York
City Community Health
Survey

1 Magnitude of measurement error

2 Number of neighborhoods

3 Number of residents per neighborhood

4 Effect estimation (quantile comparison vs. direct 
interpretation of slope)
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