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SUMOylation of synapsin Ia maintains synaptic
vesicle availability and is reduced in an autism
mutation
Leo T.-H. Tang1, Tim J. Craig1,* & Jeremy M. Henley1,*

Synapsins are key components of the presynaptic neurotransmitter release machinery. Their

main role is to cluster synaptic vesicles (SVs) to each other and anchor them to the actin

cytoskeleton to establish the reserve vesicle pool, and then release them in response to

appropriate membrane depolarization. Here we demonstrate that SUMOylation of synapsin Ia

(SynIa) at K687 is necessary for SynIa function. Replacement of endogenous SynIa with a

non-SUMOylatable mutant decreases the size of the releasable vesicle pool and impairs

stimulated SV exocytosis. SUMOylation enhances SynIa association with SVs to promote the

efficient reclustering of SynIa following neuronal stimulation and maintain its presynaptic

localization. The A548T mutation in SynIa is strongly associated with autism and epilepsy and

we show that it leads to defective SynIa SUMOylation. These results identify SUMOylation

as a fundamental regulator of SynIa function and reveal a novel link between reduced

SUMOylation of SynIa and neurological disorders.
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T
he coordinated release of neurotransmitter from synaptic
vesicles (SVs) is fundamental to synaptic function and
plasticity. It is generally accepted that SVs are organized

into distinct pools at the presynapse including the readily
releasable pool that is synchronously released immediately
following stimulation and the reserve pool (RP), that is mobilized
during prolonged stimulations. Vesicles that are refractory to
release are often referred to as the resting pool1. SynIa maintains
the RP of SVs by tethering them to each other and to the
presynaptic actin cytoskeleton near to presynaptic release sites.
Presynaptic depolarization causes SynIa phosphorylation through
the CamKII and PKA pathways, which decreases binding affinity
and releases the tethered SVs allowing them to move to the active
zone2–4. On the other hand, phosphorylation by other kinases
such as c-Src and cdk5 alters the distribution of SVs between
different pools5,6.

SUMOylation is the covalent attachment of the small
ubiquitin-like modifier (SUMO) to lysine residues on target
proteins. In neurons, SUMOylation a key regulator of transcrip-
tion and extranuclear SUMOylation plays fundamentally
important roles in synaptic function7–10 and neuroprotective
responses to severe stressors11. Recently, we reported that
SUMOylation of RIM1a is required for normal SV exocytosis,
demonstrating that SUMOylation also has a role in presynaptic
regulation12.

Here we show that SUMOylation of SynIa at K687 enhances
binding to SVs and facilitates synapsin-mediated SV clustering
and anchoring. Replacement of endogenous SynIa with a non-
SUMOylatable K687R mutant in neurons reduces the number
of releasable SVs and impairs exocytosis. Furthermore, we
demonstrate that an A548T mutation in SynIa, which has been
linked to autism spectrum disorder (ASD) and epilepsy, reduces
SynIa SUMOylation and mirrors the functional defect of non-
SUMOyatable SynIa, suggesting a possible causal link between
dysfunctional SynIa SUMOylation and neurological disorders.

Results and Discussion
Synapsin Ia is a SUMO substrate. To validate SynIa as a
SUMO-1 substrate, we used a SUMOylation assay system in
which we exogenously expressed HA-SynIa, Flag-Ubc9 and either
YFP-SUMO or non-conjugatable YFP-SUMO-DGG in N2A cells.
A SUMOylated SynIa band was detected in the cells expressing
YFP-SUMO but not YFP-SUMO-DGG (Fig. 1a, upper panel).
This band was also present in green fluorescent protein (GFP)-
trap pull downs of YFP-SUMO from the N2A lysate, further
confirming it corresponds to SUMOylated SynIa (Fig. 1a, lower
panel). We attribute the presence of an equal density unmodified
SynIa band to dimerization of SynIa and SynIa-SUMO.

Ubc9 binding to the target protein is a critical step in
SUMOylation. Consistent with SynIa being a robust SUMO
substrate, endogenous SynIa in cultured cortical neuronal lysates
is strongly retained by GST-Ubc9 pull downs (Fig. 1b).

Importantly, we also detected endogenous SUMOylated
SynIa in neurons by anti-SUMO co-immunoprecipitation from
whole-brain lysate. As expected, anti-SynI antibody immunoblots
of the immunoprecipitated protein revealed a B110-kDa band
corresponding to SUMOylated SynIa. Critically, this band was
removed by treatment with the deSUMOylating enzyme SENP1
(Fig. 1c). Again, we attribute the presence of unmodified SynIa in
this co-immunoprecipitation to dimerization.

SynIa is a multidomain protein; therefore, to define the
SUMOylation site(s), we first generated and expressed SynIa
mutants lacking the E domain (DE) or both D and E domains
(DDE) in HEK293T cells and performed GST-Ubc9 pull-down
assays (Fig. 1d). Removal of the E domain of SynIa greatly

decreased the interaction with GST-Ubc9, and additional deletion
of the D domain completely abolished the interaction (Fig. 1d).
These data indicate that Ubc9 binds mainly to a region within
the E domain, but may also have some interaction within the
D domain.

Consistent with this, the E domain contains the SUMO
consensus sequence VKAE at residues 686–689. Mutation
of the Val686 or Glu689 residues flanking the target lysine to
Ala disrupted the SynIa—GST-Ubc9 interaction (Fig. 1e)
and mutating Lys687 to Arg completely prevented SynIa
SUMOylation (Fig. 1f).

The E domain is involved in dimerization, vesicle clustering,
presynaptic targeting, cytoskeleton interaction and vesicle
release13,14. All synapsin a-isoforms (SynIa, SynIIa and SynIIIa)
contain highly conserved E domains15,16 and SynIIa could also be
SUMOylated in N2A cells, even though the consensus sequence is
AKAE in this protein (Supplementary Fig. 1a). As shown in
Fig. 1e, V686A inhibited Ubc9 binding to SynIa in HEK293T
cells. However, in N2A cells, this mutation could still be
SUMOylated (Supplementary Fig. 1b), indicating that an
additional factor present in this neuronal cell line, presumably
an E3 ligase, is required to enhance SUMOylation. Sequence
alignment shows that K687 is also conserved across a-isoforms of
synapsins in vertebrates (Supplementary Fig. 1c). However,
despite its importance, the molecular mechanisms underlying
the function of the E domain is not well characterized.

Preventing SynIa SUMOylation causes defective SV exocytosis.
The SUMO consensus sequence VKAE is present in SynIa across
most vertebrate species consistent with SUMOylation playing
an important role in SynIa function throughout evolution.
We therefore tested the effect of acutely reducing endogenous
SynIa by short hairpin RNA (shRNA) knockdown and
replacement with shRNA-insensitive wild-type SynIa or the non-
SUMOylatable mutant. Transfection of hippocampal neurons
with SynI shRNA decreased in SynI levels to 50% of control
levels. Transfection with shRNA-resistant wild-type or K687R
SynIa constructs restored SynI to near-endogenous levels
(Supplementary Fig. 2).

We investigated the dynamics of SV exocytosis using the
genetically encoded reporter Synaptophysin-pHluorin (SypHy)17.
Hippocampal neurons transfected with both SypHy and
knockdown-rescue constructs were subjected to 600 action
potentials at 20 Hz using electrical field stimulation to evoke SV
exocytosis of all releasable vesicles (that is, readily releasable pool
and RP). These experiments were performed in the presence
of the proton pump inhibitor bafilomycin1A to prevent
reacidification of endocytosed SVs so that each SV is counted
only once on first-time release18. The SypHy fluorescence was
expressed as the change in fluorescence normalized against the
basal signal (DF/F0), presented in Fig. 2a,b. To assess the average
size of the SV pool in the presynapse, the mean level of DF/F0 at
the end of the experiment (during 50 mM NH4Cl, Fmax) was
calculated and is presented in Fig. 2c. No significant difference
was observed between any conditions, indicating that the
knockdown of Syn1 or replacement with a non-SUMOylatable
mutant did not change the total SV pool. To selectively assess the
size and dynamics of the releasable pool, we normalized the
change in fluorescence against Fmax (DF/Fmax). Consistent with
previous reports using knockout mice, acute shRNA-mediated
knockdown of SynI significantly decreased the total level of SV
exocytosis, measured by the average DF/Fmax after stimulation,
indicating a reduction in releasable vesicle pool size19–21.
Importantly, a scrambled shRNA control had no effect
(Supplementary Fig. 3a,b). Replacement of the knockdown with
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wild-type SynIa returned SV exocytosis to control levels.
However, replacement with the SynI-K687R mutant did not
rescue the normal release profile with levels of exocytosis
indistinguishable from the knockdown neurons (Fig. 2d,e). This
result cannot be attributed to a dominant-negative effect of
K867R Syn1a, as expression of the K687R mutant in non-
knockdown neurons did not cause any effect on SV exocytosis
(Supplementary Fig. 3c,d). These data demonstrate that SynIa
SUMOylation is required for normal levels of SV exocytosis.

This decrease in SV exocytosis could be mediated by reduced
vesicle fusion or by a decrease in the number of releasable
vesicles. We therefore assessed the rate of exocytosis by
measuring the time constant of a single exponential growth
curve fit to DF/Fpost-stim. As shown in Fig. 2f,g, there was no
difference in the rates of vesicle fusion in neurons in which SynIa
was knocked down, or knocked down and replaced with either
wild-type SynIa or with the K687R mutant. Therefore, we
attribute the decreased exocytosis in neurons expressing the
non-SUMOylatable SynIa-K687R to a reduction in the size of the
releasable vesicle pool, that is, fewer SVs available for release,
rather than a defect in vesicle exocytosis.

We also tested if SV exocytosis is affected by a global decrease
in SUMOylation by overexpressing the catalytic domain of SENP.
Consistent with our results using non-SUMOylatable SynIa,
overexpression of constitutively active SENP induced a decrease
in the overall amount of SV exocytosis, whereas overexpression of
the protease inactive mutant SENP C603S had no effect
(Supplementary Fig. 4). This decrease was considerably more
pronounced than molecular replacement with SynIa-K687R,
suggesting that other proteins involved in SV regulation are
also SUMO targets. While we cannot definitively exclude the
possibility that downstream effects induced by decreased
SUMOylation of non-synaptic proteins, for example, transcrip-
tion factors, could contribute to this effect, our data are consistent
with previous studies that identify other presynaptic SUMO
substrates12,22,23.

SUMOylation of SynIa enhances binding to SVs. It is well
known that changes in the binding affinity of SynIa to SVs plays a
major role in SV dynamics3. Therefore, we investigated whether
SUMOylation of Syn1a affects its binding to SVs, using an
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Figure 1 | SynIa is SUMOylated at K687R. All experiments were performed at least three times with consistent results. (a) Representative anti-HA

immunoblot showing that SynIa is robustly SUMOylated. HA-SynIa, Flag-Ubc9 and YFP-SUMO-1 were expressed in N2A cells and the lysate then

subjected to GFP-trap pull down to purify YFP-SUMOylated proteins. (b) GST-pull-down assays showing that endogenous SynI from rat cortical neurons

binds Ubc9. (c) Immunoprecipitation of endogenous SUMOylated SynIa from rat brain. Whole rat brain was lysed under denaturing conditions and

subjected to IP with anti-SUMO-1 antibody, then immunoblotted with anti-SynI antibody. IgG Control: mouse IgG was used instead of anti-SUMO-1;

a-SUMO-1 control: RIPA buffer was used instead of brain lysate. SENP-treated pull down: before the pull down, the lysate was supplemented with 25 nM

SENP (catalytic domain fragment) and incubated for 1 h at room temperature. (d) Full-length HA-SynIa and truncation constructs lacking the E domain (DE)

or both the D and E domains (DDE) were expressed in HEK293T cells and the lysates subjected to GST-Ubc9 pull down. (e) Point mutations of residues in

the SUMO consensus site in SynIa prevent pull down by GST-Ubc9 in HEK293T cells. (f) K687 is the only SUMOylation site in SynIa. HA-SynIa WT or

HA-SynIa K687R were expressed with Flag-Ubc9 and YFP-SUMO-1 in N2A cells and lysates were immunoblotted with anti-HA antibody.
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HA-His-tagged SynIa-DE domain fragment. SynIa-DE was
co-expressed in bacteria with SUMOylation machinery with
a Flag-tagged SUMOylation construct24,25. SUMOylated
SynIa-DE was purified using metal-affinity purification followed

of the SynIa followed by Flag-affinity purification (Fig. 3a). The
purified, SUMOylated SynIa-DE was divided into equal aliquots,
one of which was deSUMOylated with SENP1. The aliquots of
SUMOylated and deSUMOylated SynIa-DE were then incubated
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Figure 2 | SUMOylation of SynIa regulates SV exocytosis. (a) SypHy assay on SynIa knockdown and molecular replacement in DIV 15 hippocampal

neurons, transfected and imaged live 5 days later. The bicistronic expression constructs incorporate mCherry to indicate transfection. The schematic shows

the experimental time course and the images are representative of the SypHy signal before and after stimulation (t¼0 and 90 s, respectively), and after

NH4Cl perfusion (t¼ 180 s). Control (Ctrl, n¼ 13), Knockdown (KD, n¼ 12), KD-rescue WT (resWT, n¼ 12) and KD-rescue K687R (resK687R, n¼ 12).

Scale bar, 10mm. (b) Average traces of DF/F0 over the whole course of assay, plotted as mean±s.e.m. (c) Quantification of data shown in b plotted as the

mean±s.e.m. of the average DFmax (t¼ 175–180 s)/F0, providing a measure of the total SV pool in the presynapse. One-way analysis of variance (ANOVA)

showed no significant difference between any values. n numbers as in a. (d) Replacement of endogenous SynIa with SynIa K687R causes defective

exocytosis. SypHy fluorescence data were normalized to the maximum SypHy signal obtained after NH4Cl application (DF/Fmax) and plotted as the

mean±s.e.m. n numbers as in a. (e) Quantification of data shown in d plotted as the mean±s.e.m. of the average DF/Fmax t¼ 90–100 s, providing a

measure of relative overall SV exocytosis against total SV pool size. ***Po0.001, one-way ANOVA, post hoc test with Bonferroni correction.

(f) Replacement of endogenous SynIa with SynIa K687R has no effect on the kinetics of SV release. Change in SypHy signal normalized against average

signal after stimulation (DF/Fpost-stim), plotted as mean±s.e.m. against time. n numbers as in a. (g) DF/Fpost-stim between 60 and 120 s were fitted to

exponential curves and the time constant t plotted as mean±s.e.m. Significance tested with one-way ANOVA, post hoc test with Bonferroni correction.
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with an enriched SV suspension from rat brain homogenate.
The SVs were pelleted by ultracentrifugation and subjected to
quantitative western blot analysis to determine the amount
of bound SynIa-DE in SV fraction. SUMOylated SynIa-DE
displayed significantly higher affinity binding to SVs than
non-SUMOylated or deSUMOylated SynIa-DE (Fig. 3b,c).
These results demonstrate that, opposite to CamKII
phosphorylation of SynIa, SUMOylation increases the affinity of
SynIa binding to SVs. Thus, these data support the hypothesis
that SUMOylation of SynIa promotes SV binding and plays key
roles in establishing and maintaining the reserve vesicle pool.

The generally accepted model of synapsin structure and
function is that the D and E domains interact with SVs by
binding to specific vesicle proteins, whereas the A and C domains

directly bind to the vesicle phospholipid bilayer14,26,27.
SUMOylation can alter substrate protein conformation28 and/or
promote protein–protein interactions via SUMO-interacting
motifs29. Enhanced association of SUMOylated SynIa to SVs
may be mediated by (i) SUMOylation-dependent changes in the
conformation of SynI, causing an increase in SV affinity and/or
by (ii) SUMOylated SynIa binding to a SUMO-interacting motif-
containing SV protein. Moreover, since CamKII phosphorylation
promotes the dissociation of SynIa and the release of SVs from
the actin cytoskeleton30, it is also possible that SUMOylation of
SynIa could reduce or prevent CamKII phosphorylation.

SUMOylation is crucial in SynIa targeting and clustering.
Because the association of SynIa with SVs is critical for correct
localization at the presynaptic terminal31–33, we next investigated
the effect of SUMOylation on SynIa targeting. We overexpressed
the SENP1 catalytic domain fragment in hippocampal neurons to
decrease the overall cellular SUMOylation level. Endogenous SynI
was then stained together with the presynaptic marker Bassoon.
SynI puncta that co-localized with Bassoon were counted and
normalized to the total number of SynI puncta34. When
compared with the overexpression of a catalytically inactive
mutant (C603S) of SENP1, there were significantly more SynI
puncta that did not co-localize with Bassoon, suggesting that
SUMOylation influences the targeting activity of SynI (Fig. 4a,b).

To ensure that the mistargetting effect was specifically due to
SynIa SUMOylation, endogenous SynIa was knocked down in rat
hippocampal neurons and replaced with either GFP-tagged WT
or K687R SynIa, then fixed and the co-localization with bassoon
and the SV marker VAMP2 assessed. As shown in Fig. 4c,d,
while both WT and K687R SynIa showed punctate distributions,
there was significantly lower co-localization of the K687R mutant
with Bassoon or VAMP2 compared with WT SynIa. There
was no difference in the intensity of VAMP2 staining caused by
Syn1a K687R expression (Supplementary Fig. 5a), indicating
that SVs themselves are still correctly localized at the active zone
when Syn1a SUMOylation is inhibited. These results indicate
that preventing SUMOylation causes a defect in presynaptic
vesicle targeting of SynIa, resulting in a functional defect in the
vesicle pool.

To further explore the role(s) of SUMOylation in SynIa
association with SVs, we performed SynIa dispersion and
reclustering assays, which measure changes in fluorescence of
GFP-tagged SynI at synaptic boutons35. Intense synaptic activity
causes SynI to diffuse away from synaptic boutons due to
dissociation from the SVs. Following stimulation, SynI then
reclusters at the synapse. Using this approach, we were able to
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(both n¼4) to de-SUMOylate SynIaDE (n¼4). The SVs were isolated by

ultracentrifugation, resuspended and analysed by SDS–PAGE and

immunoblotting for SynIaDE using anti-HA antibody. Anti-synaptophysin

blot (below) shows equal loading of the SV fraction. (c) Quantification

of binding of non-modified, SUMOylated, deSUMOylated and inactive

SENP-treated SUMOylated SynIaDE to SVs. Data presented as

mean±s.e.m. **Po0.01, *Po0.05 one-way ANOVA, post hoc test with

Bonferroni correction. n numbers as above.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8728 ARTICLE

NATURE COMMUNICATIONS | 6:7728 | DOI: 10.1038/ncomms8728 | www.nature.com/naturecommunications 5

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Bassoon co-localization
with Synla

**

SENP1SENP1
C603S

%
 C

o-
lo

ca
liz

at
io

n

SENP1 C603S

Wildtype K687R

GFP-Synla K687RGFP-Synla WT

Before stimulation
(t  = 0 min)

During stimulation
(t = 2.5 min)

After stimulation
(t  = 5 min)

SENP1

mCherry

Synla

Bassoon

Composite

Synla

Bassoon

Composite

VAMP2

100

80

60

40

20

0

Presynaptic marker
co-localization

WT K687R

******

BassoonVAMP2

WT K687R

WT K687R

Time (s)

Δ
F

/F
0

900 AP, 10 Hz

4095 0

Wild type
K687R

0

–0.2

–0.4
0 120 240 360

WT K687R

***

Maximum decrease

Dispersion time constant

Reclustering time constant

Δ
F

/F
0

τ 
(s

)
τ 

(s
)

0.3

0.2

0.1

0

0

20

40

0

200

400

%
 C

o-
lo

ca
liz

at
io

n 100

80

60

40

20

0

Figure 4 | SUMOylation of SynIa modulates its presynaptic targeting and reclustering at the presynapse following stimulation. (a) SUMOylation is

required for presynaptic targeting. WT (n¼ 12) or C603S (dead mutant, n¼ 12) SENP1-mCherry was overexpressed in DIV 9–10 hippocampal neurons.
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fluorescence. The data are presented as mean ± s.e.m. of the changes in punctate fluorescence (DF/F0). n numbers as in e. (g) Histogram showing the

mean ± s.e.m. of maximum dispersion at t¼ 180 s. n numbers as in e. (h,i) The dispersion (t¼ 60–150 s) and reclustering (t¼ 150–420 s) profiles were

fitted with exponential curves and time constants presented as mean±s.e.m. ***Po0.001 against wild type, Student’s t-test. n numbers as in e.
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Figure 5 | The ASD-associated A548T mutation impairs SynIa SUMOylation. (a) Immunoblot showing reduced SUMOylation of HA-SynIa A548T in

N2A cells. (b) Quantitative analysis of the extent of HA-SynIa A548T SUMOylation. The blots were quantified by taking the ratio of SUMOylated band to

the unmodified band normalized to HA-SynIa WT, data presented as mean ± s.e.m. **Po0.01 unpaired Student’s t-test, n¼6. (c) Representative images

showing effects of molecular replacement of endogenous SynIa with GFP-SynIa WT (n¼ 13), GFP-SynIa A548T (n¼ 13) and GFP-SynIa K687R (n¼ 13) in

hippocampal neurons. Neurons were stained with anti-bassoon as an active zone marker or anti-VAMP2 as SV marker. Scale bar, 5mm (d) Quantitative

analysis of synaptic co-localization as described in Fig. 4c. Data presented as mean ± s.e.m. ***Po0.001 against wild type; NS, not significant, One-way

ANOVA, Bonferroni correction and post hoc test (e) Representative images of the dispersion and reclustering assay for GFP-SynIa WT, GFP-SynIa A548T

and GFP-SynIa K687R-A548T. Scale bar, 5 mm. Colour scale in arbitrary fluorescence units. (f) Image analysis of e using DF/F0 plotted against time to give

the dispersion and reclustering profile. Mean ± s.e.m. of GFP-SynIa WT (n¼ 10), GFP-SynIa A548T (n¼ 14) and GFP-SynIa K687R-A548T (n¼ 13).

(g) Histogram showing the mean ± s.e.m. of maximum dispersion at t¼ 150 s. n numbers as in f. (h,i) The dispersion (t¼60–150 s) and reclustering

(t¼ 150–420 s) profiles were fitted with exponential curves and time constants presented as mean ± s.e.m. ***Po0.001 against WT; NS, not significant,

one-way ANOVA, post hoc test with Bonferroni correction. n numbers as in f.
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determine the contribution of SUMOylation to both association
and disassociation of SynIa with SVs.

We expressed GFP-tagged SynIa WT and K687R mutant in
hippocampal neurons. At rest, both proteins displayed a clear
punctate distribution. Electrical field stimulation of 900 AP at
10 Hz produced a significant decrease in punctate fluorescence as
GFP-SynIa diffused away from synaptic boutons (Fig. 4e,f).
Furthermore, WT and K687R SynIa showed a similar magnitude
and time constant of dispersion (Fig. 4g,h), as well as the number
of responsive puncta (Supplementary Fig. 5b). Importantly,
however, the K687R mutant exhibited markedly different
reclustering dynamics. Punctate fluorescence for WT SynIa
completely recovered to the baseline levels 3 min after stimula-
tion, whereas the non-SUMOylatable K687R mutant only
recovered B50% at 3 min and had a significantly higher time
constant for reclustering (Fig. 4i). These results indicate that
SUMOylation does not participate in SynIa dissociation from SVs
but that it is required for reclustering after synaptic activation.
Furthermore, because CamKII phosphorylation mediates SynIa
dissociation from SVs, these data argue against a direct interplay
between phosphorylation and SUMOylation of SynIa in regulat-
ing SynIa–SV interactions. Rather, our results suggest that
phosphorylation and SUMOylation control SynIa function via
separately coordinated pathways.

Taken together, our data indicate that SUMOylation of SynIa
promotes binding to SVs and that this is required for correct
presynaptic targeting of SynIa and reclustering of SVs following
stimulation. This, in turn, replenishes and maintains the reserve
vesicle pool to ensure presynaptic integrity and correct dynamics
of neurotransmitter release. We attribute the decrease in SV
exocytosis when SynIa SUMOylation is inhibited (Fig. 2) to the
defects in the establishment and maintenance of the vesicle pools,
resulting in fewer vesicles being available for release during
prolonged stimulation. In particular, this phenotype bears
striking resemblance to that observed in sypHy exocytosis assay
under cdk5 inhibition5, in which a shift in SV ratio between
releasable and non-releasable pool was observed. One attractive
possibility is that SUMOylation and cdk5 are part of a pathway
that fine-tunes the ratio of releasable and non-releasable SVs.

As reported for most SUMO substrates36, only a small
proportion of SynIa is SUMOylated at any given time.
Consistent with this, our proposed mechanism of action only
requires SynIa to be SUMOylated for the initiation of SV
association. Once the binding is stabilized, SUMO can be
removed as SynIa itself has a high affinity for SV. (Graphical
representation in Supplementary Fig. 6).

SynIa SUMOylation and disease. Mutations in SynIa have been
associated with epilepsy and ASD37. These include two nonsense
mutations that abolish the E domain and other less severe
mutations that do not significantly affect SV binding or
phosphorylation by CamKII, but do result in defective SynIa
targeting and SV exocytosis34. We therefore investigated the
possible role of SUMOylation in the pathogenesis of these
mutations. Of the mutants we investigated, the A548T mutation
(analogous to A550T in human SynIa34) significantly decreased
the levels of SynIa SUMOylation in N2A cells (Fig. 5a,b), and the
defect in SV exocytosis caused by the A548T mutation is
strikingly similar to that observed with K687R mutation34,
suggesting a link between SUMOylation and ASD/epilepsy.

We next compared the presynaptic localization of GFP-SynIa
WT, K687R and A548T in neurons in which endogenous SynIa
was knocked down (Fig. 5c). Both non-SUMOylatable K687R and
the autism mutant A548T exhibited similar SynIa targeting
defects compared with WT SynIa (Fig. 5d). While we cannot

formally exclude the possibility that targeting defects result from
disruption of distinct pathways, these results are consistent with a
common mechanism of action. To explore this in more detail, we
used the SynIa dispersion assay to compare the effects of the
A548T with a double A548T/K687R mutant. As expected, there
were no differences in the dynamics of dispersion between the
WT and either mutant, but both mutants were significantly
slower in reclustering compared with WT. Moreover, the time
constants for reclustering were identical for the A548T and the
A548T/K687R double mutant (Fig. 5e–i) indicating that there is
no additive effect of the A548T mutation in non-SUMOylatable
SynIa. Again, these data are consistent with both A548T and
K687R disrupting SynIa reclustering via the same pathway, and
strongly suggest that the defects in SV exocytosis and SynIa
targeting/clustering in this ASD mutation can be attributed to
defective SUMOylation.

How the A548T mutation affects SUMOylation at the
molecular level remains to be determined. Residues A548 and
K687 are relatively distant from each other and in silico analysis
of the A548T mutation does not predict any marked alteration in
SynIa structure34. Interestingly, an in vitro SUMOylation assay
showed no decrease in SUMOylation efficiency for A548T mutant
(Supplementary Fig. 7). Since SUMOylation in vitro requires only
Ubc9 interaction, it is unlikely that A548T mutation directly
influences Ubc9 binding. Nonetheless, one possible explanation is
that A548T changes SynIa conformation in such a way to occlude
the SUMO consensus sequence. Alternatively, A548 may be
required for SynIa interactions with a SUMO E3 ligase.
Overall, our data clearly support the hypothesis that the A548T
mutation-mediated defects in SynIa SUMOylation result in the
dysfunction of SV dynamics. These changes, in turn, likely cause
imbalances between excitatory and inhibitory stimulation that
can underlie ASD and epilepsy38–40. Thus, we propose that
SynIa SUMOylation plays a critical role in presynaptic function
and dysfunction and that modulation of this pathway represents
a potentially powerful strategy for the development of
new approaches to treating synaptopathies including ASD and
epilepsy.

Conclusion
Here we show that SUMOylation of SynIa enhances its SV
reclustering at the RP, which is required to maintain presynaptic
responsiveness and normal synaptic transmission. We further
demonstrate that the A548T mutation in SynIa reduces
SUMOylation and that this may account for the epilepsy and
ASD phenotype associated with this mutation. These results
expand the repertoire of synaptic proteins that are regulated by
SUMOylation and provide further evidence for the fundamentally
important roles of SUMO modification of synaptic proteins in
health and disease.

Methods
Molecular biology. For knockdown-rescue experiments, shRNA-resistant SynIa
constructs were expressed as mCherry/GFP-IRES-SynIa cassette on a pFIV
plasmid, which also expressed SynI shRNA (vector made in house, shRNA target
sequence 50-CCATGGAGAAATTGACATTAATA-30 against SynI). For all
knockdown studies, ‘Control’ cells were transfected with pFIV (expressing
mCherry or GFP) without shRNA. The Flag-tagged SUMOylation vector used in
bacterial SUMOylation of SynIaDE are engineered by inserting Flag tag at the
N terminus of SUMO in pE1E2S1 vector. All subcloning and mutagenesis reactions
were performed according to standard protocols.

Cell culture. Embryonic cortical and hippocampal neurons were isolated from E18
Wistar Rattus Norvergicus embryos. Brain areas were dissected and trypsinized,
before being plated on either PLL-coated 25-mm glass coverslips (for hippocampal
cells) or PLL-coated six-well plates (for cortical cells). Cells were initially plated in
plating media (Neurobasal media þ 10% horse serum, B27 supplement, 2 mM
Glutamax, 1� penicillin/streptomycin), which after 24 h was replaced with feeding
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media (Neurobasal media, B27 supplement, 1.2 mM Glutamax, 1� penicillin/
streptomycin). For more details, see ref. 41. For biochemistry, cortical neurons
were used at DIV18. For SypHy experiments, hippocampal neurons are transfected
at DIV9-10 and imaged 5 days later. For dispersion/reclustering assay and
localization experiments, hippocampal neurons are transfected at DIV9-10 and
imaged 7 days later. All neuronal transfections were performed using
Lipofectamine 2000 (Invitrogen) according to manufacturer’s instructions.

Biochemistry. SUMO-1 co-immunoprecipitation was performed from whole rat
brain lysate. Brain tissue (250 mg) was flash frozen and pulverized under liquid
nitrogen. The resulting powder was dissolved in high SDS lysis buffer (25 mM
HEPES, 500 mM NaCl, 1% Triton X-100, 2% SDS, 0.5% Sodium deoxycholate, pH
7.4) and sonicated. The lysate was subsequently diluted 10-fold with RIPA dilution
buffer (25 mM HEPES, 500 mM NaCl, 1% Triton X-100, 0.5% Sodium
deoxycholate, pH 7.4), which was used for pull down with 4 mg of anti-SUMO-1
D11 antibody (Santa Cruz, # sc-5308) bound to Protein A/G magnetic beads
(Pierce). Western blotting was performed using anti-SynI antibody at 1:5,000 (BD
biosciences, #611392).

For the N2A SUMOylation assay42, cells were transfected with HA-SynIa,
Flag-Ubc9 and either active YFP-SUMO-1-GG or non-conjugatable YFP-SUMO-
DGG for 48 h before lysis on ice in buffer containing 20 nM NEM. GFP-Trap
(Chromotek) was used for GFP-tag pull down according to the manufacturer’s
instructions. Western blotting was performed using rat anti-HA antibody at 1:1,000
(Roche, # 11583816001)

For GST-Ubc9 pull-down assay, GST-Ubc9 was expressed in BL21(DE3) E. coli
under standard isopropylthiogalactoside induction. Harvested bacteria were lysed
(lysis buffer: 25 mM HEPES, 500 mM NaCl, 2 mM DTT, 1% Triton X-100) and
incubated with glutathione resin (GE Healthcare). After washing extensively, the
resin was then incubated with cell lysate from cortical neuronal culture
or HEK293T in lysis buffer, obtained by resuspending and sonicating cells in
lysis buffer (25 mM HEPES, 150 mM NaCl, 1% Triton X-100, pH 7.4). Western
blotting was performed using anti-SynI (for neuronal lysate) or anti-HA antibody
(for HEK293T lysate).

Where cropping of western blots was performed, the full blots are supplied
(Supplementary Fig. 8), with boxed areas indicating the cropped areas used.

Bacterial expression and purification of SynIa constructs. Bacterial expression
of His-HA-SynIaDE was carried out in BL21(DE3) E. coli using a standard
isopropylthiogalactoside overnight induction protocol. The harvested bacteria were
lysed by sonication in Nickel-Binding Buffer (25 mM HEPES, 500 mM NaCl,
20 mM Imidazole, protease inhibitors, pH 7.4). Precleared bacterial lysate was then
load onto Ni-NTA resin. After extensive washes, the protein was eluted with
elution buffer (25 mM HEPES, 200 mM imidazole, pH 7.4), then concentrated to
2 mg ml� 1 before snap freezing for storage at � 80 �C. SUMOylated SynIaDE was
produced by co-expression of His-HA-SynIaDE and Flag-SUMOylation plasmid in
BL21(DE3) E. coli and metal-affinity purification described above and the eluate
loaded onto a Flag-affinity gel (SIGMA). Retained proteins were eluted using
50mg ml� 1 Flag peptide (SIGMA) in 25 mM HEPES, pH 7.4. Eluates were then
snap-frozen for storage at � 80 �C.

SV-binding assay. Whole rat brain was homogenized in 10 ml ice-cold
buffered sucrose (4 mM HEPES, 320 mM Sucrose, pH 7.3) using a glass-Teflon
homogenizer. The homogenate was then centrifuged in a fixed angle rotor at 800g
for 10 min. The supernatant was centrifuged at 9,200g for 15 min and then the
subsequent supernatant was discarded. The pellet was resuspended with 10 ml of
buffered sucrose and then centrifuged at 10,200g for 15 min. The supernatant was
discarded and the pellet was resuspended in 1 ml of buffered sucrose. Ice-cold
water (9 ml) was then added and the suspension was homogenized with a
glass-Teflon homogenizer briefly at maximum speed. HEPES-NaOH (1 M, pH 7.4)
was added to the suspension to a final concentration of 3 mM, and was incubated
on ice for 30 min, then centrifuged at 25,000g for 20 min. The pellet, containing
crude SVs, was retained. For more details, see ref. 43. SVs were resuspended in
10 ml buffered sucrose (5 mM HEPES, pH 7.4, 300 mM Sucrose) and 2.5 ml of SV
suspension was mixed with either 3 mg of SUMOylated or non-SUMOylated/
SENP-deSUMOylated His-HA-SynIa-DE and incubated at 4 �C with gentle
agitation for 1 h. The SVs were then collected by ultracentrifugation at 55,000g for
2 h, resuspended in 200 ml buffered sucrose and the extent of His-HA-SynIa-DE
binding was assessed by western blot analysis using an anti-HA antibody. SENP
treatment of SUMO-SynIaDE was performed by adding purified recombinant
SENP (catalytic domain only) at 1:100 mass ratio to SUMOylated His-HA-
SynIaDE at incubate at room temperature for 30 min.

Immunocytochemistry. Immunocytochemistry was performed following
paraformaldehyde fixation of cells and permeabilization with 0.1% Triton X-100.
For presynaptic co-localization assays, anti-bassoon at 1:500 (Abcam, #ab82958)
and anti-VAMP2 at 1:1,000 (Synaptic Systems, #104202) was used to stain the
presynaptic terminal. The number of GFP puncta positive for bassoon or VAMP2
were counted and reported as a percentage of total GFP puncta. Each field is
counted as one n and consists of at least 20 puncta and at least 3 independent

neuronal culture preparations were assessed. For quantification in the knockdown-
rescue experiments, anti-SynI at 1:500 (Novua # NB300-104) was used to assess
SynI levels in mCherry-expressing neurons. All quantification was performed using
ImageJ software.

SypHy experiments. Neurons co-transfected with SynIa knockdown,
or knockdown-rescue constructs (see Molecular Biology section for details) were
mounted in a Warner stimulation chamber (Harvard Apparatus), connected to a
Digitimer Constant Voltage stimulator and a Master-8 pulse train generator.
Exocytosis was triggered using electrical field stimulation, using 1 ms pulses (APs)
of 50 V with a paradigm of 600 APs at 20 Hz. All experiments were performed in
HBS with 50mM D-AP5, 25mM CNQX and 1 mM bafilomycin A. Perfusion with
NH4Cl (pH 7.4), was used to reveal total levels of SypHy loading at the end of each
experiment. Images were taken at 0.5 Hz using a CCD camera with a GFP filter
cube. For each cell, 10 regions of interest (ROIs) with area of 2.13� 2.13 mm
were manually placed covering single SypHy puncta chosen blindly. Average
fluorescence signal were measured with non-responsive ROIs discounted. Data
were first normalized to background levels (that is, DF/F0), and then expressed
as a percentage of fluorescence after NH4Cl perfusion (Fmax) or after stimulation
(Fpost-stim). Extrasynaptic ROIs were used to correct for background fluorescence.
For more details, please see ref. 17.

SynIa dispersion and reclustering assay. GFP-SynIa-transfected neurons were
mounted in the electrical field stimulation chamber, filled with HBS supplemented
with 25 mM APV and 50 mM CNQX. Confocal images were recorded at 0.2 Hz for
10 min using 488 nm argon laser excitation, with a 500–530-nm band-pass filter.
Images were scanned at 512� 512 resolution with suitable gain and offset for the
best contrast and avoiding saturation of signals. This recording was to establish the
effect of photobleaching, and therefore no stimulation was performed. After the
recording was finished, a nearby region of the same neuron was imaged with
identical settings. For this recording, 900 AP at 10 Hz (90 s) electrical stimulation
(50 V, 1 ms pulses) were delivered 1 min after the start of image recording. For each
cell, seven ROIs with area of 0.83� 0.83 were manually placed covering single GFP
puncta, chosen blindly at t¼ 0. Average fluorescence signals were measured with
non-responsive ROIs discounted. Changes in fluorescence from initial values were
normalized to initial levels (that is, DF/F0). The same analysis was performed
on the unstimulated recording to correct for photobleaching. To calculate the
dispersion rate, the DF/F0 at t¼ 60–150 s of each neuron were fitted with a
single-fall exponential decay as follows

y ¼ �A 1� e� t=t
� �

where A is the plateau of the curve and t is the time constant that reflects the rate
of increase. The t from neurons transfected with the same construct were averaged
for comparison between constructs with statistical testing.

To calculate the reclustering rate, the DF/F0 at t¼ 150–600 s of each neuron
were fitted with a single-fall exponential decay as follows

y ¼ A 1� et=t
� �

where A is the plateau of the curve and t is the time constant that reflect the rate of
increase. The t from neurons transfected with the same construct were averaged
and then compared between different constructs with statistical testing.

For further details, see ref. 35.

Statistical analysis. Graphpad Prism software (Graphpad Inc.) was used for
statistical analysis. Data were analysed using one-way analysis of variance
(ANOVA) with Bonferroni’s post hoc test (for comparisons between multiple data
sets) or two-tailed Student’s t-test (comparison between two data sets). Curve
fitting in Figs 2, 4 and 5 was performed using Graphpad Prism, fitting to a single
exponential rise function y¼ a(1� e� t/t) where t is the time constant.

Sequence alignment. Sequence alignment is done in UGENE using ClustalX
algorithm. Synapsins sequences were obtained from NCBI.
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