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Abstract

We introduce model-based Bayesian inference to screen for differentially expressed genes based 

on RNA-seq data. RNA-seq is a high-throughput next-generation sequencing application that can 

be used to measure the expression of messenger RNA. We propose a Bayesian hierarchical model 

to implement coherent, fast and robust inference, focusing on differential gene expression 

experiments, i.e., experiments carried out to learn about differences in gene expression under two 

biologic conditions. The proposed model exploits available position-specific read counts, 

minimizing required data pre-processing and making maximum use of available information. 

Moreover, it includes mechanisms to automatically discount outliers at the level of positions 

within genes. The method combines gene-level information across replicates, and reports coherent 

posterior probabilities of differential expression at the gene level. An implementation as a public 

domain R package is available.
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1 Introduction

1.1 RNA-seq Data and Differential Gene Expression

RNA-seq is a high-throughput sequencing technology to efficiently measure transcript 

abundance that allows researchers to investigate a wide range of biological questions based 

on high resolution measurements. Here, transcripts refer to segments of RNA. In RNA-seq 

experiments, isolated RNA samples are fragmented and synthesized to complimentary DNA 

(cDNA) in a library preparation step. As a result, millions of short reads are produced. Each 

short read is sequenced and finally, the reads are mapped into a reference genome based on 

sequence similarities. Widely used mapping methods include MAQ (Li et al., 2008a), SOAP 
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(Li et al., 2008b), Bowtie (Langmead et al., 2009) and SHRiMP (Rumble et al., 2009). 

Counts of mapped reads along genomic positions inform us about transcript abundance 

(Marioni et al., 2008). Figure 1 shows a stylized graphical representation of RNA-seq data 

after alignment of the reads.

An important application of RNA-seq is the identification of differentially expressed genes 

across different biological conditions. We propose hierarchical models to screen genes for 

differential expression. The model is robust against intragenic variability by explicitly 

making use of position level data. The proposed inference provides calls for differential 

expression at the intragenic positions level as well as at the gene level. In other words, our 

method reveals positions within a gene that have different expression between two 

biological conditions, and at the same time produces inference on differential expression at 

the gene level. The position-level calls as well as the gene-level calls borrow information 

from read counts across different positions within a gene and across different genes. The 

entire inference is based on a coherent and model-based statistical framework. We do not 

model expression of isoforms. Isoform calling is a separate and challenging research topic in 

and of itself. Our goal is to generate a list of genes with strong evidence of differential 

expression supported by most intragenic read counts at various positions. In some other 

cases when alternative splicing is irrelevant (such as sequencing experiments for yeast or 

some plants), our method can be directly applied to obtain differentially expressed genes.

Compared to traditional array-based platforms, the analysis of RNA-seq data introduces the 

new challenge of modeling the read counts at multiple positions within each gene. To make 

appropriate inference at the gene level, one must first summarize the position-level counts 

and form a meaningful gene-level quantification. Another challenge is the typically small 

number of replicate experiments. The cost of sequencing experiments is still high, and the 

number of replicate samples remains small for most existing data. Thus, it is important that 

an inference approach provides stable estimates even with small sample sizes.

Several statistical methods have been proposed for the detection of differential expression 

using RNA-seq data. Most require pre-processing and normalization of the read count data 

to make expression measurements comparable across samples. Specifically, the read counts 

across positions within a gene are usually aggregated to form gene-level summaries. Then 

gene-level summaries are normalized to account for different library sizes across samples. 

The normalized gene-level summaries are used as gene expression quantifications for 

differential analysis. For example, Mortazavi et al. (2008) introduced reads per kilobase of 

exon model per million mapped reads (RPKM) as a normalized gene-level measurement. 

RPKM aggregates read counts across positions within a gene by simple summation and 

normalizes the aggregated counts for gene length and for the total read number in the 

measurement.

Read counts at positions depend on other factors as well as the gene expression levels. For a 

gene without isoforms such as a gene in yeast, approximately constant read counts along 

positions are expected to be observed. However, read counts at some positions can be 

different from those at other positions due to systematic biases. Dohm et al. (2008) 

discussed that GC-riched regions tend to generate larger counts than AT-riched regions. 
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Similarly, Hillier et al. (2008), Li et al. (2010), Hansen et al. (2010) and Schwartz et al. 

(2011) stated that biases associated with genomic positions are present in RNA-seq data and 

they have possible effects in downstream analyses. Protocols in experiments can also affect 

read counts at positions, as pointed in Li et al. (2010). Thus, ignoring these biases and using 

aggregated gene-level read counts can result in inefficient inferences on differential gene 

expression.

In addition, Bullard et al. (2010) and Oshlack and Wakefield (2009) pointed out additional 

biases that are introduced in these pre-processing steps. In particular, the analysis may suffer 

from gene-length bias due to the dependence of variance estimates on read counts. That is, 

long genes with small effects are more likely to be detected than short genes with large 

effects. Also, due to the domination of read counts by a few, but very abundant genes, 

normalization with the total counts leaves the detection of differential expression less 

sensitive. Recently more sophisticated normalization methods to mitigate these problems 

were proposed by Balwierz et al. (2009), Tang et al. (2009) and Robinson and Oshlack 

(2010). We will demonstrate that our proposed model does not require pre-processing or 

normalization of read counts, and is thus not susceptible to the above biases. In particular, 

pre-processing and normalization in the proposed model are replaced by model-based 

adjustments.

Most existing approaches model the read counts with a Poisson or a negative binomial 

distribution, and conduct statistical hypothesis tests for each gene, using Fisher's exact test, a 

likelihood ratio test or a t test. Marioni et al. (2008) used a Poisson distribution to model 

gene-level counts in the presence of technical replicates, and carried out a likelihood ratio 

test to identify differentially expressed genes. Similarly, Wang et al. (2009) used a normal 

approximation to the binomial distribution and developed a package called DEGseq. 

Robinson and Smyth (2007) developed a negative binomial model to account for 

overdispersion in biological replicates. They followed an empirical Bayes-like approach to 

achieve shrinkage in the estimation of counts dispersion. The edgeR package (Robinson et 

al., 2010) implements their method. Anders and Huber (2010) extended the negative 

binomial model of Robinson and Smyth (2007) by using local regression to link mean and 

variance parameters. There are few existing Bayesian approaches for inference on 

differential expression based on RNA-seq data. Hardcastle and Kelly (2010) developed an 

empirical Bayes method named Bayseq for complex experimental designs having more than 

two conditions. Wu et al. (2010) proposed an empirical Bayes method to identify 

differentially expressed genes for single replicate data. Differently from the previous 

approaches, Lee et al. (2011) directly modeled position-level counts and proposed a 

hierarchical Bayes model for single replicate data. Oshlack et al. (2010) provided an 

overview on preprocessing of RNA-seq data and critically review commonly used methods 

for the differential gene expression.

In this paper, we develop a statistical model to infer differential gene expression across two 

biological conditions exploiting position level data in a hierarchical model across replicates, 

genes and positions. Ji and Liu (2010) demonstrated that hierarchical models can yield 

higher efficiency in analyzing data from high-throughput experiments. They also argue that 

borrowing information across genes or loci through inference in a hierarchical model 
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improves inference for any particular gene or locus. In the same spirit, we propose a 

Bayesian hierarchical model which borrows information across positions, genes, and 

replicates. A distinct feature of our approach is that we model position-level counts to infer 

differential expression at the gene level.

Modeling position-level counts makes it possible to downweight the outlying count values at 

certain positions, therefore leading to more accurate summaries of gene expression. In 

addition, we do not use a predetermined value to represent nondifferential expression. For 

example, we do not assume that if a gene is not differentially expressed, the ratio of the 

expression measurement between two conditions will be 1, as it would be if the sequence 

data under the two conditions were perfectly normalized. Instead we introduce parameters 

that represent the ratio of expression when genes are not differentially expressed. These 

parameters are estimated, thus resulting in more robust inference.

1.2 Data

We analyze RNA-seq data from the yeast experiment presented in Ingolia et al. (2009). The 

mRNA were extracted from a yeast, Saccharomyces cerevisiae strain BY4741, in rich 

growth medium (YEPD medium) and poor growth medium (amino acid starvation). The 

fragments of mRNA were sequenced with an Illumina Genome Analyzer II and mapped 

using the SOAP method (Li et al., 2008b). The data includes two replicates (K = 2) and 

reports position-specific read counts for 1,285 genes.

Section 2 describes the probability model. Section 3 describes two simulation studies. 

Section 4 reports the data analysis for the yeast data. The last section concludes with a final 

discussion. The manuscript and R programs with an example are available at http://

www.northshore.org/research/investigators/Yuan-Ji-PhD/.

2 Methodology

2.1 Sampling Model of Observed Read Counts

RNA-seq data reports read counts arranged by genomic positions within a gene. For each of 

the genomic positions, the read count refers to the number of mapped reads starting at that 

position. See Figure 1 for illustration. We assume that data is recorded under two different 

experimental conditions denoted as 0 (control) and 1 (experimental condition). We denote 

the read counts under the two conditions by nkij (experimental condition) and mkij (control), 

representing the numbers of mapped reads starting at position j of gene i for replicate k, 

where i = 1, …, I, j = 1, …, Ji, and k = 1, …, K(≥ 1). Let Nkij = nkij + mkij denote the total 

count at position j of gene i for replicate k, summed over conditions. Implicit in the notation 

is an assumption that the experiment has the same number of replicates under both 

conditions and the replicates are randomly paired for an analysis. We note that although it is 

not necessary for the proposed model, if replicates in RNA-seq data are designed to be 

paired, then other effects possibly confounded with relative expression gene expression level 

can be minimized. For example, Auer and Doerge (2010) recommended that experiments 

should be carried out with a balanced block design, exploiting features of the multiplexing 

technique that is already employed in most RNA-sequencing devices.
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For ad-hoc inference about differential expression one may consider the empirical fraction, 

rkij = nkij/Nkij for each position or rki = Σjnkij/ΣjNkij for each replicate. In contrast, we 

propose model-based adjustments of theses empirical fractions to account for sampling 

variability across positions within a gene, for outliers and for biological variability across 

replicates. To start, we assume a Poisson distribution for the read counts in each condition, 

 and , where the counts are independently distributed 

across conditions, replicates (k), genes (i), and positions (j). Reads are counted at the 

location corresponding to the starting position of the read, avoiding trivial dependence by 

overlap of reads across multiple loci. The Poisson models for nkij and mkij imply 

, and  where pkij = ϕ0kij/(ϕ0kij + ϕ1kij). 

Assuming that ϕ0kij and ϕ1kij independently follow gamma distributions, it follows that pkij 

is a priori independent of (ϕ0kij + ϕ1kij). We can therefore focus on modeling nkij given Nkij 

and pkij. See Appendix A for more details. Here, pkij represents the true proportion of read 

counts under condition 0 relative to the total read counts under both conditions at location j 

of gene i and replicate k. Note that the binomial model is assumed conditional on pkij only. 

Marginalizing with respect to the following prior on pkij will allow for more flexibility.

2.2 Modeling Position-Level Calls

Examining the counts within a gene, we find that among the values of rkij occasionally some 

rkij's are very different from the rest. Figure 2 shows a plot of rkij for a selected gene and 

replicate from the yeast data. The values rkij are large for most positions, but we also 

observe some aberrant positions with unusually small rkij's. Those potential outliers marked 

as crosses in the plot may inappropriately drive the estimate of the mean relative expression 

level for this gene toward a smaller value, and result in the misidentification of differential 

expression. Since yeast genes do not splice alternatively, the outlier values can not be 

explained by isoforms. We believe that they are caused by systemic biases in the 

experiments and instruments. In cases when isoforms are possible, these positions might 

indicate splice junctions. For the yeast data in which isoforms are absent, we want to 

downweight such position-level outliers in the inference for differential expression at the 

gene level, and we employ a mixture of beta distributions as a prior distribution for 

modeling pkij. We introduce a latent indicator wkij for each position, with wkij = 0 

representing an outlier at position j for replicate k. Let

(1)

We assume , where  represents a gene-specific proportion of outliers for 

replicate k. Here λi ∈ { −1, 0, 1} is a latent indicator for under-, normal- and over-expression 

of gene i.

The beta mixture models (1) is a key component of the model. First, note that the mixture 

includes a regression on the latent indicator λi of differential gene expression. That is, we let 

the beta distribution for outliers depend on the status of differential expression. Since λi 

takes three values, there are in fact four components in the beta mixture (1), corresponding 
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to the distinct values of wkij and λi. When wkij = 0, i.e., when the position is an outlier, the 

prior of pkij depends on the value of λi which tells us if gene i is differentially expressed. 

Specifically, if λi = 0, meaning gene i is not differentially expressed, then an outlier position 

should have pkij values away from the “middle”. Recall that pkij characterizes the ratio of 

count in one condition over the sum of two counts across both conditions. So if a gene is not 

differentially expressed, the ratio should be close to 0.5. Therefore, an outlier here means 

that pkij is extreme, closer to 0 or 1. Therefore, we let , resulting in a Be(1/2, 

1/2) prior for pkij that puts large mass on values close to 0 and 1. Similarly if λi = −1, a 

position that is not an outlier should have pkij close to 0 since the gene is under-expressed. 

Therefore for outliers, we let  and  so that the beta prior puts most mass on 

values close to 1; finally when λi = 1, we let  and .

2.3 Modeling Differential Gene Expression

The main parameters of interest in (1) are (αki, βki). They inform us about the expression of 

gene i in replicate k, excluding the outliers. The formal accounting for outliers in the mixture 

(1) robustifies inference in critical ways. Later, in the application to yeast data, we will show 

how failure to downweight outliers could even flip the reported inference on differential 

expression for some genes.

The use of a single indicator λi for differential expression versus a large number of 

indicators wkij for possible outliers avoids identifiability concerns related to (falsely) 

imputing λi = 0 and wkij = 0 for all k and j, instead of λi ≠ 0 for a differentially expressed 

gene. The prior probability of the earlier set of indicators is far smaller than for the latter. 

This effect of prior shrinkage towards the more parsimonious model is known as Ockham's 

razor (Jefferys and Berger, 1992).

For simplicity and following Robert and Rousseau (2004), we reparameterize αki and βki as 

γki = αki + βki and μki = αki/(αki + βki). After reparameterization, the beta distribution Be(αki, 

βki) is indexed as Be(γkiμki, γki(1 − μki)) where γki > 0 is now a scale parameter, and 0 < μki < 

1 is a location parameter. A second reparameterization to ηki = log(γki) and ξki = log(μki/(1 − 

μki)) = logit(μki) further simplifies computation by removing restrictions on the parameter 

space. In the (ξki, ηki) space, an unusually large or small value of ξki indicates differential 

expression, whereas ηki allows for varying levels of heterogeneity across genes. This 

interpretation leaves ξki as the main parameter of interest. Figure 8bc shows the posterior 

means of all ξki from the analysis for the yeast data. While the central cloud represents the 

majority of nondifferentially expressed genes, the genes having distant values of ξki relative 

to the genes in the cloud (above or below the cloud) are those with differential expression. 

We use a mixture of normal distribution for ξki to formalize the notion of differential 

expression. Recall that λi ∈ {− 1, 0, 1} is an indicator for under-, normal- and over-

expression. We assume
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(2)

and  for ℓ = −1, 0, 1. The unusual indexing with 0, 1, −1 is used in anticipation 

of the upcoming discussion.

The location parameter ξ̅
k is the mean of ξki when gene i is not differentially expressed. We 

keep index k in ξ̅
k to account for a potential difference in library size across different 

replicate experiments. If the overall counts under the two conditions are equal, then ξ̅
k = 

logit(0.5) represents non-differential expression. Due to various reason, such as lane effects 

in RNA-Seq experiments, we keep ξ̅
k random, rather than fixing ξ̅

k ≈ logit(0.5). The means 

of rki for the yeast data are observed at 0.587 and 0.585 for the two replicates.

The three Gaussian components in the mixture model (2) correspond to normal and over- or 

under-expression. Note that we use two parameters (δ−1k, δ1k) to allow for different 

deviation from the mean ξ̅
k for over- or under-expressed genes. We introduce a hyperprior 

p(ξ̅
k) ∝ 1. For simplicity, we estimate and fix ηki as shown in Appendix B, based on an 

empirical Bayes approach. If a prior on ηki were desired, one could follow Robert and 

Rousseau (2004), and use , where γki = 

exp(ηki), and c0, c1, c2, τ0, τ1, τ2 are additional hyperparameters. However, this prior is quite 

informative and results seem to vary with different calibration of the prior. We found that 

the estimation procedure in Appendix B resulted in better performance in our examples.

We complete the model with priors for , , 

and . We use a beta distribution , independently across k and 

i, a Dirichlet prior πλ ∼ Dir(a−1, a0, a1), and a gamma prior , ℓ = −1, 0, 1 

where Ga(a, b) is a gamma distribution with shape parameter a and rate parameter b. Finally 

we use independent gamma priors , ℓ = −1, 1. The hierarchical model is 

summarized in Figure 3.

2.4 Computation

We implement posterior inference using Markov chain Monte Carlo (MCMC) posterior 

simulations for the proposed model. The complete conditional posterior distributions for all 

parameters except ξki are available for efficient random variate generation. The 

implementation is a standard Gibbs sampling algorithm with a Metropolis-Hastings 

transition probability to update ξki.

The computation takes 1.08 hours on 2.67 GHz CPU for the RNA-seq yeast data set in 

Section 1.2 for 5,000 iterations. Note that the yeast data set has 1,016 genes and the average 

number of positions within a gene is 27.81.
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3 Simulation

3.1 Simulation 1

3.1.1 Simulation 1: Validation—We examine the proposed model in a simulation study. 

We compare model estimates with the simulation truth and with inference by edgeR 

(Robinson et al., 2010). EdgeR aggregates read counts across positions within a gene by 

simple summation and normalizes the gene-level read counts using the TMM (trimmed 

mean of M values) method (Robinson and Oshlack, 2010). It requires a separate 

normalization procedure and uses the normalized counts to compute p-values of differential 

expression based on a negative binomial exact test.

We simulate a set of I = 1, 000 genes with 250 genes each having Ji = 50, 150, 200, or 300 

positions, respectively. We let λi = −1 or 1 for 25 genes among each set of 250 genes and λi 

= 0 for the remaining 225 genes. We assume three replicates (K = 3). Given λi, we generate 

ηki and ξki from  and distributions with η̅
k = 2.5, , ξ̅

k = 

0, , δ−1k = δ1k = 0.6. We let wkij = 0 or 1 independently with probabilities 0.1 and 

0.9, respectively. When wkij = 1 we generate pkij ∼ Be(αki, βki), where αki = exp(ηki) 

exp(ξki)/(1 + exp(ξki)) and βki = exp(ηki)/(1 +exp(ξki)). Similar to the previous subsection, 

when wij = 0 we use  with  and (1/10, 1) for λi = −1 

and 1, respectively. For λi = 0, we let be (1, 1/10) or (1/10, 1) with equal 

probability. Finally, we generate Nkij ∼ Ga(20, 1/4), Ga(40, 1/4), and Ga(10, 1/2) for k = 1, 

2, 3, respectively (rounded up to the nearest integer), and nkij ∼ Bin(Nkij, pkij), 

independently. In particular, the simulation includes a strong replicate effect. We then 

proceed to estimate ξki and P(λi ≠ 0 | N, n) under the proposed model.

To proceed with inference on λi, we specified priors on the parameters, 

 as described in Section 2. We a priori assumed that 

10% of genes are differentially expressed and that 10% of positions are outlying. We 

estimated and fixed ηki as described in Appendix B. We also initialized ξki as in Appendix 

B. We let  for ℓ = −1, 0, 1 and k = 1, 2 and δ−ℓk ∼ Ga(20, 1/20) for ℓ = −1, 

1 and k = 1, 2 where Ga(a, b) is a gamma distribution with mean ab. We ran the MCMC 

simulation by iterating over all complete conditionals for 5,000 iterations, discarding the 

first 3,000 iterations as burn-in.

Figure 4 plots summaries for a selected gene and replicate to illustrate how the model 

discounts position-level outliers by means of wkij. The selected gene is truly under-

expressed, λi = −1. The left panel shows the empirical fractions rkij = nkij/Nkij along the 

positions. The crosses represent outlying positions. The dashed line shows the true mean 

expression level μki = exp(ξki)/(1 + exp(ξki)) for the gene. The right panel shows the 

posterior probabilities Pr(wkij = 0 | data) plotted along position j. Most positions marked 

with crosses report high posterior probabilities, confirming that the model correctly 

identifies outlying positions.

Lee et al. Page 8

Stat Biosci. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5ab plots the posterior estimates ξ̂
ki = E(ξki | data) and the posterior probabilities of 

differential gene expression, p̂i≡ Pr(λi ≠ 0 | data) against the simulation truth. The posterior 

means ξ̂
ki are close to the true values of ξki. Panel (a) plots ξ̂

ki for replicate k = 1. Panel (b) 

summarizes the posterior probabilities p̂i of differential gene expression. The plot is 

arranged by the true values of λi. Differentially expressed genes report larger posterior 

probabilities of differential gene expression, as desired.

3.1.2 Simulation 1: Comparison—We compare inference under the proposed model 

with inference under edgeR, Bayseq (Hardcastle and Kelly, 2010), DEGseq (Wang et al., 

2009) and the overdispersed logistic model (Baggerly et al., 2004). Because of the small 

number of replicates we use a common dispersion parameter in edgeR. The receiver 

operating characteristic (ROC) curve is commonly used to evaluate classification methods. 

Figure 6a plots the true positive rate and the false positive rate as the cutpoint under the 

proposed method and edgeR changes. The plot demonstrates the benefit of exploiting 

position-level data under the proposed method. The other four methods uses gene-level 

aggregate counts. Therefore, the inference under the other methods is sensitive to outliers. In 

contrast, the proposed model combines position-level relative gene expression by 

downweighting some outlying positions as shown in Figure 4. This leads to improved 

inference when aberrant counts are recorded for some positions under either one of the two 

conditions. In summary, the ROC curve suggests possible advantages of the proposed 

method for inference on the differential expression.

We perform further comparison by varying δ1 and δ2 and examine how the performance of 

the five methods changes. We let δ = δ1 = δ2 = 0.4, 0.6 or 0.8. For each value of δ, we 

conduct 30 simulations and compare areas under ROC curves. Table 1(a) shows the means 

and standard deviations of the areas under the ROC curves. For each value of δ, we conduct 

30 simulations and compare areas under ROC curves. Table 1 shows the means and standard 

deviations of the areas under the ROC curves. For all methods in the comparison, area under 

the curve increases with δ. Among the five methods, the proposed model shows the most 

favorable performance. Furthermore, we increase the number of replicates (K = 6) and the 

results are summarized in Table 1(b). All the methods appear to be improved in performance 

with larger K. We note that for small δ increasing the number of replicates without explicitly 

modeling outlying positions does not offer an large improvement. The comparison 

highlights the advantage of statistical modeling that can exploit information about position-

level variation and improve inference by downweighting positions that are judged to be 

outliers relative to this variation.

In addition, we examine the impact of the normalization on the reported inference of the 

differential expression. We first apply the trimmed mean of M-values normalization method 

(TMM method) proposed by Robinson and Oshlack (2010) to position-level read counts and 

fix ξ̅
k at 0 (= logit(0.5)). Figure 6b shows the comparison of the resulting inference under the 

model with fixed ξ̅
k and position-level read counts normalized by the TMM method to the 

inferences with the proposed method and edgeR. From the figure, using TMM for data pre-

processing and fixing ξ̅
k deteriorates the performance of the proposed model, although it still 

outforms the edgeR.
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3.2 Simulation 2

In this subsection, we do not assume that data are generated from the proposed model. 

Instead, we simulate expression data based on the yeast RNA-seq data in Section 1.2 and the 

analysis results from edgeR. Specifically, we simulate 400 differentially expressed genes 

and 1600 non-differentially expressed genes. We first apply edgeR to find p-values for all 

genes in the yeast data set. We pool nkij and Nkij from 100 genes having the least significant 

p-values, and randomly sample nkij and Nkij from this pool to generate counts for genes that 

are non-differentially expressed under the simulation truth. The number of positions, Ji is 

determined by random sampling of observed Ji in the yeast data set. For differentially 

expressed genes, we sample Nkij as we do for non-differentially expressed genes, but we 

generated pkij from beta distributions and sample nkij from Bin(Nkij, pkij). For under-

expressed genes, the beta distributions are Be(2, 5) and Be(3, 4) for replicate 1 and 2, 

respectively, and for overexpressed genes, Be(5, 2) and Be(6, 1) for replicate 1 and 2, 

respectively.

To study how outlying positions affect the statistical inference, we replace the counts nkij for 

some randomly selected positions with outlier values. We increase the fraction of such 

outliers gradually from 0% to 10%, 20% and 30%. To generate the outliers, we first sample 

wkij independently from , 0.9, 0.8, and 0.7, respectively. Only when wkij = 0, 

we generate  with  and (1/10, 1) for λi = −1 and 1, 

respectively. For λi = 0, we let  be (1, 1/10) or (1/10, 1) with equal probability. 

Then we generate outlying nkij from Bin(Nkij, pkij) and substitute the outlying nkij for the 

positions with wkij = 0.

To proceed with inference on λi, we specified priors assuming that approximately 15% of 

the positions-specific counts are outliers, and that approximately 20% genes are 

differentially expressed. We estimated and fixed ηki as described in Appendix B. We fixed 

the hyperparameters similar to Section 3.1. We carried out posterior MCMC simulation by 

iterating over all complete conditionals for 5,000 iterations, discarding the first 3,000 

iterations as burn-in.

We again compare inference under the proposed model to edgeR (Figure 7). Considering the 

small number of replicates, we again use a common dispersion parameter for edgeR.

Comparing ROC curves across simulations with varying proportions of outliers we find that 

the ROC curves deteriorate with increasingly larger numbers of outliers, as expected. 

Comparing ROC curves under the proposed model versus edgeR for small numbers of 

outliers (0% outliers) we find that modeling position-level counts in the proposed model 

does not lead to much improvement compared to modeling gene-level counts of edgeR. 

However, the proposed model performs better as more outlying positions are added. Note 

that the comparison is biased in favor of edgeR since the nondifferentially expressed genes 

in the simulation truth are determined by the inference under edgeR.
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4 Yeast Data

We illustrate the proposed model with the RNA-seq yeast data set that was briefly 

introduced in Section 1.2. Since we observed very low read counts at most positions, we 

aggregated counts in windows of 50 nt each. We considered I = 1, 016 genes with Ji ≥ 5 

positions in both replicates for analysis and discarded the remaining 269 for lack of 

information.

To fit the proposed model to the data, we specified priors as follows: Assuming that around 

10% of genes are differentially expressed and around 5% of position-specific counts are 

outliers, we use  and πλ ∼ Dir(1, 18, 1). We estimated and fixed ηki (see 

Appendix B). We initialized ξki as logit(μ̂
ki) similar to estimate ηki. We fixed the 

hyperparameters similar to Section 3.1. We ran the MCMC simulation by iterating over all 

complete conditionals for 5,000 iterations, discarding the first 3,000 iterations as burn-in.

Figure 8a plots the posterior probabilities of differential expression, p̂i = Pr(λi ≠ 0 | data). 

Some genes report large posterior probabilities p̂i indicating differential expression. Figures 

8bc plot the posterior means ξ̂
ki = E(ξki|data) for each replicate. The three dashed horizontal 

lines mark posterior means for (ξ̅
k+δ1k), ξ̅

k and (ξ̅
k − δ−1k), respectively. The genes beyond 

or very close to the lower and upper dashed lines can be considered as differentially 

expressed. Genes that are reported as differentially expressed are marked by crosses. We 

will discuss later how the list of reported genes is determined.

Note that the lines for ξ̅
k in panels bc are away from the zero level (equivalent to logit(0.5)). 

The non-zero values adjust for the imbalance in the total counts across the two conditions 

separately for each of the two replicates.

Figure 9ab plot the marginal posterior probabilities p̂i against the empirical estimate of 

relative expression, rki for each replicate k. The plot illustrates that p̂i borrows strength 

across replicates, and it agrees with ad-hoc estimates rki for most genes. But there are some 

genes where p̂i disagrees with and improves ad-hoc inference with rki for replicate 1, but 

agrees for replicate 2. For example, see the gene marked with triangle in Figure 9ab. In 

Figure 10 we explore possible reasons for this. We present summaries for two selected genes 

to illustrate how the proposed model combines relative counts across replicates and how p̂i 
adjusts rki. In each panel of the figure, the plots in the first column show rkij along positions. 

The dashed line indicates the posterior mean ξ̂
ki, and the dotted line shows the empirical 

estimate rki. The line for ξ̂
ki is plotted at logit −1ξ̂

ki to map to the unit scale. The second 

column plots the posterior probability ŵkij = Pr(wkij = 1 | data) of position j not being an 

outlier along positions. The first and second row plot replicate 1 and 2, respectively.

Comparison of the two rows in each panel explains the observed discrepancies in rki and p̂i 
for replicate 1. The relatively larger sample sizes Nkij in replicate 2 contain more 

information about relative expression levels. Using the information from replicate 2, the 

model concludes that some of the unusual values of rki under k = 1, as shown in Figure 10b, 

are due to outliers in rkij, including even some positions with large total read counts Nkij. 

The estimated probabilities ŵkij for those positions are reduced, leading to downweighting 
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of the corresponding rkij in the inference for the gene-specific indicators λi for differential 

expression, and thus for p̂i.

The computation of posterior probabilities p̂i = Pr(λi ≠ 0 | data) is only half the desired 

inference. The posterior probabilities do not yet determine the list of genes to be reported for 

differential expression. The selection of genes to be flagged for differential expression is the 

second step. Let di ∈ {0, 1} denote an indicator for reporting gene i as differentially 

expressed. A natural decision is to report the genes with highest probability of differential 

expression, i.e., di = I(p̂i > κ), for some threshold κ. In fact, di can be shown to be the 

optimal Bayes rule under several formalizations of the decision problem (Müller et al., 

2004). Newton et al. (2004) propose to control posterior expected false discovery rate (FDR) 

to determine the cutoff κ. Let D = Σidi denote the number of reported genes, and let FDR = 

(1/D) Σi (1 − |λi|)di denote the fraction of false positives, i.e., the number of wrongly 

reported genes, relative to D. Here |λi| is the (unknown) true indicator of differential 

expression of gene i. The posterior expected FDR is easily evaluated as 

. For clarification,, we note that most authors 

consider the frequentist expectation E(FDR) with respect to repeat experimentation under an 

assumed true scenario. See, for example, Müller et al. (2004) for more discussion and 

references. But taking a Bayesian perspective to estimate p̂i and ξ̂
i it is natural to consider 

the posterior expectation  instead. Newton et al. (2004) propose to select κ to achieve a 

desired level of , say .

Figure 9c summarizes the FDR implied by decision rules of the type di = I(p̂i ≥ κ). Reducing 

κ leads to increasing (posterior) estimated FDR and increasingly larger lists of differentially 

expressed genes. The figure plots , the posterior expected FDR, versus the number of 

reported genes. For example, for  the rule reports D = 239 differentially 

expressed genes. The rule corresponds to a threshold κ = 0.53.

We compare the identification of differential gene expression under the propose method to 

that under edgeR. We use the q−values to detect differentally expressed genes with edgeR to 

avoid a problem due to the simultaneous testing of many genes (Efron et al., 2001). For 

, the decision rule under edgeR is to identify genes with q−value less than 0.10 

as differentially expressed genes. Following the rule, edgeR detects 682 genes as 

differentially expressed genes. Among them, 238 genes are the genes detected by the 

proposed method. The result is graphically illustrated in Figure 11a using a Venn Diagram. 

Figure 11b shows a plot of ranks of p̂i versus ranks of 1−q−values. The plot demonstrates 

that a gene with a large posterior probability of differential gene expression under the 

proposed method tends to have smaller q−values under edgeR.

5 Discussion

The model developed in this paper borrows strength across genomic positions within a gene, 

and across replicates and genes. The model robustifies inference for gene expression through 

downweighting position-level outliers. Furthermore, in the proposed model the indicator for 

differential expression, relative expression levels, varying number of reads in different 

samples, and indicators for position-level outliers are all incorporated in the same model. 
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Through this integration, the estimate of the relative expression level becomes more 

robustfied. We illustrate this through a simulation study and the analysis of a yeast 

experiment.

The proposed model assumes that the two conditions have the same number of replicates, 

and randomly matches pairs to conduct the analysis. In the case where the number of 

replicates differs by conditions, we suggest a random split of one sample into two samples.

We focused on the comparison of two conditions in this paper, but the proposed model 

allows an easy extension for inference with RNA-seq data also under multiple conditions. 

For this extension, one may use a multinomial likelihood with a Dirichlet distribution as a 

prior to model read counts from the multiple conditions. Other possible extensions are to 

incorporate covariates and to relax the normal assumption for ξki. To utilize information 

from covariates on differential gene expression, one can introduce a functional form 

between the beta/Dirichlet probabilities and the covariate values such as logit or probit 

model. To accommodate possible overdisperion, one may use heavier tailed distributions or 

relax the parametric assumption on the distribution of ξki.
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Appendix A: Probability model

In this appendix, we present mathematical details discussed in Section 2. For the likelihood 

we assume that

where nkij and mkij represent read counts at position j of gene i for replicate k under 

condition 0 and 1, respectively. By letting Nkij = nkij + mkij, we have

where ϕkij = ϕ0kij + ϕ1kij and pkij = ϕ0kij/(ϕ0kij + ϕ1kij).

We consider independent gamma priors for ϕ0kij and ϕ1kij, i.e., Ga(αki, θki) and Ga(βki, θki). 

Then we have pkij ∼ Be(αki, βki) and ϕkij ∼ Ga(αki + βki, θki), and pkij and ϕkij are a priori 

independent.

The resulting joint posterior factors as
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The marginal posterior, P(pkij|nkij, Nkij), is the model of interest. We therefore focus on 

modeling of nkij conditional on Nkij only.

Appendix B: Estimation of ηkij

For the analyses in Sections 3 and 4, we estimate and fix ηki. In this appendix we illustrate a 

way of estimating ηki. First, we assume that  and πλ are fixed at their prior mean for 

simplicity. Thus, pkij ∼ Be(αki, βki) with probability . With probability 

follows a mixture of the three beta distributions where beta mixture components are 

, ℓ ∈ {−1, 0, 1} in Equation (1) and their weight are . Then we equate sample 

moments based on empirical ratios, rki and rkij, with γki and μki, and find γ̂
ki and μ̂

ki as 

follows:

and

where var(rkij) is the sample variance of the rkij across positions j within each gene (i) and 

replicate (k), and  and  are the mean 

and the variance of pkij with wkij = 0, respectively. We estimate E(pkij) with rki and solve for 

γ̂ ki and μ̂
ki. We fix ηki = log(γ̂

ki). We use logit(μ̂
ki) as an initial value of ξki. One may 

exclude rkij with very small Nkij to obtain more reasonable estimates of ηki. Specifically, for 

simulation in Section 3.1, we use rkij with Nkij > 3. For simulation in Section 3.2 and the 

yeast data analysis in Section 4 we use rkij with Nkij > 1 only.
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Figure 1. 
RNA-seq data. The data is summarized as counts of mapped reads. The read counts at 

position j corresponds to the number of reads whose starting position is position j. For 

example, gene i has J genomic positions (or bases), and position j of gene i has count 2.
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Figure 2. 
Plot of rkij, j = 1, …, Ji for gene i = 16 and replicate k = 2. Potential outliers are marked as 

crosses. Inference downweights outliers in rkij by introducing indicators wkij.
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Figure 3. 
The proposed hierarchical model for RNA-seq data.
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Figure 4. 
Simulation 1: We plot the empirical fraction rkij (left) and posterior probabilities Pr(wkij = 0 | 

data) of being an outlier (right) for each of 300 positions. This gene is truly under-expressed. 

Therefore, the outlier positions are represented by crosses with large values of rkij and large 

posterior probabilities of wkij = 0. The dashed line on the left panel represents the true value 

of μki = exp(ξki)/(exp(ξki) + 1).
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Figure 5. 
Simulation 1: Posterior means ξ̂

ki = E(ξki | data) and posterior probability of differential gene 

expression p̂i = Pr(λi ≠ 0 | data) in simulation 2. In panel (a) the estimated ξ̂
ki for replicate k 

= 1 are close to the truth ξi on the 45 degree line (dotted line). Panel (b) shows boxplots of p̂i 
by the truth of differential expression.
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Figure 6. 
Simulation 1: (a) ROC curves for identification of differential gene expression under the 

proposed method, edgeR, Bayseq, DEGseq and the overdispersed logistic regression model. 

(b) ROC curves under the proposed method but with fixed ξ̅
k and position-level read counts 

normalized with the TMM method (dotted line), the proposed method (solid line) and 

edgeR(dashed line).
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Figure 7. 
Simulation 2: ROC curves for identification of differential gene expression under the 

proposed method (thick black lines) and edgeR (thin red lines) proposed by Robinson et al. 

(2010). In the simulation, outlying positions are added gradually from 0% position to 30% 

positions by 10%.

Lee et al. Page 23

Stat Biosci. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Yeast data: Posterior probability of differential expression, p̂i = Pr(λi ≠ 0 | data) (panel a) 

and the posterior mean of relative gene expression over the two conditions, ξ̂
ki = E(ξki | data) 

for k = 1, 2 (panels b and c). The genes marked in crosses are genes identified as 

differentially expressed at .
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Figure 9. 
Yeast data: Posterior probabilities p̂i = Pr(λi ≠ 0 | data) plotted against rki (panels a and b). 

The genes indicated with triangle and square are discussed in Figure 10. Panel (c) plots 

posterior expected FDR against the number D of genes reported as differentially expressed.
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Figure 10. 
Yeast data: Inference summaries for the genes marked as a square and a triangle in Figure 9 

(a) and (b). In each panel, the first column plots rkij where the areas of the circles are 

proportional to Nkij. The dotted line indicates31rki. The dashed line shows the posterior mean 

ξ̂
ki (plotted at logit−1ξ̂

ki to map to the unit scale). The second column plots ŵkij. The first 

and second rows are plots for replicate 1 and 2, respectively. Note the discrepancy between 

posterior inference and rki for replicate 1 of gene 771. This discrepancy is mainly due to 

outlying positions such as position 15.
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Figure 11. 
Yeast data: (a) Venn Diagram of differentially expressed genes in the yeast data set under 

the propsed model and edgeR. (b) Scatterplot of ranks of posterior probability of differential 

expression under the BM-DE vs ranks of (1-q−values) under edgeR. Genes in circle are 

genes not detected as differentially expressed under neither of the two methods, genes in 

triangle under edgeR only, genes in filled circles under both, genes in diamonds under the 

proposed method only.
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