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Abstract

Discovery of RNA interference, first in plants and C. elegans and later in mammalian cells, led to 

the emergence of a transformative view in biomedical research. Knowledge of the multiple actions 

of non-coding RNAs has truly allowed viewing DNA, RNA and proteins in novel ways. Small 

interfering RNAs (siRNAs) can be used as tools to study single gene function both in vitro and in 

vivo and are an attractive new class of therapeutics, especially against undruggable targets for the 

treatment of cancer and other diseases. Despite the potential of siRNAs in cancer therapy, many 

challenges remain, including rapid degradation, poor cellular uptake and off-target effects. 

Rational design strategies, selection algorithms, chemical modifications and nanocarriers offer 

significant opportunities to overcome these challenges. Here, we review the development of 

siRNAs as therapeutic agents from early design to clinical trial, with special emphasis on the 

development of EphA2-targeting siRNAs for ovarian cancer treatment.
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1. Introduction

1.1. RNA interference

RNA interference (RNAi) is an evolutionary conserved mechanism in which double-

stranded RNA (dsRNA) molecules silence the post-transcriptional expression of 

homologous target genes. This phenomenon was first discovered in plants in the late 1980s 

[1] and then in C. elegans in 1998 by Fire et al. [2]. Demonstration of similar processes in 

mammalian cells in 2001 [3] led to the emergence of new tools to study gene function.

Small interfering RNA (siRNA) is a member of a family of non-coding RNAs (ncRNAs) 

that effect and regulate gene, RNA and protein function. ncRNAs can be classified into 

infrastructural ncRNAs that involve ribosomal, transfer, small nuclear and small nucleolar 

RNAs with well-known functions and regulatory ncRNAs that can be further classified into 

long ncRNAs (lncRNAs) and small ncRNAs based on transcript size. lncRNAs are 

transcripts ranging in length from 200 nucleotides (nt) to approximately 100 kilobases and 

are mostly involved in trafficking of protein complexes, genes and chromosomes to 

appropriate locations. They have been proposed to mediate epigenetic changes in a cell 

type–specific manner, by recruiting chromatin-remodeling complexes to specific genomic 

loci. Many different classes of small ncRNAs have been defined with distinct functions. 

Piwi-interacting RNAs (piRNAs) are small ncRNAs (24–31 nt in size) that can form 

complexes with Piwi proteins of the Argonaute family and play a role in suppression of 

transposon activity during germline development. Recently, promoter-associated RNAs 

(PARs) and enhancer RNAs (eRNAs) have been described as novel classes functioning in 

transcriptional regulation [4,5]. In addition to these, pyknons, which are nonrandom patterns 

of repeated elements found more frequently in 3′UTR regions of genes, are being classified 

under small ncRNAs with their possible involvement in posttranscriptional silencing of 

genes, mainly related to cell communication, regulation of transcription, signaling and 

transport [6]. Most well-known classes of small ncRNAs, namely micro-RNAs (miRNAs) 

and siRNAs, are the major mediators of RNAi and will be discussed in detail in following 

sections.

1.2. Gene silencing by micro-RNAs

miRNAs are small non-coding dsRNAs transcribed by the genome. Initially they were found 

as complex stem-loop or short hairpin structures called pri-miRNAs (Fig. 1). pri-miRNAs 

are processed by Drosha into pre-miRNAs in the nucleus, followed by transport of pre-

miRNAs to the cytoplasm via exportin-5. A cytoplasmic RNAse III enzyme called Dicer 

cleaves the pre-miRNAs into shorter double-stranded miRNAs with imperfect 

complementarity. These short fragments are recognized by Argonaute 2 (AGO2) and RNA-

induced silencing complex (RISC), where one of the strands is degraded and the other strand 

guides the AGO2-RISC complex to bind and block translation of target mRNAs having 

partial complementary sites typically located in the 3′UTR [7,8].

1.3. Gene silencing by small interfering RNAs

siRNAs are synthetic mediators of RNAi that are dsRNA molecules of 21 to 23 base pairs 

(bp) in length designed specifically to silence expression of target genes. They can be 
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introduced exogenously into the cell or organism in short (21–23 bp) form or in the form of 

long dsRNA molecules. These dsRNAs are processed by endogenous RNAi machinery after 

introduction into the cell (Fig. 1). First, the cytosolic enzyme Dicer cleaves long dsRNAs 

into shorter fragments (siRNAs), leaving two nucleotide (2-nt) 3′ overhangs and 5′ 

phosphate groups [9,10]. siRNAs are recognized by the AGO2-RISC enzyme complex, 

where one of the strands is degraded and the other (mostly antisense) strand is left as a guide 

to find target mRNA sequences. Unlike miRNAs, siRNAs bind sequences with perfect or 

nearly perfect complementarity and cause cleavage of targets instead of translational 

suppression [11,12]. Because they can efficiently silence target gene expression in a 

sequence-specific manner, siRNAs became indispensable tools to study the function of 

single genes [11,13].

1.4. Challenges with siRNA-based therapeutics

1.4.1. Off-target effects—siRNAs are designed to knock down specific targets. However, 

recent studies have shown that they may also silence an unknown number of unintended 

genes. There are two mechanisms suggested to explain this off-target effect. First, siRNAs 

can tolerate several mismatches at the mRNA target and retain their ability to silence those 

targets with imperfect complementarity [14]. The second mechanism involves promiscuous 

entry of siRNAs into endogenous miRNA machinery [15]. miRNAs recognize targets with 

perfect complementarity to their ‘seed regions’ composed of nucleotides 2–8. 

Complementarity of remaining nucleotides has less importance for recognition. Because 

siRNAs are very nearly identical to the related class of miRNAs, they can recognize mRNAs 

with their seed region and lead to degradation of an unpredictable number of mRNAs [16].

1.4.2. Efficacy—During the past few years, a number of siRNAs and other ncRNAs, such 

as miRNAs, have been successfully used in experimental models. Data from preclinical 

models are now giving rise to translation of new siRNA (Table 1) and miRNA-based 

therapies into clinical trials. In the case of siRNAs, the target selection process is 

extensional, requiring a thorough mining of databases and pathways [17]. Different siRNAs 

targeting different parts of the same mRNA sequence have varying RNAi efficacies, and 

only a limited fraction of siRNAs has been shown to be functional in mammalian cells [18]. 

Among randomly selected siRNAs, 58–78% were observed to induce silencing with greater 

than 50% efficiency and only 11–18% induced 90–95% silencing [19]. Some of the 

principles to design siRNAs are discussed in section 2.1.

1.4.3. Delivery—Delivery of siRNAs to target tissues is impeded by many barriers at 

different levels. siRNAs are easily filtered from the glomerulus and rapidly excreted from 

the kidney [20]. Together with rapid excretion kinetics, the susceptibility to degradation by 

nucleases is a major problem leading to short half-life (15 min to 1 hour) in plasma, 

potentially limiting the use of siRNAs [21,22]. However, some chemical modifications have 

been shown to protect siRNAs from nuclease degradation without interfering with siRNA 

silencing efficiency [23], and some others, such as phosphorothioate (PS) modification or 

hydrophobic ligands (e.g., cholesterol), were shown to increase protein binding and extend 

serum lifetime [24,26]. Besides these, nanocarriers are important tools providing protection 
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against both rapid renal excretion and nuclease cleavage during delivery of siRNAs to target 

tissues [26].

Unfavorable physicochemical properties such as negative charge, large molecule weight and 

size complicate passive diffusion of siRNAs through the cell membrane, which makes 

endocytosis the major way for internalization. This process adds new limitations at different 

stages of delivery to molecular targets, including endocytosis by tissue cells and release 

from endosomes into the cytoplasm [20,27].

1.4.4. Immune response and toxicity—RNAi is a mechanism involved in the innate 

immune response to protect cells from invasion by nucleic acids of pathogens such as 

viruses and bacteria. Several studies demonstrated that siRNAs itself can activate innate 

immunity by inducing interferon expression, even at low concentrations [28]. Protein kinase 

R (PKR) and toll-like receptor (TLR) 3 signaling pathways may be involved in sequence-

independent immune activation by siRNAs. However, these mechanisms may play minor 

roles. Certain siRNAs stimulate production of proinflammatory cytokines via TLR 7 on 

dendritic cells and TLR 8 on monocytes in a sequence-dependent manner. These two 

pathways are being discussed as major mechanisms of immune activation by siRNAs. Some 

sequence motifs such as 5′-UGUGU-3′ [29] or 5′-GUCCUUCAA-3′ [30], some secondary 

structures and uridine content of the sequence were identified as important for immune 

activation by these pathways. Chemical modifications such as 2′-O-methylation were shown 

to prevent immune activation by siRNAs. However, the exact rules of sequence-dependent 

immune activation are not known yet; hence potential therapeutic siRNAs must be tested for 

immunostimulatory effects prior to clinical applications [31].

Some cases in which immune response is not the underlying mechanism of toxicity have 

also been identified. Fedorov et al. observed sequence-dependent but target-independent 

toxic effects and reported a good correlation between toxicity and the presence of a 4-base-

pair motif (UGGC) or -AU- rich pentamers in siRNA sequences [32].

2. Pre-clinical development of siRNA-based therapeutics

2.1. Rational design of siRNAs

siRNA backbone selection is performed by the selection of potentially active, nontoxic and 

selective target inhibitors. This entails chemical synthesis of many distinct 21-mer siRNAs 

with 2-nt 3′ overhangs. Alternative molecules—including blunt 19-mers, blunt 25-mers, 

blunt 27-mers and asymmetric 25/27-mers or 27/29-mers—that enter the RNAi machinery at 

different levels must also be considered [23]. Each of these siRNA sequences designed for 

the same target may display distinct efficacy, specificity and off-target profiles even without 

a guarantee of gene silencing [33]. Secondary structures and the nucleotide sequences of 

siRNAs have effects on efficacy, specificity and off-target profiles. On the basis of 

informational analysis of sequences with known efficacy and specificity, several rules have 

been formulated for rational design of siRNAs [33–35].

First of all, 2-nt overhangs at each 3′-end (typically UU or TT) are important for recognition 

of siRNAs by RNAi machinery [36]. Together with 2-nt overhangs, GC content of the 
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sequence determines thermodynamic stability of siRNAs and should ideally be between 30 

to 70% [37]. To avoid nucleotide sequences occupied by regulatory or translational proteins 

and exon-exon junctions, the target sequences are generally chosen 75–100 bases 

downstream of the start codon [38, 39]. Inclusion or exclusion of specific nucleotides at 

particular positions (e.g., A/U at positions 10 and 19, a G/C at position 1) is also considered 

important for the specificity and efficacy of designed siRNAs [34]. Design rules in addition 

to those mentioned above have been reviewed elsewhere [33, 35], and several web-based 

tools are now available for the design of effective and target-specific siRNAs [38, 39].

2.2. In silico selection

Despite ongoing efforts to define precise rules for rational design, siRNAs designed by 

current algorithms are still prone to induce off-target effects. Therefore design procedures 

are usually followed by a BLAST (basic local alignment search tool) search for cross-

reactive 21-bp siRNA sequences to ensure siRNA target specificity. In a study by Snøve et 

al., however, 75% of 359 published siRNA sequences were found to have a risk of inducing 

off-target effects despite being subjected to a BLAST search before use [14]. These data 

indicated that BLAST may miss short alignments such as complementary seed regions 

involved in the aforementioned mechanisms for off-target effects [14, 31]. The Smith and 

Waterman algorithm for local sequence analysis is more sensitive for detection of short 

alignments [14]. Naito et al. have developed an algorithm that selects siRNAs with lower 

seed-target duplex stability, since they observed high correlation between seed-dependent 

off-target effect and the thermodynamic stability of the duplex between the seed region of 

the siRNA guide strand and its target mRNA [18]. Some others focus on selection of 

hyperfunctional siRNAs that work effectively even at low concentrations and thus induce 

fewer off-target effects [40]. Regardless of which algorithm is used to select effective and 

specific siRNAs, global gene expression analysis is an inevitable step, especially for siRNAs 

that will be carried into clinics [31, 41, 42].

2.3. Chemical modifications

siRNAs are produced mostly by chemical synthesis of single-stranded oligonucleotides that 

are annealed into a double-stranded form. This unmodified form is the major effector 

molecule of RNAi. However, chemical modifications at the sequence or structural level can 

help alleviate major obstacles for therapeutic use of siRNAs [23, 38].

A variety of chemical modifications may improve nuclease stability of siRNAs. While 

making these modifications, some rules should be considered such as preserving a free 

hydroxyl or phosphate group at the 5′ end of the sense strand to retain siRNA cleavage 

activity [31]. Direct modification of internucleotide phosphate linkage is the simplest 

approach used to achieve nuclease resistance. Modification of the 2′-position of the ribose 

can decrease susceptibility of internucleotide phosphate linkage to nuclease cleavage and 

increase stability of the duplex. However, heavy 2′-O-methyl (2′-OMe) modification can 

significantly reduce silencing efficiency of siRNAs [43,44]. 2′-Fluoro (2′-F) modifications 

are known to increase nuclease resistance without causing a significant compromise in 

efficiency. However, there are some questionable findings about the safety and effectiveness 

of such modifications in nuclease resistance [45, 46]. Combinations of ribose modifications 
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with phosphate backbone modifications offer further improvement in serum stability and 

efficacy. We achieved enhanced stability and an increase (up to six-fold) in silencing 

efficacy of ephrin type-A receptor 2 (EphA2) siRNA by combining 2′-OMe with PS 

modification [47]. Modification with locked nucleic acids (LNAs) is another strategy to 

increase stability and nuclease resistance; however, it carries a risk of hepatotoxicity [48,49]. 

An inverted-dT base or other non-nucleotide groups placed at the 3′ overhang was shown to 

protect against nuclease cleavage [50]. Another alternative strategy to increase stability 

while retaining potency is the substitution of DNA bases into siRNAs [51,52].

Several chemical modifications were shown to be effective in reducing off-target effects. 

Replacement of the guide strand seed region by deoxynucleotides [53], placing a single 2′-

OMe residue at position +2 of the guide strand [54] and selective placement of LNA 

residues [55] are some examples of these modifications. Off-target effects can also be 

reduced by limiting incorporation of the sense strand into the RISC complex. Modification 

of the 5′ phosphate group [56] and use of small internally segmented siRNAs where the 

sense-strand is cleaved and annealed as two short segments to an intact anti-sense strand 

[57] are other strategies serving this purpose.

siRNA-induced immune activation can be limited by replacement of uridines with their 2′-F, 

2′-deoxy or 2′-OMe modified counterparts. These modifications have been shown to 

abrogate immune recognition of siRNAs by TLRs [31]. In particular, 2′-OMe-modified 

siRNAs inhibited production of TNF-alpha induced by their unmodified immunostimulatory 

counterparts even at very low concentrations [58].

The choice of modification pattern depends on specific siRNA sequence, route of delivery 

and aim of the application. It should be kept in mind that all these modifications can 

decrease the potency of siRNAs to varying degrees. The situation is even more complex 

with longer siRNAs. Because there are no precise rules to predict the effect of a 

modification, empirical testing is needed to ensure that the resulting molecule is still 

effective and retains the desired properties [23].

2.4. Systemic delivery of siRNAs: nanocarriers

Rational design strategies and chemical modifications have substantially improved some of 

the problems involved with siRNA-based therapeutics. However, poor cellular uptake 

remains an important issue that requires the use of carriers to facilitate siRNA uptake into 

the cells. Nanocarriers not only have great potential to improve cellular uptake but also 

promise reduction in siRNA-related toxicities, prevention of off-target effects and 

improvement in pharmacokinetic profiles of siRNA-based therapeutics [59].

Nanocarriers are small size particles (ranging from 1 to 300 nm) that can carry and deliver 

drugs, oligonucleotides, peptides or desired cargos to target tissues. Various nanocarriers 

have been used for siRNA delivery in biomedical applications. Based on surface charge, size 

and hydrophobicity they have unique tissue biodistribution, toxicity and tumor cell uptake 

profiles. The nanomaterials used in the fabrication process—such as natural or synthetic 

lipids (e.g., liposomes, micelles), polymers (e.g., chitosan, polylactic-co-glycolic acid, 
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polylactic acid, polyethilenimine), carbon nanotubes, quantum dots, magnetic nanoparticles 

and others [60–65]—determine the attributes of the resulting carrier.

Liposomes are composed of a phospholipid bilayer that forms upon the exposure of a dried 

lipid film to water. Liposomes have potential benefits for the delivery of siRNAs and have 

been widely used in diverse formulations for this purpose [60]. Liposomes based on cationic 

lipids, such as DOTAP (1,2-dioleoyl-3-trimethylammonium-propane) and DOTMA (N-[1-

(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl sulfate), can efficiently take up 

and condense siRNA and easily interact with negatively charged cell surfaces, facilitating 

delivery into cells. However, high intracellular stability and low release of siRNA contents 

have limited effect on gene downregulation [66,67]. Challenges observed in mouse models, 

such as dose-dependent hepatotoxicity, pulmonary inflammation and immune response, 

should be addressed before their translation into clinical trials [66,68]. We have used neutral 

1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC)-based nanoliposomes [69]. DOPC-

nanoliposomes incorporating siRNAs against EphA2, FAK, neuropilin-2, TMRRS/ERG, 

IL-8, EF2K or Bcl-2 were shown to be active in orthotopic and subcutaneous xenograft 

models of various tumors [69–74]. They were found to be safe after single and repeated 

intravenous (i.v.) administration of liposomes for 4 weeks without any detectable distress, 

toxicity or immune response [69–71,73]. Additionally, delivery of siRNAs in vivo into 

tumor cells was 10-fold and 30-fold more effective than it was with cationic liposomes 

(DOTAP) and naked siRNAs, respectively [69,70].

Solid lipid-based technologies utilizing positively charged carriers including stable nucleic 

acid-lipid particles (SNALPs) and solid-lipid nanoparticles (SLN) [75,76] have been 

developed for systemic delivery of siRNAs. Altough they have high serum stability and high 

efficiency in gene silencing, toxicity induced by other cationic lipid-based carriers may pose 

a challenge [76].

Lipidoid particles that utilize cholesterol and polyethylene glycol (PEG)-coated lipids for 

delivery of specific siRNAs were shown to provide gene silencing at lower doses of siRNA 

than those required by the original SNALP formulation, resulting in reduced toxicity [76]. In 

addition to these, lipophilic siRNA conjugates such as cholesterol conjugates have been 

designed for siRNA delivery but require significant improvement in efficacy and safety 

profiles [77,78].

Polymeric nanocarriers are useful tools for in vivo applications because of their safety. 

Nanoparticles made of natural polymers such as chitosan and atelocollagen have been 

shown to be highly effective for in vivo delivery of siRNAs [61,62,72,79]. Synthetic 

polyethilenimine-based nanocarriers offer several advantages including high transfection 

efficiency and endosomal escape. However, their use is limited by their cytotoxic effects 

[77,78]. Furthermore, poly(lactic-co-glycolic) acid (PLGA) or polylactic acid (PLA)-based 

nanoparticles [26], quantum dots [80,81] and magnetic iron oxide particles [64] have been 

studied for siRNA delivery with promising results.

Targeted delivery (active delivery) of therapeutics into tumor cells and/or tumor vasculature 

is another advance offered by use of nanocarriers. In general, high-affinity ligands such as 
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functional peptides, lipophilic molecules, PEG and aptamers are attached to the exterior 

surface of nanoparticles to increase the delivery of therapeutics into the tumor tissue. 

Functionalizing of the surface of nanoparticles with proteins such as folate receptor alpha, 

transferin receptor, alphaVbeta3/5 integrin receptors and prostate specific membrane antigen 

(PSMA) holds great promise for enhanced tumor delivery of siRNAs [60].

3. Clinical experience with siRNA-based therapeutics

After validation in in vivo models, siRNA-based therapies were introduced into clinical 

trials. Since the discovery of RNAi, there have been more than 50 clinical trials involving 26 

different siRNAs (Table 1). Initial studies were conducted in diseases requiring localized 

delivery. Later, with the improvements in nanocarrier technology, systemically delivered 

siRNA-based therapeutics outnumbered the ones locally delivered [82,83]. An overview of 

clinical trials using siRNA-based therapeutics delivered by different methods is provided 

here.

3.1. Locally delivered siRNA-based therapeutics

Local delivery of siRNAs offer advantages for diseases involving tissues externally 

accessible or locally restricted. To date, locally delivered siRNAs have been used in clinical 

trials for diseases mostly involving the eye, such as age-related macular degeneration 

(AMD), diabetic macular edema (DME) and glaucoma and a small number of other diseases 

involving respiratory syncytial virus (RSV) infections, pachyonychia congenita and 

pancreatic ductal adenocarcinoma.

The first siRNA clinical trial in the field was initiated by Opko Health Inc. in 2004, utilizing 

bevasiranib, a siRNA targeting vascular endothelial growth factor (VEGF) to inhibit retinal 

neovascularization in patients with AMD and diabetic macular edema. Safety and efficacy 

of a single intravitreal (IVT) injection of bevasiranib was tested first in AMD patients, 

followed by a trial in DME patients. Biological activity was observed in phase I and II 

clinical trials. However, phase III trial was terminated early due to poor efficacy in reducing 

vision loss, which was the primary endpoint of the trial. Another phase III trial was designed 

to test safety and effectiveness of three doses of IVT bevasiranib as maintenance therapy for 

AMD following initiation of anti-VEGF therapy with three doses of ranibizumab (Lucentis). 

However, the trial was withdrawn prior to enrollment. Later, two different siRNAs, 

AGN211745 (Allergan) and PF-04523655 (Quark Pharmaceuticals), which target vascular 

endothelial growth factor receptor-1 (VEGFR1) [84] and proangiogenic protein RTP801 

[85], respectively, were tested for the same indications. In phase I, the drugs were found be 

safe and well-tolerated. However, trials for both of these two molecules were terminated at 

phase II, due to inability to achieve primary objectives as in the case for bevasiranib.

In 2007, Alnylam Pharmaceuticals started to test the safety, tolerability and efficacy of 

intranasal ALN-RSV01, a siRNA targeting nucleocapsid protein of RSV. Phase II trials 

found ALN-RSV01 nasal spray and nebulizer to be safe and well tolerated in RSV-infected 

lung transplant patients [86]. It was also claimed that it may have beneficial effects on long-

term allograft function in lung transplant patients infected with RSV. However, no phase III 

trial has been announced yet.
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The first mutation-specific siRNA, TD101, was designed against keratin 6A N171K mutant 

in the rare skin disorder pachyonychia congenita. Intralesional injection of TD101 was 

found to be safe and effective. However, patients experienced intense pain during injection; 

therefore less painful delivery formulations such as ointment with lipid-based carriers and 

dissolvable microneedle arrays are being developed [87].

SYL040012 (bamosiran, by Sylentis, S.A.), targeting β2-adrenergic receptor, was shown to 

decrease intraocular pressure in normotensive and hypertensive animal models [88]. In a 

phase I trial initiated in 2009, SYL040012 eye drops was reported to be safe and well-

tolerated. Two different phase II trials investigated tolerability and efficacy in subjects with 

ocular hypertension or open angle glaucoma. A double-masked, randomized, controlled 

study is being conducted to assess the safety and ocular efficacy of four different doses of 

SYL040012 compared with timolol maleate in patients with elevated intraocular pressure. 

The second siRNA drug from Sylentis, SYL1001, which targets transient receptor potential 

cation channel subfamily V member 1 (TRPV1), was tested for ocular pain associated with 

dry eye syndrome. Phase I study was completed, and participants are currently being 

recruited for phase II.

In 2010, QPI-1007 was designed by Quark Pharmaceuticals to target caspase-2, an enzyme 

involved in apoptosis. IVT injection of QPI-1007 was found safe in optic atrophy and non-

arteritic anterior ischemic optic neuropathy patients in phase I. A phase II trial is now 

recruiting patients to test safety and efficacy in acute primary angle-closure glaucoma.

The siRNA siG12D, which targets mutant KRAS (KRASG12D), was designed by Silenseed 

Ltd. for pancreatic ductal adenocarcinoma. siG12D was encapsulated in a biodegradable 

polymer Local Drug EluteR (LODER) for controlled and prolonged delivery [89]. To assess 

efficacy and local distribution after injection by an endoscopic ultrasound (EUS) needle, a 

phase I trial was conducted in patients with locally advanced adenocarcinoma of the 

pancreas. A phase II study to assess efficacy of siG12D LODER in combination with 

gemcitabine or folfirinox chemotherapy was announced in patients with unresectable locally 

advanced pancreatic cancer.

3.2. Systemically delivered siRNA-based therapeutics

To date, 12 clinically tested siRNA-based therapeutics have been administered by the i.v. 

route. All but one of these siRNAs are carried by synthetic carriers, mostly SNALP.

The first clinical trial utilizing a systemically delivered siRNA was initiated in August 2007 

by Quark Pharmaceuticals. QPI-1002 (I5NP), targeting proapoptotic protein p53, was tested 

for prevention of delayed graft function in patients undergoing kidney transplantation from 

deceased donors. Because uncoated siRNAs tend to accumulate in the kidneys, carrier was 

not used to deliver the siRNA to target tissue. Safety data in phase I was favorable and 

temporary suppression of p53 was achieved. Hence clinical development of QPI-1002 

preceded by phase II trials, with results not currently published.

An siRNA-mediated effect by systemic delivery was first demonstrated in a clinical trial for 

human solid tumor (melanoma) started in 2008 by Calando Pharmaceuticals. In that study, 
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CALAA-01, an siRNA targeting ribonuclease reductase (RRM2), was delivered using a 

cyclodextrin-based polymer coated with human transferrin for selective uptake by 

transferrin receptor highly expressed in tumor cells [90]. This was the first siRNA trial 

utilizing a nanocarrier. However, dose-limiting toxicity was observed in several patients 

[91], and the trial was terminated.

With improvements in nanocarrier technology, the number of clinical trials utilizing 

systemically delivered siRNAs has increased at a growing pace. In 2009, three new 

systemically delivered siRNA-nanocarrier formulations were entered into clinical trials.

Tekmira Pharmaceuticals developed SNALP formulation for delivery of siRNAs by i.v. 

injection. Anti-ApoB siRNA encapsulated with SNALP, PRO-040201 (TKM-ApoB), was 

tested in hypercholesterolemia. Although the drug was well tolerated in phase I with 

efficacy in lowering LDL cholesterol, the trial was terminated due to the potential for 

immune stimulation and transient reductions in cholesterol levels [83]. However, 

development processes are continuing with improved nanoparticle carriers. Alnylam 

Pharmaceuticals developed ALN-VSP02, with two distinct siRNAs targeting kinesin spindle 

protein (KSP) and VEGF, in a partnership with Tekmira for the use of SNALP as carrier. In 

phase I, ALN-VSP02 was well tolerated and an anti-VEGF effect was observed in patients 

with advanced solid tumors with liver involvement. An extension study was then initiated in 

patients who responded to therapy in phase I, to collect long term safety data. Silence 

Therapeutics designed AtuPLEX, which is a cationic lipoplex with negatively charged 

nucleic acids. Atu027, a siRNA targeting protein kinase N3 (PKN3) carried in AtuPLEX, 

was shown to cause stabilization or regression of disease with no dose-dependent toxicities 

in patients with advanced solid tumors [92]. A phase Ib/IIa trial is currently being conducted 

to evaluate the safety and activity of Atu027 in combination with standard gemcitabine 

treatment in patients with advanced or metastatic pancreatic adenocarcinoma.

Alnylam Pharmaceuticals conducted two sequential phase I trials in 2010 and 2012 with two 

different LNP formulations of a transthyretin (TTR) targeting siRNA: ALN-TTR01 and 

ALN-TTR02 (patisiran) for TTR-mediated amyloidosis. In both trials rapid, dose-dependent 

and sustained lowering of TTR levels was achieved. In one patient, protein knockdown of 

81% was even observed, 50% of which was sustained for 28 days. Patisiran was shown to be 

superior to ALN-TTR01 in terms of potency and lower incidence of infusion-related 

reactions, which were the only noticeable adverse reactions in the trials [93]. On the basis of 

these promising results for the treatment of patients with transthyretin amyloidosis, phase II 

and III trials are now being conducted to investigate safety, tolerability and efficacy of 

patisiran. Later, Alnylam designed subcutaneous formulation revusiran (ALN-TTRSC) by 

conjugating siRNA to N-acetylgalactosamine (GalNAc). In phase I, dose-dependent 

knockdown of serum TTR was achieved in healthy volunteers. A phase II extension study is 

now being conducted to evaluate long-term safety in TTR-cardiac amyloidosis. Also, a 

phase III multicenter study of revusiran was started in December 2014 to evaluate safety and 

efficacy of revusiran in patients with TTR-mediated familial amyloidotic cardiomyopathy.

In 2011, Tekmira Pharmaceuticals started clinical trial with its second SNALP-carried 

siRNA-based therapeutic. TKM-PLK1, targeting polo kinase-1, was tested in solid tumors 

Ozcan et al. Page 10

Adv Drug Deliv Rev. Author manuscript; available in PMC 2016 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with liver involvement. The drug was well tolerated in phase I trial. Currently two distinct 

phase II trials are recruiting participants to determine safety and efficacy in hepatocellular 

carcinoma or neuroendocrine tumors and adrenocortical carcinoma. The same year, Alnylam 

initiated a phase I clinical trial with ALN-PCS02, targeting proprotein convertase subtilisin/

kexin type 9 (PCSK9) in subjects with elevated LDL cholesterol. With i.v. injection of 

ALN-PCS02, a 70% reduction in circulating PCSK9 plasma protein and a 40% reduction in 

LDL cholesterol from baseline were achieved relative to placebo in healthy volunteers [94]. 

In a second phase I trial, a subcutaneous formulation of the drug, ALN-PCSSC, is being 

tested for the same indication.

Investigational product TKM-100201, targeting various Ebola virus components, was 

designed by Tekmira. However, phase I trial initiated in 2012 was terminated by corporate 

decision to reformulate the product. Phase I trial for TKM-100802, the second siRNA-based 

therapeutic of Tekmira targeting Ebola virus, has been suspended following a clinical hold 

placed on the drug.

Nitto Denko Corporation tested safety and tolerability of ND-L02-s0201 injection, a vitamin 

A–coupled lipid nanoparticle containing siRNA against heat shock protein 47 (HSP47), in 

healthy normal subjects. After completion of phase I, safety and efficacy of ND-L02-s0201 

injection are being tested in subjects with moderate to extensive fibrosis (METAVIR F3-4).

Alnylam Pharmaceuticals’ other GalNAc-conjugated siRNA formulation, ALN-AT3SC, 

which targets antithrombin, began testing in phase I in 2014 for further evaluation in 

hemophilia A and B. Dicerna Pharmaceuticals announced two distinct trials in 2014 for 

DCR-MYC, an LNP carrying siRNA against MYC for hepatocellular carcinoma and solid 

tumors, multiple myeloma, or non-Hodgkin lymphoma. Comprehensive Cancer Center of 

Wake Forest University in collaboration with NCI also announced a phase I trial in 2014. 

Intravenous injection of peripheral blood mononuclear cells transfected with siRNA against 

E3 ubiquitin ligase Cbl-b will be tested in patients with melanoma, kidney cancer, pancreatic 

cancer or other solid tumors that are metastatic or cannot be removed by surgery. Lastly, a 

phase I clinical trial is on the way with siRNA-EphA2-DOPC in patients with ovarian 

cancer (OC) at the MD Anderson Cancer Center. In the next section, we will discuss 

findings and our experience in development of siRNA-EphA2-DOPC as a siRNA-based 

therapeutic for OC.

4. Targeting EphA2 with siRNA-based therapeutics

4.1. EphA2 as a target in cancer

EphA2 is a transmembrane protein from the ephrin family of receptor protein–tyrosine 

kinases. It is involved in neuronal development during embryogenesis [95,96], and in adult 

humans it is primarily expressed by epithelial cells [97]. The role of EpHA2 in normal 

epithelia is not clearly understood, but it is thought to have a role in negative regulation of 

cell growth and migration. EphA2 is overexpressed in many human cancers, including 

melanoma, breast, prostate, esophageal and lung carcinomas [98–102]. High levels of 

EphA2 protein expression are associated with aggressive features in tumors and tumor 

models, showing tumorigenic and metastatic functions [98,103].
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OC is the fifth most-common cause of cancer in females and the leading cause of death from 

gynecological malignancies [104]. Most patients have high-grade disease with metastasis at 

the time of diagnosis due to vague clinical symptoms at early stages. The 5-year survival 

rate for patients with advanced disease is very low despite cytoreductive surgery and 

chemotherapy combination regimens [105,106]. Therefore there is an urgent need for new 

therapeutic strategies. Targeting EphA2 represents an attractive therapeutic strategy in OC 

for several reasons.

We observed that EphA2 was overexpressed in 76% of samples from 79 patients with 

epithelial OC. Furthermore EphA2 expression was not detectable in either the normal 

ovarian surface epithelium or in any observed epithelial inclusion cysts within the 

underlying stroma. In patients with OC, EphA2 overexpression was associated with high-

stage and high-grade disease [107]. High level of EphA2 protein expression is also 

significantly associated with a shorter patient survival, and EphA2 was shown to be an 

important prognostic marker for OC [108]. Consistent with these findings, laboratory 

models suggested active contribution of high EphA2 expression to aggressive cancer cell 

behavior [109]. Additionally, EphA2 overexpression in both the tumor and endothelial cells 

in clinical samples of OC is associated with increased markers of angiogenesis and invasion 

[110]. EphA2 signaling is particularly appealing because of the potential to target both 

tumor cells and the tumor-associated vasculature. Furthermore, low expression or absence of 

EphA2 in epithelial tissues including kidney, lung, colon and bladder [111] may be 

associated with low toxicity rates in therapeutic targeting of the molecule.

Carcinogenic properties of EphA2 were primarily observed in high levels of the 

unphosphorylated form. Therefore decreasing total EphA2 levels was thought to be a more 

effective strategy than blocking its activation. Various strategies such as antibody-mediated 

downregulation and siRNA-mediated gene silencing have been utilized to reduce EphA2 

expression. We observed the efficacy and antivascular effects of EphA2 reduction with the 

agonistic antibody EA5 in OC. EA5 led to reduced EphA2 expression by inducing 

phosphorylation of the EphA2 receptor, followed by internalization and destruction. In 

combination with paclitaxel, EA5 substantially reduced tumor growth in an orthotopic OC 

model, including a paclitaxel-resistant model [112]. However, EA5-induced EphA2 

phosphorylation is also known to activate other pathways, such as the mitogen-activated 

protein kinase pathway [113]. Because a siRNA-based strategy silences gene expression and 

prevents activation of receptor-induced pathways, we have focused on siRNA-based 

strategies and developed neutral DOPC liposomes carrying siRNAs directed against EphA2 

(siRNA-EphA2-DOPC). Use of our newly developed EphA2 siRNA-carrying DOPC 

liposome in an orthotopic mouse model of OC resulted in decreased protein expression in 

the tumor and remarkably decreased tumor growth when combined with chemotherapy. 

With systemic administration of these liposomes, we have achieved prolonged and sustained 

target gene downregulation. Furthermore, we have demonstrated that EphA2-targeting 

siRNA in combination with paclitaxel significantly reduced tumor growth by 67% to 82% 

compared with nonspecific siRNA and paclitaxel [69]. In addition, our data support the 

hypothesis that neutral DOPC-nanoliposomes effectively deliver siRNA into tumor cells and 

can be combined with other conventional anti-cancer therapies, such as chemotherapy, to 

enhance the efficacy of conventional drugs.
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In an attempt to achieve prolonged and sustained delivery of siRNA-EphA2-DOPC, we 

preferred the use of a multistage vector (MSV) delivery system. We loaded liposomal 

siRNAs into the 40- to 65-nm-size pores inside the 1.6-mm hemispherical porous silicon 

particles. After i.v. administration, the silicon particles travel in circulation and settle at the 

tumor vasculature, where porous silicon degrades gradually and releases the liposomal 

siRNA. With this new delivery system, we have shown that knockdown of EphA2 

expression lasted for as long as 3 weeks from a single administration, resulting in reduced 

tumor cell proliferation and tumor angiogenesis and eventually in reduced tumor growth. 

Our results also indicated that the MSV delivery system did not cause significant toxicity to 

major organs such as liver and kidney [114]. Furthermore, we have developed chitosan/

thioaptamer (CH/TA) nanoparticles that are capable of cell type–specific binding and 

delivery of siRNA into tumor-associated endothelial cells within the context of the 

Nanotechnology Platforms for Targeting Ovarian Cancer Vasculature project at MD 

Anderson. Intravenous administration of CH/TA nanoparticles into mice with HeyA8 

ovarian tumors resulted in successful binding of aptamer to endothelial cells as well as 

delivery of siRNA into tumors [115]. We have also shown that the administration of 

chitosan nanoparticles conjugated with cyclic Arg-Gly-Asp (RGD) led to increased tumor 

delivery and enhanced anti-tumor activity in OC models [116].

4.2. Preclinical development of siRNA-EphA2-DOPC in ovarian cancer

We have previously demonstrated that neutral nanoliposomes are effective carriers for 

nucleotides in diverse animal models [117–120]. A DOPC loaded with antisense 

oligonucleotides against Grb2 is currently in advanced phase I clinical trial in leukemia 

[121], and no safety issues have been observed in this trial so far. We selected a DOPC-

based siRNA, siRNA-EphA2-DOPC, for use in OC and other orthotopic animal models 

[69–73]. There was a clear anti-tumor effect of siRNA-EphA2-DOPC in the animal models 

tested. We started the preclinical development by establishing kinetics of EphA2 

downregulation in vivo in OC. On the basis of these studies, we determined that siRNA-

EphA2-DOPC could silence EphA2 in OC for up to 6 days. Therefore we selected twice-

weekly i.v. administration in order to maintain continuous silencing of EphA2 in tumors (for 

details, see ref. 69). Once we had established the kinetics of inhibition and the single and 

multiple dose safety in a relevant mouse model, we proceeded to studies in non-human 

primates. The safety of siRNA-EphA2-DOPC was clearly demonstrated in these animals, 

with no hematologic effects or any organ toxicity following necropsy.

A phase I clinical trial of siRNA-EphA2-DOPC was recently authorized by the FDA [122]. 

All elements of manufacturing and quality controls were completed within the 

Investigational New Drug (IND) application.

4.3. Lessons learned

Obviously this process is not a rapid one. Early discussions with the FDA are encouraged, 

and any recommendation should be followed. The manufacturing of siRNA and DOPC and 

the formulation were all performed under good manufacturing practices (GMP) and the 

toxicology studies followed good laboratory practice (GLP). One factor to consider is the 

homology of the human target and the murine target. High homology is ideal; otherwise, 
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safety studies should be conducted in at least two species. The process from target discovery 

to IND approval spanned a period of more than 10 years. The learning process of drug 

development with nucleotides is a work in progress, but with such progress we can move 

these promising technologies more expeditiously to clinical application.

5. Conclusion and future perspectives

siRNA-based therapeutics hold great potential for cancer therapy and treatment of other 

diseases. However, many challenges, including rapid degradation, poor cellular uptake and 

off-target effects, need to be addressed in order to carry these molecules into clinical trials. 

These new class of therapeutics holds great promise for the treatment of various cancers by 

targeting signaling pathways and oncogenes that promote cell proliferation, cell cycle 

progression, invasion/metastasis and resistance mechanisms in tumors. Improvements in 

rational design strategies, selection algorithms, chemical modifications and nanocarriers 

have the potential to make the translational process faster and more effective in the near 

future and to open the door to development of highly effective and safe therapeutics for 

clinical applications.
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Abbreviations

2′-OMe 2′-O-methyl

2′-F 2′-Fluoro

CH/TA chitosan/thioaptamer

DOPC 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine

DOTAP 1,2-dioleoyl-3-trimethylammonium-propane

DOTMA N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl sulfate

EA5 EphA2 agonistic antibody

EphA2 ephrin type-A receptor 2

GalNAc N-acetylgalactosamine

IVT intravitreal

LNAs locked nucleic acids

MSV multistage vector

OC ovarian cancer

PEG polyethylene glycol
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PLA polylactic acid

PLGA poly(lactic-co-glycolic) acid

PS phosphorothioate

SLN solid-lipid nanoparticles

SNALPs stable nucleic acid-lipid particles

TTR transthyretin
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Fig. 1. 
The process of RNA interference in eukaryotic cells. Long precursor miRNA (called pri-

miRNA) is processed by Drosha into pre-miRNAs in the nucleus. Following transportation 

to the cytoplasm via exportin-5, pre-miRNAs are further processed by an RNAse III enzyme 

called Dicer to produce shorter double-stranded miRNAs with imperfect complementarity. 

miRNAs are recognized by Argonaute 2 (AGO2) and RNA-induced silencing complex 

(RISC), where one of the strands is degraded and the other strand guides the AGO2-RISC 

complex to bind and block translation of target mRNAs having partial complementary sites. 

Cytoplasmic long double-stranded RNA (dsRNA) is cleaved by the cytosolic enzyme Dicer 

into small interfering RNAs (siRNAs). siRNAs are recognized by the AGO2-RISC enzyme 

complex. One of the strands is degraded and the other strand guides the complex to 

recognize mRNA sequences with perfect or nearly perfect complementarity, resulting in 

cleavage and degradation of target.
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