
Cellular Uptake and Intracellular Trafficking of Oligonucleotides

R.L. Juliano* and K. Carver
Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North 
Carolina, Chapel Hill, NC 27599

Abstract

Oligonucleotides manifest much promise as potential therapeutic agents. However, understanding 

of how oligonucleotides function within living organisms is still rather limited. A major concern in 

this regard is the mechanisms of cellular uptake and intracellular trafficking of both ‘free’ 

oligonucleotides and oligonucleotides associated with various polymeric or nanocarrier delivery 

systems. Here we review basic aspects of the mechanisms of endocytosis and intracellular 

trafficking and how insights from these processes can be used to understand oligonucleotide 

delivery. In particular we discuss opportunities for escape of oligonucleotides from 

endomembrane compartments and describe recent studies using small molecules to enhance 

oligonucleotide effects.

Graphical Abstract

1. Introduction

Realization of the potential oligonucleotides as therapeutic agents began more than three 

decades ago with the discovery of antisense molecules [1]. The discovery of RNA 

interference [2, 3] increased enthusiasm and was further reinforced by insights into the 
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complex roles of non-coding RNAs in regulating genome function [4]. Many aspects of 

oligonucleotide therapeutics are covered in this theme issue. Here we will stress a key basic 

aspect of oligonucleotide behavior that underlies all potential therapeutic utilization, namely 

the cellular uptake and intracellular trafficking of these molecules.

Despite FDA approval of the first antisense drug [5] and the advent of multiple clinical trials 

in cancer and other diseases [6–10], oligonucleotide therapeutics has progressed slowly. A 

major issue has been the poor efficacy of oligonucleotides. In large part this because 

effective delivery of such large, polar molecules to their sites of action within tissues is a 

very challenging problem [11–13]. This review will primarily emphasize the behavior of 

‘free’ oligonucleotides and of molecular-scale oligonucleotide conjugates. Oligonucleotides 

associated with nanocarriers are more fully discussed elsewhere in this theme issue. The 

emphasis here will be on processes at the cellular and subcellular level rather than on 

classical pharmacokinetics and biodistribution. A key theme for this article is the 

observation that the processes that govern intracellular traffic of internalized molecules are 

enormously complex and that understanding these processes is vital for the future of 

oligonucleotide therapeutics.

2. Endocytotic and Trafficking Pathways

Oligonucleotides usually enter cells via endocytosis; however, it is important to realize the 

complexities associated with the multiple pathways of internalization and subsequent 

trafficking. These pathways are regulated by a plethora of unique proteins and lipids that 

underlie all aspects of internalization and trafficking. An illustration of some of the 

pathways is given in Figure 1.

2.1. Pathways and mechanisms of endocytosis

2.1.1 Coated pits—During classical clathrin mediated endocytosis ligand-bound cell 

surface receptors associate with AP-2 and other adaptor proteins, and with various accessory 

proteins, that cluster the receptors into specialized membrane areas subtended by a network 

of clathrin triskelions [14–16]. The clathrin network, functioning with specialized BAR 

domain proteins, including SNX9 and amphiphysin, that sense and alter membrane 

curvature, then produces an invagination of the coated pit. Following invagination, there is a 

pinching off of a clathrin-coated vesicle mediated by the dynamin GTPase [17]. The coated 

endosomal vesicle is then quickly uncoated via several proteins including auxilin and hsc70. 

The uncoated vesicle then begins its intracellular journey. Important receptors and ligands 

internalized by this pathway include LDL, transferrin, and many activated G Protein 

Coupled Receptors [18, 19].

2.1.2 Caveolae—Many cells display small, cholesterol-rich membrane invaginations that 

contain caveolin1. This is a 21kD protein that inserts a hydrophobic hairpin into the lipid 

bilayer while both N- and C-termini are cytosolic [20, 21]. Stabilization of cavelolar 

structures also involves coat proteins called cavins that act with caveolin. There is some 

controversy as to whether caveolae can mature into independent intracellular vesicles or 

whether they remain associated with the plasma membrane as tubular structures. However, 

evidence now suggests that caveolae can contribute vesicular structures to intracellular 
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membrane traffic. For example, caveolae have been implicated in the turnover of β1 

integrins and the ENaC sodium channel, but the precise mechanisms are unclear. Caveolar 

vesicles are usually smaller (<100 nanometers) than other types of endosomes, which may 

reach diameters of several hundred nanometers. Previously it had been suggested that 

internalized caveloae contributed to unique endomembrane structures termed caveosomes. 

However, more recently this view has been discredited and caveolar-derived vesicles likely 

fuse with typical early endosomes. Dynamin seems to be involved in the disjunction of 

caveolae from the plasma membrane, but the evidence is not as abundant as in the case of 

clathrin coated pits. Many other proteins are associated with caveolae, particularly 

molecules involved in signal transduction [22, 23].

2.1.3 Other pathways—Several clathrin- and caveolin- independent pathways have been 

documented [16, 18, 24]. These pathways are often described in terms of the morphologies 

of the vesicles they generate or based on the cargo that is preferentially internalized. For 

example, the flotillins are membrane-inserted proteins that may organize lipid domains and 

promote subsequent endocytosis, functioning similarly to caveolin. Interestingly some 

studies indicate that dynamin is not required for internalization of cargo via the flotillin 

vesicle pathway [25]. Thus the flotillin pathway is an example of a clathrin and caveolin 

(and possibly dynamin) independent endocytotic pathway.

The CLIC/GEEC pathway is another important mechanism that seems to make a major 

contribution to fluid phase endocytosis [18, 24]. The acronym is for Clathrin and Dynamin 

Independent Carriers (CLIC)/GPI-AP Enriched Early Endosomal Compartments (GEEC). 

This pathway generates tubular endosomes of high volume that are enriched in GPI-proteins 

and that typically contain markers of fluid phase endocytosis (e.g. dextrans). As implied by 

their name, dynamin is not required for the disjunction of these vesicles from the plasma 

membrane. Rather membrane scission probably involves GRAF1, a GTPase activating 

protein containing a BAR domain [26]. Additionally the small GTPase CDC42 has been 

implicated in the CLIC/GEEC pathway.

There are additional clathrin and caveolin independent pathways [18, 24, 26]. One is a 

pathway for the internalization of a type of IL2-Receptor, certain potassium channels, and 

the FCεR1 immunoglobulin receptor. This pathway utilizes dynamin for scission of vesicles 

from the plasma membrane, while the pathway is also regulated by protein kinases of the 

PAK family and by the Rho GTPase. Another pathway that generates both vesicular and 

tubular structures is involved in the internalization of MHC class I histocompatibility 

proteins; it utilizes the Arf 6 GTPase, but the involvement of dynamin is unclear.

Macropinocytosis involves cell protrusions that engulf large volumes of extracellular fluid 

thus substantially contributing to fluid phase endocytosis [27]. Formation of these relatively 

large structures requires actinomyosin and its characteristic regulators such as the Rac 

GTPase and PAK family kinases, but probably not dynamin. Additional internalization 

mechanisms such as phagocytosis and entosis are characteristic of specialized cells but do 

not play a role in trafficking of oligonucleotides in most cell types [18]. The actinomyosin 

contractile machinery is involved in most of the processes described above; however, not all 

endocytotic events require actin. For example, certain arenaviruses utilize a pathway that is 
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independent of clathrin, caveolin, dynamin and actin to enter cells [28]. Interestingly, our 

studies suggest that phosphorothioate antisense oligonucleotides may enter cells by a 

pathway similar to that of arenaviruses [29].

Thus multiple pathways for endocytosis are known while additional ones probably remain to 

be discovered. This provides daunting challenges but also important possibilities for 

oligonucleotide pharmacology. It should be possible to influence the initial route of 

endocytosis by targeting oligonucleotides to specific cell surface receptors. Subsequently 

this may have important consequences for downstream trafficking and for the ultimate 

biological effect of the oligonucleotide.

2.2. Trafficking downstream of initial internalization

2.2.1 Overview—Irrespective of whether it is a ‘free’ molecule, a molecular scale 

conjugate or associated with a form of nanoparticle, an oligonucleotide that enters a cell via 

endocytosis must traverse a complex maze of intracellular pathways leading to many 

destinations and regulated by intricate protein machinery [30–32]. Major subcellular 

membrane-bound compartments include early and recycling endosomes, late endosomes/

multi-vesicular bodies, lysosomes, the Golgi apparatus and the endoplasmic reticulum (see 

Figure 1). There are two broad fates for materials in endomembrane compartments; they can 

be trafficked to lysosomes for degradation or they can be recycled to the plasma membrane 

and cell exterior. A relatively minor but interesting alternative trafficking route leads from 

endosomes to the trans-Golgi apparatus and is termed the Retrograde pathway [33]. There 

are two somewhat inconsistent models of the intracellular trafficking process. One model 

posits that early and late endosomes are stable compartments that serve as docking stations 

for smaller vesicles that carry membranes and intraluminal contents between compartments. 

Another model suggests a gradual maturation of early/recycling endosomes to late 

endosomes and lysosomes. In actuality it is likely that elements of both models come into 

play [34, 35]. The intricate ballet of intracellular trafficking is regulated by a host of proteins 

or protein complexes. Some key examples include the multitudinous Rab family of small 

GTPases [36, 37], SNARE complexes [38], tethers [39, 40], the ESCRT complex [41] and 

the Retromer complex [42]. These various proteins play important functional roles but as 

well they also serve as easily recognizable markers for specific endomembrane 

compartments.

2.2.2 Basic Mechanisms of Trafficking—There has been great progress in 

understanding the mechanisms of intracellular trafficking, acknowledged by a recent Nobel 

Prize in this area [43]. A basic conserved process underlies all membrane traffic: (a) 

disjunction of a coated vesicle from a donor membrane compartment; (b) uncoating of the 

vesicle allowing the display or binding of tethering and fusion proteins; (c) migration of the 

vesicle to its destination along ’tracks’ provided by actin- or tubulin- based cytoskeletal 

structures; (d) recognition by the vesicle of its target membrane compartment using tethering 

proteins and then completion the fusion process using SNARE proteins and delivery of 

membrane and contents to the target compartment [30, 44, 45]. Figure 2 shows a simple 

diagram of this process. There are numerous variations of this theme and a plethora of 

proteins are implicated in different situations, but the general picture is quite clear.
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The Rab proteins comprise a large (>60) family of small GTPases that act as molecular 

switches to modulate many aspects of intracellular trafficking [37, 46, 47]. Activated GTP-

loaded Rabs bind to and affect the functions of downstream effector proteins, usually acting 

at the cytoplasmic face of endomembrane compartments. The inactive GDP-loaded form of 

Rabs associate with cytosolic Rab-GDI (Rab GDP Dissociation Inhibitor) proteins that 

stabilize the inactive form and regulate the ratio between cytosolic and membrane bound 

Rab. The balance between active and inactive forms is also regulated by Rab-specific GEFs 

(Guanine Nucleotide Exchange Factors) and GAPs (GTPase Activating Proteins). Rabs play 

many roles in modulating intracellular trafficking; this includes vesicle uncoating, 

movement of vesicles along cytoskeletal tracks, and the ultimate fusion events involving 

tethers and SNARES. Rab proteins also serve as excellent markers of individual membrane 

compartments and trafficking pathways. For example, as we will discuss in more detail 

below, Rab5 is a marker for early endosomes while Rab7 serves for late endosomes, and 

Rab 9 for endosome-Golgi trafficking. However, a complicated aspect of Rab function 

involves the presence of ‘Rab domains’ within particular endosomal compartments. Using 

low levels of expressed green fluorescent protein-Rab chimeras, it has been demonstrated 

that different Rab proteins localized on the same endomembrane compartment can occupy 

distinct membrane microdomains [46]. This micro-segregation of Rabs likely contributes to 

the endosomal sorting processes discussed above [26].

As mentioned, the initial event in intracellular trafficking is the disjunction of a coated 

vesicle from a donor membrane. The formation of clathrin coated vesicles at the plasma 

membrane is one example, but there are other examples including the COPI and COPII coats 

of the Golgi and ER. The initial budding of the coated vesicle is often accomplished by 

dynamin, but other mechanisms exist as well. For example, vesicle disjunction from late 

endosomes to the trans-Golgi is accomplished by the Retromer complex [33] utlizing SNX 

proteins that sense and affect membrane curvature via BAR domains [48].

Tethering proteins create preferential interactions between vesicles and their ultimate target 

membrane compartments. There are two broad types of tethering proteins; the coiled-coil 

tethers such as the Golgins and the multi-subunit tethers [38–40]. Tethers are thought to 

bridge membranes and promote fusion by binding to both Rab proteins and SNARES. 

However, the multisubunit tethers clearly have multiple functions including possibly ‘proof-

reading’ SNARE complexes to assure fusion of the correct vesicular partners. For example, 

this seems to be true of the late endosomal HOPS tethering complex [40]. There is little 

clarity about when and how tethering proteins become associated with trafficking vesicles. 

For example, it is unclear whether tethers bind vesicle coat proteins, or if tethering takes 

place after uncoating [30].

The ultimate transfer of both membrane material and contents from the shuttle vesicle to the 

target compartment is achieved through a fusion process mediated by SNAREs (soluble N-

methylmaleimide sensitive factor attachment protein receptors) [38, 49]. After initial 

recognition via tethering proteins, vesicle SNARES (v-SNARES) interact with target 

compartment SNARES (t-SNARES) to form a four-helix bundle that undergoes a dramatic 

conformational change to induce membrane fusion by driving close apposition of the lipid 

bilayer membranes. There is substantial specificity in these events since only particular 
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cognate pairs of v- and t-SNARES will support fusion. Further specificity may be provided 

by tethering complexes. Resegregation of the v-SNARES and t-SNARES into their original 

compartments is achieved by the ATP-dependent NSF/SNAP protein complex.

2.2.3 To Lysosomes-or Not—All the manifold pathways of endocytosis seem to initially 

lead to the early/recycling endosome compartment. These relatively large structures with a 

central lumen and multiple tubular extensions play a key role in sorting. Vesicles derived 

from the clathrin, caveolar or other pathways merge with the early endosomes. Material 

destined for lysosomal degradation accumulates in the central lumen while that destined to 

return to the plasma membrane migrates to the tubules where disjunction or ‘pinching off’ of 

smaller shuttle vesicles occurs [32]. Despite the common nexus of the early endosome, it is 

clear that receptors, ligands and cargo that have been internalized by different initial 

endocytotic mechanisms can traffic to distinct subcellular compartments. However, we only 

partially understand this process. There is evidence suggesting that that membrane domains 

originating from different internalization pathways maintain their identity within early 

endosomes. This sets the stage for individualized sorting and trafficking to unique 

downstream destinations [26].

The Rab5 GTPase plays a key role in maintaining the identity and function of early 

endosomes (EEs) [50]. Rabex-5, a RabGEF, acts with a cofactor Rabaptin-5 to activate 

Rab5 on the early endosome surface. This results in the recruitment of Rab5 effectors, 

including the tethering factor EEA1 that can interact with SNARE proteins, and the PI 3-OH 

kinase Vps34 that helps to enrich the EE membrane in PI3P. Initially this process is self-

sustaining allowing the EE to interact with other EEs and to contribute to recycling of 

membrane constituents to the cell surface via Rab4 and Rab11 regulated vesicular 

trafficking pathways [51]. However, eventually other proteins are recruited to the EE that 

drive its maturation to a late endosome (LE) accompanied by displacement of Rab5 and 

association with Rab7. Thus two sets of effectors are recruited that seem to work in tandem 

in the EE to LE conversion. The SAND-1/Mon complex binds PI3P, binds Rab7, displaces 

Rabex 5 and interacts with the HOPs complex [32]. The HOPS tethering complex includes a 

GEF for Rab 7 [37] that drives Rab7 activation. Paralleling the Rab5 to Rab7 conversion, 

the endosome loses ability to interact with EE partners and instead acquires the ability to 

associate with LE partners.

One of the key aspects of the EE to LE conversion is the formation of intraluminal vesicles 

(ILVs) to create the late endosome/multivesicular body (LE/MVB) compartment [41, 52]. 

This serves to further concentrate certain proteins and lipids in the endosome lumen thus 

directing them to lysosomal degradation. The key agents in this process are the five multi-

protein complexes of the ESCRT machinery, ESCRTs 0-III and Vps4-Vta1, that recognize 

ubiquitinated membrane proteins and drive them into invaginations that ultimately 

vesiculate into the interior of the LE/MVB. Thus, like the clathrin/dynamin system, the 

ESCRT assembly is a membrane deforming nanomachine; however, topologically speaking, 

the ESCRT process is the inverse of clathrin mediated endocytosis. An interesting aspect of 

the formation of ILVs is their unusual lipid composition that is distinct from the endosomal 

membrane and is highly enriched in lysobisphosphatidic acid (LBPA)[32]. It should be noted 

that other lipid changes take place in the progression from the plasma membrane to various 
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endosomal membranes, particularly in terms of phosphoinositides that play a role in the 

binding of various proteins to endomembrane surfaces [52].

Late endosomes are distinctly different in appearance from EEs, lacking the highly tubular 

structures and being filled with ILVs. They also migrate from a peripheral to a perinuclear 

location where they can interact/fuse with other LEs and with lysosomes; the migration is 

thought to involve dynein-dependent minus end directed microtubular transport [32]. 

However, in addition to their traditional role as a delivery vehicle to lysosomes, two new 

roles for LE/MVBs have recently emerged. One is the formation of exosomes during which 

ILVs are disgorged to the cell exterior where they can be taken up by other cells and thus 

play a role in cell-cell communication [53, 54]. Since exosomes entrap a sampling of the 

cytosol, they can be used to convey endogenous miRNAs, or exogenous siRNA (after pre-

loading the donor cells), from one cell to another [54, 55]. Another surprising finding, very 

relevant to the oligonucleotide area, is that elements of the miRNA processing machinery, 

including the RISC complex, are found associated with endomembranes. While some 

studies implicate LE/MVBs as the key site [56], others indicate that the RISC complex 

primarily functions in association with rough endoplasmic reticulum [57]. A excellent recent 

publication reviews the evidence on this topic [58].

Lysosomes are often disparaged as the being the cell’s trash can but these are actually 

complex and versatile organelles [59]. Like other trafficking events, fusion between late 

endosomes and lysosomes is very precisely controlled. An important new role for lysosomes 

has emerged recently in the context of the complex phenomenon of autophagy [60]. 

However, not all trafficking pathways lead to lysosomes.

In addition to the recycling events that that take place at the EE level, other alternatives to 

lysosomal trafficking exist. An important one is the retrograde trafficking pathway that links 

endosomes to the trans-Golgi [61, 62]. The classic example of retrograde transfer is the 

recapture of mannose-6 phosphate receptors from endosomes to the Golgi, while their 

hydrolase ligands journey to lysosomes. However, many pathogens have ‘hijacked’ this 

pathway for their own use. For example, several bacterial and plant toxins reach the cytosol 

by following a retrograde pathway to the trans-Golgi and ultimately the endoplasmic 

reticulum [63]. A large number of proteins are involved in various facets of retrograde 

transport. For example, EE to trans-Golgi trafficking involves both clathrin and the retromer 

complex. The retromer includes a Vps26-Vps35-Vps29 trimer that serves as a recognition 

complex that binds to the cytoplasmic tails of potential cargo proteins. It also includes SNX 

proteins that have PX domains that recognize phosphoinositides and BAR domains that can 

sense and alter membrane curvature. This results in the tubulation of the EE membrane and 

eventual formation of vesicles. The LE to trans-Golgi pathway seems to be distinct and is 

regulated by the Rab9 GTPase. Retrograde trafficking from EEs and LEs also involves 

tethering proteins, particularly members of the golgin group, as well as SNARES.

In summary, there are multiple trafficking pathways for membrane-delimited vesicles within 

cells. The physiological role of these pathways is to transport various cellular 

macromolecules to the sites where they are needed. However, these pathways can also 

transport exogenous materials, as pathogens long ago discovered. The intracellular 
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trafficking machinery can potentially also be an efficient means to deliver therapeutic agents 

such as oligonucleotides. However, we need to attain better understanding and better control 

of the interactions between therapeutic molecules and the intracellular trafficking 

machinery.

3. Endocytosis and Trafficking of Oligonucleotides

3.1 Overview

There are thousands of publications on the pharmacokinetics, biodistribution, cellular uptake 

and biological effects of oligonucleotides as individual molecules or associated with various 

carriers. To provide an overview of this complex literature, this theme issue contains timely 

reviews on oligonucleotide pharmacokinetics and biodistribution by Geary and colleagues, 

on the behavior of oligonucleotide conjugates by Ming and colleagues, and on delivery 

using lipoplexes or cell-penetrating peptides by Huang and co-workers and by Lebleu and 

colleagues respectively.

The overall picture of the in vivo behavior of oligonucleotides has been well described [64, 

65]. Uncharged oligonucleotides including morpholino and peptide nucleic acid derivatives, 

as well as most forms of siRNA, are rapidly excreted via the kidney. However, 

phosphorothioate (PS) oligonucleotides display stronger binding to plasma proteins and cells 

allowing retention in the body for longer periods. Preferential in vivo uptake by certain cell 

types including kidney proximal tubule cells and liver Kupffer cells has been observed for 

PS oligonucleotides and for siRNA [66, 67].

The most widespread approach to delivery of antisense, siRNA or other types of 

oligonucleotides is to include the nucleic acid into some type of nanoparticle, with the goal 

of increasing both cell uptake and release from membrane compartments [11, 12, 68–70]. 

Lipid based carriers have been shown to be efficacious for the delivery of siRNA to the liver 

[71]. A wide variety of polymers [72] and other types of nanocarriers [73] have also been 

developed for siRNA delivery. Effective delivery of siRNA to tumors has been challenging, 

but recently targeted lipid based nanoparticles have provided substantial activity in this 

context [74]. Importantly, however, the biodistribution of most nanocarriers is limited by the 

permeability properties of the endothelial barrier that prevents access of nanoparticles to the 

parenchyma of many tissues [11, 75].

In terms of ‘free’, molecular scale oligonucleotides, cellular uptake mechanisms are strongly 

influenced by the chemical characteristics of the molecule, but in many cases precise 

mechanistic insights are lacking. Phosphorothioate-based antisense or splice switching 

oligonucleotides tend to bind strongly to proteins, including those on the cell surface, and 

thus can enter cells through non-specific adsorptive endocytosis. Additionally PS-

oligonucleotides bind certain serum proteins (e.g. alpha-2 macroglobulin) that in turn bind to 

specific receptors on some cells [76]. Thus uptake mechanisms for PS-oligonucleotides are 

complex. Uncharged morpholino or peptide-nucleic acid oligomers are taken up by cells or 

tissues much less effectively than PS-oligonucleotides, likely by fluid phase endocytosis, 

and are thus often used in conjunction with cationic cell penetrating peptides [77] as is 

described in detail in the review by Lebleu and colleagues in this theme issue. Similarly 
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unmodified siRNA is poorly taken up by cells and is thus usually used in association with a 

nanocarrier or conjugated to a ligand that interacts with a cellular receptor. Interesting 

studies in cell culture and in mouse models have involved the so-called ‘gymnotic’ uptake of 

antisense oligonucleotides modified with LNA (locked nucleic acid) moieties. Subcellular 

distribution studies surprisingly indicated that deoxy LNA oligomers became associated 

with P-bodies that are usually thought to be sites of siRNA action [78].

Attempts to identify endogenous receptors for antisense or siRNA molecules have proven 

problematic. Integrins of the beta2 subclass [79] and scavenger receptors [66] have been 

suggested as candidates, but this is controversial [80]. A putative oligonucleotide transporter 

has been described [81, 82] but there has been little confirmatory work on this finding by 

other groups. Another candidate is the mammalian homolog of the double-stranded RNA 

(dsRNA) transport protein SID-1 found in Caenorhabditis elegans [83]. However, initial 

reports of a role for SID-1 in uptake of siRNA by mammalian cells [84–86] have not been 

followed up.

An important consideration concerns the binding of oligonucleotides to proteins both on the 

cell surface and within the cell. Recently there has been some progress regarding 

interactions of PS-oligonucleotides with intracellular proteins. For example, the chaperonin 

T-complex 1 and paraspeckle proteins have shown associations with PS-oligonucleotides 

[87, 88].

Oligonucleotides conjugated with various ligands have drawn increasing interest in recent 

years [89, 90]. While initial emphasis was on cholesterol conjugates that would affiliate with 

plasma lipoproteins [91], more recently ligands that can target specific receptors including 

aptamers [92, 93], small organic molecules [94], peptides [95, 96], and carbohydrates [97, 

98] have all been explored. The characteristics of cell surface receptors that may permit 

successful oligonucleotide targeting have also been discussed [99]. Presumably ligand-

oligonucleotide conjugates will internalize by the same pathway as the ligand receptor itself. 

For example, we have found that conjugates of antisense or siRNA with RGD (arg-gly-asp) 

peptides known to bind the αvβ3 integrin internalize via a caveolar pathway, as does the 

integrin itself [95, 100]. However, backbone chemistry does come into play. Thus there is a 

much greater differential cell uptake of conjugated versus non-conjugated oligonucleotide 

for siRNA than for PS-antisense; this is presumably due to the fact that there is considerable 

non-specific uptake due to the PS-backbone. Recently excellent progress has been made 

with use of ligand-oligonucleotide conjugates in vivo including those targeting the 

asialoglyoprotein receptor of liver [98] and integrins of tumor cells [101]. A very novel and 

interesting recent study involved developing a chemically modified, non-charged form of 

siRNA followed by conjugation to a carbohydrate moiety that binds the asialoglycoprotein 

receptor [102]. This entity displayed strong RNAi effects in a mouse model.

3.2. Mechanistic Studies of Oligonucleotide Endocytosis and Trafficking

Despite the extensive literature on the biology of oligonucleotides relatively few studies 

have addressed the mechanisms of oligonucleotide uptake and intracellular trafficking using 

state-of-the-art molecular or imaging tools. Several recent reviews, in addition to the current 

effort, have provided good accounts of some of the issues involved and of the limited 
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progress to date [13, 103–105]. Here we will engage in a highly selective discussion of a 

few key reports that use effective contemporary techniques to address oligonucleotide 

uptake and trafficking. We will discuss both molecular scale oligonucleotides and 

conjugates and some nanocarrier systems. Although not focused on oligonucleotides, a 

recent report on mass transfer in cells serves as a model for how a combination of molecular 

biological techniques, sophisticated imaging, and mathematical modeling can provide 

powerful insights into intracellular trafficking processes [106].

In our own laboratory our initial insights into the functional importance of uptake and 

trafficking mechanisms came from studies comparing the effects of splice switching 

oligonucleotides administered either with or without conjugation to a targeting ligand [29, 

100, 107]. We found that an oligonucleotide taken up by a receptor-mediated process had 

greater pharmacological effect than an oligonucleotide taken up by a non-specific 

mechanism, even when the same level of total oligonucleotide accumulated in the cells. This 

suggested that the route of internalization could affect the ultimate action of the 

oligonucleotide. These studies also prompted us to begin to deploy more precise techniques 

for understanding oligonucleotide trafficking including use of dominant negative mutants of 

key proteins involved in uptake and trafficking, and Green Fluorescent Protein chimeras of 

proteins that are well-understood markers of different endomembrane compartments [108, 

109].

Other investigators have described similar results regarding trafficking pathways. A report 

using phosphorothioate antisense oligonucleotides in a transformed liver cell line and in 

murine livers indicated the co-existence of productive and non-productive paths of uptake 

[110]. The non-productive pathway apparently involved trafficking to lysosomes, while the 

pathway that resulted in antisense effects involved trafficking that led to interaction with 

cellular pre-mRNA. Another interesting report involved delivery of siRNA by targeting 

Toll-Like Receptors [111]. An un-methylated CpG oligonucleotide able to interact with 

TLR9 was chemically conjugated to a siRNA. This produced enhanced uptake by TLR-9 

expressing dendritic cells, macrophages and B-cells, as well as ‘knockdown’ of endogenous 

and reporter genes. Interestingly, presence of TLR9 was essential for effective ‘knockdown’ 

although cells lacking the TLR could still take up the conjugate, thus once again implicating 

the uptake and trafficking pathway in pharmacological effectiveness.

An interesting report deviated from the standard view that cationic lipid carriers function by 

delivering siRNA via endocytosis followed by escape from endosomes [112]. It was found 

that although much of the lipid and siRNA entered cells by some type of endocytosis, only a 

minor component of the cell-associated siRNA contributed to ‘knock down’ and this 

component likely came from fusion between the siRNA lipoplexes and the plasma 

membrane. This study employed molecular tools such as dominant negative forms of 

dynamin and caveolin to probe lipoplex uptake pathways. Another interesting study 

examined uptake and trafficking of siRNA within perfluorocarbon nanoparticles [113], and 

found that delivery was via generation of cell-nanoparticle hemifusion complexes followed 

by lipid raft mediated internalization. This study effectively used the strategy of co-

localization with markers that are known to be internalized through particular pathways.
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Spherical nucleic acids are entities comprised of siRNA (or other oligonucleotide) tightly 

adsorbed to gold nanoparticles. A recent report investigated the intracellular fate of such 

structures in some detail [114]. Fairly sophisticated imaging, as well as GFP chimeras of 

specific endomembrane proteins were used to demonstrate trafficking from early to late 

endosomes but not to lysosomes, followed by gradual degradation and export of the 

oligonucleotide but not the carrier. A recent study using splice switching peptide nucleic 

acids conjugated to cell penetrating peptides found striking differences in endocytotic 

mechanisms between different cell types [115]. Thus skeletal muscle cells took up the 

conjugate by a caveolin-mediated process while cardiac muscle cells utilized clathrin-

mediated endocytosis. In addition, the conjugate seemed to exit from endosomes more easily 

in differentiated as opposed to undifferentiated skeletal muscle cells.

Two articles appearing simultaneously in 2013 have provided unprecedented insights into 

the intracellular fates of siRNA lipoplexes. Both articles used advanced imaging techniques 

as well as powerful molecular tools. Thus Gilleron et al [116] found that lipoplexes were 

initially taken up by clathrin-mediated endocytosis but that event provoked further 

accumulation by macropinocytosis. The lipoplexes accumulated in an early-late endosome 

hybrid compartment but only 1–2% of the siRNA reached the cytosol. Sahay et al [117] also 

emphasized a role for macropinocytosis, but found that much of the siRNA was re-exported 

from late endosomes/lysosomes utilizing a process that involved the NPC1 lipid transporter 

protein.

Perhaps the most important recent study of oligonucleotide trafficking is one that 

definitively links the endosomal machinery to the pharmacological effects of 

oligonucleotides [118]. ESCRT-1 (the endosomal sorting complex required for transport) 

plays a key role in the formation of late endosomes/multi-vesicular bodies. Using an shRNA 

screen, the investigators found that ‘knock down’ of a component of ESCRT-1 machinery 

dramatically improved the effects of an oligonucleotide antagomir that targets miR-21. This 

is an unequivocal demonstration that the trafficking machinery influences the actions of 

oligonucleotides.

There have been a number of other recent studies examining the uptake and trafficking of 

various forms of oligonucleotides. Selected examples are summarized in Table 1.

In summary, there are diverse routes for the initial uptake of oligonucleotides presented in 

various forms including clathrin-dependent, caveolin-dependent and non-clathrin/caveolin 

dependent pathways. There is also substantial cell type dependent variation in the uptake 

processes. After initial uptake oligonucleotides can traffic within cells by routes that are 

more or less productive in terms of ultimate pharmacological effect. Finally there is an 

indication that the late endosome compartment may play a key role in functional delivery of 

oligonucleotides to the cytosol and nucleus.

3.3. Escape From Endosomes During Intracellular Trafficking

The complex pathways of endocytosis and trafficking are intended to move endogenous 

molecules to their appropriate cellular destinations. While that machinery is usually quite 

efficient, there are nonetheless opportunities for molecules to be released from 
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endomembrane compartments to the cytosol. Intracellular trafficking involves a dynamic 

flux of membrane vesicles that participate in a plethora of fusion and fission events. Fusion 

mechanisms in both natural and artificial lipid membranes have been studied extensively 

[126, 127]. Although this area is largely beyond the scope of this review, it is important to 

note a few key points. First, fusion creates localized stress that can result in the formation of 

non-bilayer lipid domains in the fusion partners [126, 128]. Second, it has been observed 

that non-bilayer regions can be much more permeable to solutes than bilayer regions [129, 

130]. Third, enveloped viruses that fuse with cell membranes often utilize specialized 

proteins that act in a manner similar to cellular SNARE proteins; the influenza virus fusion 

protein is a good example [131]. These proteins can also induce membrane permeability 

increases [132]. Thus there is an inherent relationship between the fusion events involved in 

intracellular trafficking and the opportunity for leakage of vesicular contents (see Figure 2). 

Therefor the activity of oligonucleotides in cells may be attributable to a low level of 

continuous leakage from endomembrane vesicles that takes place during intracellular 

trafficking.

There are several loci in the intracellular trafficking network that may be particularly 

susceptible to increases in permeability that may allow egress of oligonucleotides to the 

cytosol [31]. One is at the stage of early/sorting endosomes where there is extensive 

tubulation and formation of vesicles for return of receptors to the plasma membrane via Rab 

4 or Rab 11 dependent mechanisms. However, most studies suggest that materials transit 

rather rapidly through the sorting endosome compartment. A second locus is at the stage of 

LE/MVBs where the ESCRT complex directs the formation of inward protrusions of the 

endosome membrane that ultimately become intraluminal vesicles Third, retrograde traffic 

from early or late endosomes utilizing the retromer complex or Rab9 mechanisms offers 

another possibility for membrane instability during tubulation and vesicle formation. 

Finally, SNARE driven membrane fusions clearly afford opportunities for partial leakage of 

vesicular contents. Several publications have observed such leakage using in vitro systems 

designed to mimic fusions driven by SNAREs or viral fusion proteins [132, 133]. It seems 

feasible to explore some of these potential mechanisms for oligonucleotide delivery to the 

cytosol. For example, one could use siRNAs to reduce expression of key proteins involved 

in a particular mechanism, or alternatively use dominant negative versions of those proteins, 

and determine if that influences the pharmacological effect of an antisense or siRNA that 

addresses a different target. Another approach would be to use cell lines with genetic defects 

in intracellular transport processes. There are now several examples of studies using such 

approaches in the oligonucleotide literature [109, 110, 117, 118].

Once oligonucleotides reach the cytosol they have good access to their ultimate sites of 

action. Thus for siRNAs the RISC machinery is cytosolic. Antisense and SSOs that 

primarily act within the nucleus, particularly those with phosphorothioate backbones, are 

able to rapidly shuttle between the nucleus and the cytoplasm. This process is mediated by 

nuclear pore structures but does not involve classical nuclear localization signals [134]. For 

conventional phosphodiester oligonucleotides both passive diffusion and active transport 

have been described as nuclear entry mechanisms.
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3.4 Small Molecules that Affect Intracellular Trafficking

The plethora of unique proteins and lipids involved in intracellular trafficking present an 

opportunity to develop a chemical biology approach to the elucidation of underlying 

mechanisms, as well as the possibility of manipulating trafficking for therapeutic purposes. 

However this approach is not very well developed currently. A recent review article 

provides a good overview of the limited number of small molecules that affect trafficking 

that have been developed to date [135].

Most effort has focused on inhibitors of endocytosis. This has been of interest for a long 

time and a number of drugs have traditionally been used as supposedly selective blockers of 

various endocytotic routes. This includes chloropromazine for clathrin-mediated 

endocytosis, amiloride for macropinocytosis, cholesterol depletion by cyclodextrins for 

caveolar uptake, as well as others. However, these approaches rest on very shaky ground as 

these agents are known to have multiple effects on cells in addition to the intended one 

[135]. More recently several agents have emerged that are more precise in their actions on 

endocytotic mechanisms. Dynasore [136] is a highly selective inhibitor of the dynamin 

GTPase and thus affects all routes that involve this protein. Improved versions of dynasore 

are under development [137]. The dynoles are another group of compounds that are 

excellent inhibitors of dynamin [138]. The pitstops [139] are small molecules that bind to 

clathrin and are putatively selective inhibitors of clathrin-mediated endocytosis. However, 

one report suggests that pitstops may also affect clathrin-independent endocytosis [140] thus 

emphasizing the difficulty in designing truly selective inhibitors. Various inhibitors of 

endocytosis will be useful in defining pathways of oligonucleotide trafficking. However, 

they obviously will not enhance effects of oligonucleotides that require endocytosis for 

uptake. For that we need to turn to intracellular trafficking processes.

A number of agents have been developed that affect the organization of intracellular 

organelles or the dynamics of trafficking processes. One of the best known is brefeldin A a 

fungal metabolite that disrupts the organization of the Golgi apparatus by inhibiting several 

guanine nucleotide exchange factors (GEFs) for the Arf1 GTPase [135]. Golgicide is a more 

recently developed compound that selectively inhibits the GBF1 Arf-GEF thus more 

precisely defining its role [141]; like brefeldin, golgicide disrupts the organization of the 

Golgi apparatus and trans-Golgi network.

Some of the most interesting compounds have come from screens designed to find 

molecules that block the pathogenic effects of bacterial or plant toxins [142–144]. Screening 

for agents that block anthrax toxin led to a molecule, EGA, that seemed to act at the early 

endosome to late endosome transfer stage and that affected other proteins that traffic via 

acidified compartments [144]. However, EGA did not affect intra-lysosomal pH. 

Interestingly, EGA did not affect toxins such as ricin that traffic via the retrograde pathway. 

In contrast, a high throughput screen for molecules that block ricin toxicity led to a series of 

molecules termed ‘Retro compounds’ that affect retrograde transport to the trans-Golgi 

[143]. These molecules very selectively inhibited the trafficking and actions of those toxins 

such as shiga and ricin that utilize this pathway. However, the Retro compound had little 

effect on other trafficking pathways including recycling of transferrin receptor and 

biosynthesis and export of viral proteins. In contrast to agents such as Golgicide (which can 
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also block toxin effects) there was no disruption of the morphology of intracellular 

organelles; the only biochemical correlate of Retro action observed thus far was the re-

localization of the SNARE protein syntaxin 5.

One of the compounds that emerged from the ricin screen has been tested for actions on 

oligonucleotides. Thus the agent Retro-1 was shown to strongly enhance the effects of 

antisense, splice-switching, and siRNA oligonucleotides in cell culture models [123, 145]. 

This compound acts by selective partial release of oligonucleotides from late endosomes, but 

not from lysosomes or other intracellular compartments. These effects take place at 

concentrations that are minimally toxic. Retro-1 also displayed modest but clear-cut 

oligonucleotide enhancing effects in a xenograft model. It is surprising that a compound that 

blocks endosome to trans-Golgi retrograde transfer would also cause release of contents 

from late endosomes. However, while Retro-1 effectively blocks toxin trafficking at 

approximately 20 uM it requires a higher concentration of 80–100 uM to significantly 

enhance oligonucleotide effects. Thus it is possible that the actions of Retro-1 on 

oligonucleotides represents a ‘side-effect’ with a different mechanism than its effects on 

toxins.

The observations with Retro-1 opened the path to using small molecules to improve the 

pharmacological effects of oligonucleotides. While Retro-1 is less than ideal because of its 

relatively low potency, we felt that it should be possible to identify small molecules with 

similar actions but of greater potency and efficacy. We pursued this by high throughput 

screening of >150,000 compounds for their ability to enhance the effects of a splice 

switching oligonucleotide on a luciferase reporter. We identified several compound series, 

one of which has been recently published [146]. When used at ~10 uM levels, these 3-

deazapteridine analogs strongly enhance the effect of antisense, siRNA and splice switching 

oligonucleotides in cell culture; often they are as effective as cationic lipid delivery agents. 

They act in a manner similar to Retro-1 in that they trigger release of oligonucleotide from 

late endosomes; however the molecular targets of the 3-deazapteridines and the Retro-1 

compounds are likely distinct since there is no structural similarity between these molecules. 

The 3-deazapteridines were also effective in a transgenic mouse model that involves 

induction of a reporter gene by splice switching oligonucleotides.

There have also been a few other studies that connect small molecules to intracellular 

delivery of nucleic acids. For example, small molecule drugs that inhibit protein kinase A 

activity can prevent trafficking of polyplexes and lipoplexes into the late endosomal/

lysosomal compartments thus improving the transfection efficiency [147]. Another 

interesting study, primarily germane to muscle tissue, found that the clinically utilized drug 

dantrolene improved the effects of SSOs that correct dystrophin expression in a model of 

Duchennne muscular dystrophy [148]; however the precise mechanism of action is unclear. 

Yet another study demonstrated increased delivery of siRNA using guanidine-like small 

molecules that complex with the siRNA and that may also bind to cell surface proteoglycans 

to improve cell uptake [149]. A recent conference proceeding [150] described a small 

molecule, Guanabenz, that also complexed with siRNA and enhanced uptake and effects in 

cell culture. Thus there is increasing interest in the use of small molecule/chemical biology 

approaches to enhance pharmacological effects of oligonucleotides.
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4. Conclusions

The therapeutic development of antisense, siRNA, SSOs and other types of oligonucleotides 

has, to some degree, outstripped our fundamental knowledge of how these molecules behave 

in cells and in the body. Thus although there is much information regarding the overall 

pharmacokinetics and biodistribution of oligonucleotides, there is not an equivalent depth of 

knowledge about their behavior at the cellular and intracellular levels. Recent work has 

uncovered some interesting and surprising observations regarding cellular uptake and 

intracellular trafficking of oligonucleotides. For example, conventional phosphorothioate 

antisense molecules seem to have an unusual uptake mechanism involving both a productive 

and a less productive path to nuclear sites of action. Our studies and those of others have 

shown that the pharmacological effectiveness of an oligonucleotide can strongly depend on 

its route of uptake and trafficking. In particular, certain receptor-mediated processes seem to 

support productive delivery. Detailed studies of the uptake and trafficking of siRNA 

lipoplexes have identified both escape pathways from endosomes and recycling to the cell 

exterior. Emerging studies are beginning to identify small molecules that can enhance 

oligonucleotide effects by modulating their intracellular trafficking; this could be an 

important new approach for oligonucleotide delivery. As the field of oligonucleotide 

therapeutics matures, and particularly with increasing emphasis on enhancing specificity 

through targeted delivery, it will be important to take account of fundamental cell biological 

principles. Thus additional insights into the intracellular trafficking of oligonucleotides will 

greatly facilitate the design of improved delivery systems for the therapeutic use of these 

molecules.
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Figure 1. Pathways of Endocytosis and Trafficking
The figure illustrates several of the major internalization and trafficking pathways discussed 

in the text. Phagocytosis takes places only in specialized cells such as macrophages and 

granulocytes while the uptake pathways illustrated here are found in many cell types. A few 

of the key proteins or protein complexes involved in some of the pathways are indicated; 

however many other essential proteins are not depicted. Specific Rab GTPases play key 

roles controlling the flow of vesicles between individual compartments. The role of the 

Retromer complex in endosome to Golgi traffic and the role of the ESCRT complex in the 

formation of MVBs are discussed in the text. (figures adapted with modification from 

reference 89).
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Figure 2. Proposed Mechanism of Vesicular Trafficking of Oligonucleotides
Oligonucleotides (depicted as small filled circles) are initially accumulated in an 

endomembrane compartment (the DONOR compartment, for example, early endosomes) 

and are then trafficked by means of shuttle vesicles to various other endomembrane 

compartments (the RECIPIENT compartment, for example, the trans-Golgi). The first step 

(1) involves disjunction (’pinching off’) of a shuttle vesicle under the influence of a coat 

protein as well as other accessory proteins. At this stage there are non-bilayer regions at the 

junction between the membranes of the DONOR compartment and the shuttle vesicle. This 

provides an opportunity for some oligonucleotide to escape to the cytosol. Step 2 involves 

uncoating of the coated vesicle; Rab proteins can contribute to this step. Step 3 comprises 

movement of the shuttle vesicle toward its destination along cytoskeletal tracks. Motor 

proteins such as various myosins (for the actin system) or dyneins or kinesins (for the 

microtubular system) propel the vesicle. Rab proteins are involved in forming the 

appropriate linkages to the cytoskeleton. Step 4 entails recognition of the RECIPIENT 

(‘target’) compartment by the shuttle vesicle. Tether proteins work with Rab proteins to 

provide interaction specificity while v-SNARE proteins in the vesicle membrane interact 

with t-SNARE proteins in the RECIPIENT compartment membrane to provide firm 

bridging, as well as contributing to specificity. In step 5 the SNARE proteins undergo major 

conformational changes, and with the assistance of accessory proteins, trigger fusion of the 

shuttle vesicle membrane with the membrane of the RECIPIENT compartment. At this stage 

non-bilayer regions exist at the junction between shuttle and RECIPIENT membranes 

potentially allowing escape of oligonucleotide.
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