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Though developing biological markers for chronic pain has been a major goal of the field for 

decades, such biomarkers have not yet made their way into clinical practice. However, given 

the potential uses of biomarkers in multiple aspects of prevention and treatment—such as 

pain and risk factor assessment, diagnosis, prognosis, treatment selection, drug discovery, 

and more—efforts to discover new pain biomarkers have been expanding [5; 6; 8; 30].

Recent advances in human neuroimaging, including functional and structural Magnetic 

Resonance Imaging (fMRI/sMRI) combined with machine learning techniques, are bringing 

us closer to the goal of developing objective, brain-based markers of the neural functions 

and neuropathology that underlie chronic pain [2; 7; 25; 33]. These brain measures are 

particularly promising as biomarkers for chronic pain. Though pain is reliably induced by 

peripheral nociceptive input, many forms of chronic pain may arise from neuropathology in 

the supra-spinal circuits that govern the construction of pain experience and long-term 

motivation [1; 14; 26; 32].

Particularly, structural neuroimaging measures could provide more stable markers of 

neuropathology of chronic pain, including stable features underlying pain risk and resilience 

[2; 3; 11; 19; 28; 29]. Gray-matter changes have also been associated with a number of 

conditions that are often co-morbid with chronic pain, including depression [4; 22; 24], 

stress [10; 12; 20], post-traumatic stress disorder [17; 21; 27], and early-life adversity [13; 

18; 23; 31]. Therefore, structural measures may provide important clues about supra-spinal 

contributions to both pain and related risk factors (Fig. 1).

In this issue, Labus et al. [16] developed a new neuroimaging biomarker for irritable bowel 

syndrome (IBS) using structural MRI data, based on a relatively large sample of 80 IBS 

patients and 80 healthy controls. They used sparse Partial Least Squares-Discriminant 

Analysis (sPLS-DA), a method that allowed them to both develop a classification model 

based on brain structure and identify the regions that make the most important contributions 

to the classification. They subsequently tested the predictive model on a “holdout” sample of 

26 IBS patients and 26 healthy controls. The model discriminated patients from controls 
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with 70% accuracy (compared to a chance accuracy of 50%), providing a moderate but 

reliable morphological brain signature for IBS.

Rather than being the end of the story, this study serves as a starting point for biomarker 

discovery and validation. Like other brain ‘signatures’ [30], the signature they identified can 

become a ‘research product’ that can be tested on multiple samples from different 

laboratories, and validated or challenged in various ways. The more the marker for IBS 

status or IBS risk holds up to the scrutiny of being characterized across samples and 

populations, the more useful it will become.

Importantly, there is a set of desirable characteristics that a useful neuroimaging biomarker 

should demonstrate throughout the biomarker development process. We briefly describe 

several such characteristics (summarized in Table 1), and then relate them to the findings of 

Labus et al. [16].

Criterion 1. Diagnosticity

Good biomarkers should produce high diagnostic performance in classification or 

prediction. Diagnostic performance can be evaluated by sensitivity and specificity. 

Sensitivity concerns whether a model can correctly detect signal when signal exists. Effect 

size is a closely related concept; larger effect sizes are related to higher sensitivity. 

Specificity concerns whether the model produces negative results when there is no signal. 

Specificity can be evaluated relative to a range of specific, alternative conditions that may be 

confusable with the condition of interest.

Criterion 2. Interpretability

Brain-based biomarkers should be meaningful and interpretable in terms of neuroscience, 

including prior neuroimaging studies and converging evidence from multiple sources (e.g., 

animal models, lesion studies, etc.). One potential pitfall in developing neuroimaging 

biomarkers is that classification or prediction models can capitalize on confounding 

variables that are not neuroscientifically meaningful or interesting at all (e.g., in-scanner 

head movement [9]). Therefore, neuroimaging biomarkers should be evaluated and 

interpreted in the light of existing neuroscientific.

Criterion 3. Deployability

Once the classification or outcome-prediction model has been developed as a neuroimaging 

biomarker, the model and the testing procedure should be precisely defined so that it can be 

prospectively applied to new data. Any flexibility in the testing procedures could introduce 

potential over-optimistic biases into test results, rendering them useless and potentially 

misleading. For example, “amygdala activity” cannot be a good neuroimaging biomarker 

without a precise definition of which ‘voxels’ in the amygdala should be activated and the 

relative expected intensity of activity across each voxel. A well-defined model and 

standardized testing procedure are crucial aspects of turning neuroimaging results into a 

‘research product,’ a biomarker that can be shared and tested across laboratories.
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Criterion 4. Generalizability

Clinically useful neuroimaging biomarkers aim to provide predictions about new 

individuals. Therefore, they should be validated through prospective testing to prove that 

their performance is generalizable across different laboratories, different scanners or 

scanning procedures, different populations, and variants of testing conditions (e.g., other 

types of chronic pain). Generalizability tests inherently require multi-study and multisite 

efforts. With precisely defined model and standardized testing procedure (Criterion 3), we 

can easily test the generalizability of biomarkers and define the boundary conditions under 

which they are valid and useful.

Evaluating the neuroimaging biomarker for IBS by Labus et al

We hope that more studies will use criteria such as those described above to evaluate 

existing and new biomarkers. Here, we apply our criteria to Labus et al.'s new neuroimaging 

biomarker for IBS, and in so doing point towards some opportunities for future development

Criterion 1

Labus et al.'s sMRI signature for IBS showed 68% sensitivity, 71% specificity, and 70% 

classification accuracy in holdout test data. While this accuracy level is similar to other brain 

structure-based tests (e.g., 73% accuracy in [2]), it is not high enough to be used as a 

biomarker for IBS, as Labus et al. acknowledged. However, the signature could be still 

useful as a marker for a potential risk factor for IBS, in combination with other measures, or 

as a probe for resilience given a brain propensity for IBS. There are avenues for potential 

improvement, including refinement of the algorithm, generation and selection of important 

brain features, data quality control, multi-modal assessment, and refined phenotyping (i.e., 

using multiple functional or symptomatic outcomes rather than diagnostic categories). Labus 

et al. tested healthy controls, but later studies could also evaluate specificity relative to other 

types of chronic pain or other mental health conditions that may share similar brain features 

(e.g. depression).

Criterion 2

Through stability analysis and variable importance in projection scores, Labus et al. tried to 

obtain an interpretable classification model and discussed the brain findings based on prior 

literature. However, we still need more evidence to fully understand the roles of these brain 

structures in IBS or chronic pain broadly, and to know which features are related to pain 

versus other co-morbid risk factors. Converging evidence from different approaches (e.g., 

fMRI, animal models) and across patient groups will be helpful.

Criterion 3

Labus et al. developed their model on 160 participants, and then they applied the a priori 

model on new holdout test data. They also reported precise model weights. These are strong 

features of the study. The research community could facilitate deployment across 

laboratories and patient groups using new innovations in technology. For example, Labus et 

al. could provide an online platform where researchers can upload structural images that 
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they want to test the signature on, and signature scores can be sent to the researchers. In this 

way, we can maximize ease of deployment and minimize the number of choices researchers 

can make in applying Labus et al.'s results to their data.

Criterion 4

Like the vast majority of studies, Labus et al. used data only from one laboratory and one 

scanner. However, importantly, they used data obtained from six different acquisition 

sequences, which could help generalize their findings across different sequences. They 

included only female participants in this study, so the results cannot be generalized to males 

and/or different types of visceral pain disorders yet. Therefore, the next step could include 

testing their a priori signature on new data from different laboratories and different 

scanners, and also on male participants and patients with other chronic pain conditions 

(including other types of chronic visceral pain and other types of chronic pain, such as 

chronic low back pain).

Conclusion

Labus et al. [16] took an exciting step toward a neuroimaging biomarker for IBS, and more 

broadly, chronic visceral pain. Taking Labus et al. as a starting point, collaborative, multi-

site efforts will help facilitate the biomarker development process, particularly focusing on 

the criteria above. We believe that Pain and Interoception Imaging Network (PAIN; 

painrepository.org [15]) repository will provide great resources for the biomarker discovery 

and validation process.
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Figure 1. 
Key common brain regions that show structural changes across different conditions related 

to chronic pain, including depression, stress, post-traumatic stress disorder (PTSD), and 

early-life adversity.

Woo and Wager Page 7

Pain. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Woo and Wager Page 8

Table 1

Desirable characteristics of neuroimaging biomarkers

Development Stages Criteria Definition

Discovery 1 Diagnosticity Sensitivity: Positive results when there is signal, effect size
Specificity: Negative results when there is no signal

2 Interpretability Neuroscientifically interpretable model

Validation 3 Deployability Precisely defined model and standardized testing procedure (well-described, clear and easy to 
deploy across research groups/clinics)

4 Generalizability Generalizable results across different laboratories, scanners, populations, and variants of testing 
conditions.
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