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The BRCA1 tumor suppressor protein is a central constituent
of several distinct macromolecular protein complexes that exe-
cute homology-directed DNA damage repair and cell cycle
checkpoints. Recent years have borne witness to an exciting
phase of discovery at the basic molecular level for how this net-
work of DNA repair proteins acts to maintain genome stability
and suppress cancer. The clinical dividends of this investment
are now being realized with the approval of first-in-class BRCA-
targeted therapies for ovarian cancer and identification of
molecular events that determine responsiveness to these agents.
Further delineation of the basic science underlying BRCA net-
work function holds promise to maximally exploit genome
instability for hereditary and sporadic cancer therapy.

The breast cancer early-onset genes BRCA1 and BRCA2 were
discovered by positional cloning approaches in kindreds with a
high prevalence of breast and ovarian cancer. The initial lack of
clarity presented by the domain structure of the proteins was
remedied by a series of discoveries that revealed the proteins
biochemically interact in large nuclear foci in response to DNA
damage and are required to execute homology-directed DNA
repair and cell cycle checkpoints (1). These observations
strongly suggested that a common function in genome integrity
maintenance is necessary to suppress cancer. Subsequent
advances in protein purification and mass spectrometry meth-
odologies have led to the expansion of this concept with the
discovery that at least 13 different tumor suppressor proteins
interact with BRCA1 and BRCA2. Despite these striking simi-
larities, a linear model of BRCA-dependent DNA repair and
tumor suppression is challenged by multiple other observa-
tions, namely, only �5% of each protein exists in association
with the BRCA1-BRCA2 complex, and breast cancers occur-
ring in individuals with germ-line BRCA1 or BRCA2 mutations
typically display different histopathologies and gene expression
profiles. Coupled with the realization that chemoresistance
mechanisms in BRCA1 and BRCA2 mutant cancers also differ,
these features have inspired a network model relating BRCA
molecular function in DNA repair to tumor suppression. We

highlight recent insights into the BRCA tumor suppressor net-
work and stress the connections between basic molecular
knowledge of these proteins and their roles in genome integrity,
tumor suppression, and response to therapy.

Overview of BRCA1 Structure and Cancer Susceptibility

The BRCA1 protein has several definable structural domains
that suggest it uses modular and potentially cooperative inter-
actions to execute its DNA damage response (DDR)2 functions
(Fig. 1). The N-terminal RING (really interesting new gene)
domain enables E3 ubiquitin ligase activity through its interac-
tion with E2 enzymes. Clinical mutations to the RING domain
are associated with cancer susceptibility. However, knock-in of
a rationally designed BRCA1 RING mutant (I26A) that disrupts
interaction with E2 enzymes does not abrogate genome stabil-
ity or confer cancer predisposition in mice (2). Conversely, a
known clinical mutant (C61G) that also disrupts E3 activity
causes genome instability and cancer in mice (3). Complicating
interpretation of this phenotype as proof that BRCA1 E3 activ-
ity suppresses cancer is the confounding issue that the C61G
mutation disrupts RING architecture and association with
BARD1, a stoichiometric binding partner of BRCA1 (4). The
C61G mutation may impart cancer susceptibility by loss of E3
ligase activity, diminished BARD1 interaction, or a combina-
tion of these deleterious events.

Approximately 60% of the BRCA1 protein is composed of the
centrally located exon 11-encoded region. This poorly con-
served region lacks definitive domain elements or interacting
partners yet is required for full homologous recombination
(HR) and checkpoint function as well as tumor suppression (5,
6). Nonetheless, exon 11 mutations allow an in-frame splice
between exons 10 and 12 and the production of a partially active
protein that localizes to DNA damage sites. Downstream of
exon 11, BRCA1 harbors a coiled-coil region near its C termi-
nus that interacts with PALB2, which biochemically bridges
BRCA1 to BRCA2 in a tumor suppressor supercomplex (Fig. 1).
PALB2 mutations confer high-penetrance breast cancer phe-
notypes (7), similar to BRCA1 and BRCA2. C-terminal to this
region are the BRCA1 C-terminal (BRCT) repeats, which bind
to phosphopeptides. Mutually exclusive interactions with three
bona fide BRCT-interacting proteins allow segregation into at
least three different protein complexes. The distinct BRCA1-
containing complexes, which are discussed in detail below, are
thought to work together in response to double-strand breaks
(DSBs) (8). The BRCT domain of BRCA1 contributes to most of
its functional interaction with different protein complexes.
BRIP1, Abraxas, and CtIP all contain a consensus BRCT-inter-
acting motif (SXXF), which is phosphorylated at serine to medi-
ate the interaction (9, 10).
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Connecting BRCA Network Biochemistry to the DDR

BARD1 has a similar domain structure to BRCA1, with an
N-terminal RING domain and BRCT repeats. Unlike BRCA1,
the BARD1 RING domain does not interact with E2 enzymes,
and its BRCT repeats do not bind phosphopeptides. The stoi-
chiometric interaction between BRCA1 and BARD1 instead
provides stability to both proteins, enhances DNA damage site
recognition, and increases BRCA1 E3 ubiquitin ligase activity in
vitro. The BRCA1-BARD1 RING domains ubiquitylate histone
H2A in vitro and in vivo at Lys127–129 (11), although the rela-
tionship of this activity to DNA repair is unknown. The crystal
structure of the most similar E3 ubiquitin ligase heterodimer
(Ring1B/Bmi1) bound to a nucleosome suggests a possible
mode for how BRCA1-BARD1 could directly interact with
nucleosomes. A high level of conservation shared between the
Ring1B nucleosome-binding loop and the corresponding
BRCA1 region predicts that BRCA1 targets to Lys127–129 by
binding to a nucleosomal H2A-H2B acidic patch using its own
basic residues within the nucleosome-binding loop (12). It will
thus be interesting to understand how BRCA1 ubiquitinates
different lysines on H2A than Ring1B/Bmi1 and how Lys127–129

ubiquitination contributes to BRCA1 function.
The BARD1 BRCT repeats were reported to interact with

poly(ADP) ribose (13) and more recently to specifically recog-
nize histone H3 dimethylated at Lys9 (H3K9me2) through its
interaction with HP1 proteins.14 This interaction was reported
to anchor BRCA1-BARD1 at DNA damage sites (14). Geneti-
cally, the BRCA1-BARD1 interaction is unique in the BRCA1
network in that it appears to be necessary for the majority of
BRCA1 in vivo function. BARD1 deficiency fully recapitulates
BRCA1 nullizygosity, with Bard1 knock-outs displaying
embryonic lethality, genome instability, and cancer susceptibil-
ity (15, 16).

Abraxas resides in a five-member complex (RAP80, Abraxas,
MERIT40, BRCC45, and BRCC36) that preferentially binds to
Lys63-linked ubiquitin through the RAP80 tandem ubiquitin-
interacting motifs. The finding that BRCA1-RAP80 interaction
is required for focus formation first implicated non-degradative
ubiquitin as a DNA damage recognition platform during DSB
signaling (17–19). DSB ubiquitination occurs as a result of a
�H2AX-initiated signaling cascade that recruits RNF168 to

perform large-scale DSB chromatin ubiquitination at H2A
Lys13 and Lys15 (20). Several other DDR proteins rely on
RNF168 E3 activity for DSB localization, including 53BP1,
which is a specific reader of the H2A Lys15-ubiquitin mark (21).
In addition to ubiquitin, SUMOylation also contributes to
BRCA1 DSB recruitment. RAP80 contains SUMO-interacting
motifs N-terminal to its tandem ubiquitin-interacting motifs
and shows �80-fold higher affinity for hybrid SUMO-ubiquitin
chains than Lys63-linked ubiquitin alone, suggesting a mixed
SUMO-ubiquitin targeting signal (22). The RAP80 complex
specifically deubiquitinates the Lys63-ubiquitin chains through
the actions of its associated Zn2�-dependent deubiquitinating
enzyme, BRCC36. Unresolved questions remain as to whether
deubiquitinating enzyme activity serves to terminate DNA
damage association by removing the Lys63-ubiquitin recogni-
tion signal for RAP80 or, alternatively, in a ubiquitin-editing
capacity, whereby it removes Lys63-ubiquitin, thus allowing
accumulation of either monoubiquitin or other ubiquitin
topologies that have been reported at DSBs (23). That loss of
any member of the RAP80 complex eliminates observable
BRCA1 focus formation at DSBs raises the question of whether
the RAP80 complex accounts for BRCA1 function in HR. Inter-
estingly, loss of RAP80 leads to over-resection and increased
sister chromatid exchanges in response to DSB-inducing
agents, indicating that the RAP80 complex is required to fine-
tune the HR efficiency by controlling the resection level (24,
25).

In contrast to the embryonic lethality of Brca1 knock-out
mice, Rap80, Abraxas, or Merit40 knock-out mice are viable
and do not exhibit apparent developmental defects (26 –29).
Indeed, Rap80 was recently shown to target BRCA1 to chroma-
tin regions that are �1 kb from break sites and to affect check-
point responses and not DSB repair (30). Despite this relatively
mild DNA repair phenotype, germ-line mutations exist in
RAP80 and Abraxas in familial breast cancer, and numerous
somatic mutations are observed in all members of the complex
(28, 31, 32). Moreover, Rap80 and Abraxas knock-out mice are
tumor-prone, with �20% of mice developing lymphomas at 1
year of age (26 –28). These observations are consistent with the
concept that complete loss of BRCA function in the DDR is not
necessary for cancer susceptibility.
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BRIP1 (also known as BACH1/FANCJ) was first cloned and
identified as a putative DNA helicase protein interacting with
the BRCT domain of BRCA1 (33). Phosphorylation at Ser990 of
BRIP1 allows its interaction with the BRCA1 BRCT repeats (9).
BRIP1-deficient cells show reduced HR efficiency in the pDR-
GFP assay (35). Interestingly, BRIP1 contributes to the DNA
cross-link repair pathway independent of its interaction with
BRCA1 (36). BRIP1 deficiency causes severe DNA cross-link
sensitivity, and BRIP1 is biallelically mutated in Fanconi anemia
(FA). However, loss of interaction with BRCA1 does not confer
sensitivity to DNA interstrand cross-link (ICL) inducing agent
mitomycin C (36, 37). Instead, this is thought to affect a balance
between HR and translesion synthesis at cross-links. BRIP1 has
bona fide in vitro helicase activity and resolves G-quadraplex
structures with 5�–3� polarity. Concordant with this in vitro
specificity, both Caenorhabditis elegans and human cells defi-
cient in BRIP1 show loss of repetitive G-rich DNA and telomere
abnormalities (38, 39). However, whether BRIP1 helicase activ-
ity contributes to maintenance of GC-rich regions through its
association with BRCA1 remains an unresolved question.

CtIP (also known as RBBP8) interacts with the Mre11-
Rad50-Nbs1 complex and stimulates its nuclease activity, in
turn mediating end resection in the S and G2 phases of the cell
cycle, which initiate HR (40). The interaction between CtIP and
BRCA1 depends on cyclin-dependent kinase phosphorylation
at Ser327. Knock-in of the human phospho-deficient Ctip
mutant S327A (equivalent to Ser326 in mice) revealed no impact
on resection in chicken and mouse cells and is not essential for
resection-mediated repair, tumor suppression, or viability (41–
43). Although BRCA1-CtIP interaction is not required for end
resection, it enhances the speed of this process (44). Therefore,
BRCA1 might interact with CtIP to ensure optimum end resec-
tion timing, a subtlety that may not be easily detected by other
assays. Similarly, Palb2 knock-in mice that disrupt interaction
with BRCA1 have been generated. In contrast to either Brca1 or
Palb2 knock-out mice, these Palb2 mutants are viable, indicat-
ing that although the interaction between BRCA1 and PALB2
contributes to HR, either protein is largely functional in the
absence of this interaction (45). This again signifies that inter-
action with BRCA1 is not equivalent to function and, together
with data showing that disruption of BRCA1-BRIP1 also does
not recapitulate knock-out phenotypes, suggests caution when
interpreting the importance of BRCA1 protein-protein interac-
tions. Guilt by association is clearly an oversimplification.

Transcription Influences DNA Damage Recognition by
BRCA1 Complexes

Questions remain as to where in the genome the BRCA1
network executes its DDR functions. Recent reports reveal
strong connections between BRCA1 genome integrity mainte-
nance and transcription. BRCA1 forms a complex with the
mRNA-splicing machinery in a DNA damage-dependent man-
ner to regulate pre-mRNA splicing of genes involved in DNA
damage signaling (46). BRCA1 has also been shown to partici-
pate in transcription-associated damage control, where it func-
tions at stalled or defective transcription sites to assist tran-
scription restart and resolve RNA-DNA hybrids (R-loop) that
are known to promote DSB formation (47). This link to tran-

scription is buttressed by the finding that BRCA1, PALB2, and
other HR proteins co-reside at transcriptionally active regions
throughout the genome (48 –50). Moreover, active transcrip-
tion has been directly implicated in BRCA1 targeting to DNA
damage sites, revealing RNA- and transcription-associated
chromatin modifications in BRCA1 DNA damage recognition
and repair. In support of this assertion, disruption of BRCA1
interaction with senataxin leads to R-loop-driven DNA damage
(51). BRCA2 also prevents R-loop accumulation to prevent
transcriptional stress (52), implicating R-loop stability as a
common mechanism for both proteins to maintain genome sta-
bility. These data also raise the intriguing possibility that the
transcriptional profile of a cell could influence genome instabil-
ity in the context of BRCA deficiency. Perhaps this could play a
role in tissue specificity of its tumor suppression.

Multifactorial Responses of the BRCA Network to
Replication Stress

PALB2 bridges the interaction between BRCA1 and BRCA2.
The BRCA1-BRCA2-PALB2 complex promotes RAD51
nucleofilament formation, thus initiating homology-directed
repair (53). It has more recently become apparent that BRCA1
and BRCA2 also participate in replication fork protection and
restart. BRCA2 was found to prevent degradation of nascent
strands at stalled replication forks by MRE11, and the C-termi-
nal site of BRCA2 is critical for replication fork protection (54,
55). BRCA1 also contributes to fork protection in a similar
manner to BRCA2, suggesting that BRCA1-BRCA2-PALB2
maintains genome stability by contributing to both HR and
replication fork maintenance (56).

These concerted activities are interesting in light of the
hypothesis that genome instability in BRCA-deficient cells
arises primarily in S phase as a consequence of replication
stress. By adapting the bacterial replication terminator Tus-Ter
complex to induce site-specific replication fork stalling in
mouse cells, it was shown that both the tandem BRCT repeats
and exon 11 regions of BRCA1 are required for HR at stalled
replication forks in mammalian cells (57). BRCA1 also regulates
multiple aspects of replication to promote ICL repair indepen-
dent of RAD51 nucleofilament formation. Studies using Xeno-
pus egg extracts revealed that BRCA1, possibly through its
interaction with RAP80, is required to unload the replicative
Cdc45-MCM-GINS helicase complex when bidirectional rep-
lication forks collide with an ICL (58), thus affording access to
cross-link recognition proteins. These data are in agreement
with genetic studies implicating BRCA1 in early stages of ICL
repair that occur prior to HR.

Consistent with replication stress being the limiting aspect of
BRCA1 genome integrity control, primary mammary epithelial
cells from patients with heterozygous BRCA1 or PALB2 status
experience higher replication stress compared with cells with
two wild-type copies of either gene (59, 60). Conversely, other
BRCA1 functions in DSB repair and checkpoint activation are
proficient in BRCA1mut/� cells (60). This observation supports
the hypothesis that BRCA haploinsufficiency in resolving rep-
lication stress might contribute to high risk of cancer in muta-
tion carriers. Genetically engineered mouse models of pancre-
atic and ovarian cancer are consistent with this hypothesis, as
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BRCA1 or BRCA2 heterozygosity accelerated tumor formation
in both instances (61, 62).

FA Provides a Window into Dysfunction of the BRCA
Network

FA is a rare hereditary syndrome characterized by develop-
mental defects, progressive bone marrow failure, and cancer
susceptibility and is associated with DNA cross-link repair defi-
ciency and sensitivity to endogenous aldehydes (63). In contrast
to heterozygous mutations that cause hereditary breast and
ovarian cancer, FA requires biallelic mutations within a net-
work of 17 genes dedicated to DNA cross-link repair. Muta-
tions within several members of the BRCA1 network are caus-
ative for FA. BRCA2 (FANCD1) and PALB2 (FANCN) interact
with the BRCA1 coiled-coil domains, whereas BRIP1 (FANCJ)
interacts with the BRCA1 BRCT repeats (Fig. 1). More recently,
two patients have been identified with missense mutations
(R1699W and V1736A) within the first BRCA1 BRCT domain
and a FA-like syndrome, establishing BRCA1 as a Fanconi gene
(FANCS) (64, 65). Both patients had one allele with a missense
mutation in BRCT repeats and another deleterious mutation in
either exon 10 or 11. Patient-derived BRCA1/FANCS cells were
obtained and found to have reduced BRCA1 BRCT interac-
tions, diminished RAD51 focus formation, and mitomycin C
and poly(ADP-ribose) polymerase inhibitor (PARPi) hypersen-
sitivity, in contrast to a sibling control, who had only one
mutated BRCA1 allele (65). These findings thus mimic the clin-
ical context of a biallelically mutant tumor and heterozygous
patient. Indeed, BRCA mutant tumors are hypersensitive to
platinum salts or PARPi, whereas increased systemic toxicity in
noncancerous tissues is not seen in BRCA carriers.

Comparison of FA phenotypes derived from mutations to
different genes within the BRCA network has also been illumi-
nating (66). BRCA2/FANCD1 and PALB2/FANCN patients dis-
played bone marrow failure and severe FA phenotypes associ-
ated with solid tumors outside of the typical BRCA spectrum,
including Wilms tumor and medulloblastoma. BRIP1 FA
patients displayed bone marrow failure and leukemia. In con-
trast, neither of the BRCA1/FANCS patients developed sponta-
neous bone marrow failure, and both maintained breast or
ovarian cancer predilection, with early-onset ovarian cancer at
age 28 and breast cancer at age 23. The difference in patient
phenotype is especially interesting in relation to BRIP1/FANCJ,
as both BRCA1/FANCS patient mutations occurred in the
BRCT region and disrupted the BRCA1-BRIP1 interaction. The
BRCT BRCA1/FANCS mutations also abrogated interaction
with CtIP and the RAP80 complex, possibly accounting for
these differences. In addition, it is clear that BRIP1/FANCJ has
many BRCA1-independent activities.

Determinants of Synthetic Lethality with Dysfunction of
the BRCA Network

PARPs are highly abundant proteins that are responsible for
poly(ADP-ribosylation) during the DDR. PARP1/2 can bind to
DNA single-strand breaks (SSBs) and facilitate resolution of
these lesions. Collision of active replication forks with SSBs in S
phase is thought to lead to one-sided DSBs that necessitate
BRCA-RAD51-mediated HR for repair (see Fig. 3). Indeed,

landmark studies showed that PARPi is synthetic lethal in the
context of BRCA deficiency, ushering in a new era of targeted
therapy for patients with mutant BRCA (67, 68). PARPi (olapa-
rib, trade name Lynparza) was been rapidly translated to the
clinic, with successful phase I (69) and phase II (70 –72) clinical
trials leading to Food and Drug Administration approval in
December 2014 for advanced mutant BRCA ovarian cancer.
However, resistance mechanisms for PARPi treatment have
arisen in patients and in the laboratory setting in cells exposed
to chronic PARPi, indicating that a more thorough understand-
ing of resistance mechanisms and alternative targets is needed.

PARP recognizes SSBs and exerts its function by autoribosy-
lation and by poly(ADP-ribose)-dependent recruitment of
other DNA repair proteins. Negatively charged ADP-ribose
polymers facilitate dissociation of PARP1 from the DNA. In
turn, PARPi traps PARP1/2 on DNA, leading to the generation
of trapped PARP-DNA complexes, which are thought to be
more cytotoxic than unrepaired SSBs (73, 74). It is likely that
trapped PARP-DNA complexes create cytotoxic complexes
when encountered by replication forks, increasing the burden
on HR protein to fully resolve the lesions (see Fig. 3). This pro-
posed mechanism is supported by the observation that the abil-
ity of PARPi to trap PARP-DNA complexes correlates with its
effectiveness in killing BRCA-deficient cells (73).

Resistance Mechanisms to PARP Inhibition

HR proficiency is a key determinant of cellular sensitivity to
PARPi. This indicates that restoring HR capacity would pro-
duce PARPi resistance. Indeed, genetic reversion of mutant
BRCA1 or BRCA2 has been found in human tumors. Secondary
mutations that restore reading frames lead to generation of par-
tially functional BRCA proteins and render these cells HR-pro-
ficient and resistant to PARPi or cisplatin (75, 76). A reported
46.2% of platinum-resistant recurrences have secondary muta-
tions restoring BRCA1/2 (77), indicating that genetic reversion
is a common resistance mechanism.

Competition between repair pathways also appears to be a
key determinant of PARPi sensitivity (Figs. 2 and 3). Loss of
53BP1 suppresses embryonic lethality, HR deficiency, and
PARPi hypersensitivity in BRCA1 knock-out mice (78, 79).
Remarkably, double knock-out mice are also not cancer-prone,
firmly connecting loss of HR to BRCA1 cancer susceptibility
(80). A putative mechanism underlying this observation is that
53BP1 blocks end resection in BRCA1-deficient cells and pro-
motes toxic non-homologous end joining (NHEJ) in S phase
(Fig. 3). In turn, loss of 53BP1 renders these cells HR-proficient
in the absence of BRCA1 by permitting excessive single-
stranded DNA, the initial substrate of RAD51-dependent HR
(78). Similarly, deficiencies in several 53BP1-interacting part-
ners (RIF1, PTIP, REV7, and Artemis) participate in blocking
end resection. Loss of these four effector proteins also pro-
motes PARPi resistance to varying extents in BRCA1 mutant
cells (81– 84). So how is this competition between the BRCA1
and 53BP1 networks regulated? The cell cycle seems to be a key
determinant, with BRCA1 exclusion from foci in G1, whereas
RIF1 and PTIP have limited association with damage-induced
53BP1 foci in S/G2, when HR is favored. Acetylation also
appears to play a role in this balance, in part through reducing
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53BP1 affinity for histone H4 tails containing methylated Lys20

(48, 85).

Novel Targets for BRCA Network Dysfunctional Cancers

Given the numerous possibilities of acquired PARPi resis-
tance, it would be prudent to develop alternative strategies that
selectively kill BRCA mutant cells. An attractive target is the HR
protein RAD52, which is synthetically lethal with combined
deficiency in BRCA1, PALB2, or BRCA2 (86, 87). RAD52 was
proposed to execute alternative repair pathways that perform

RAD51-mediated HR independent of the BRCA1-BRCA2-
PALB2 complex. Alternatively, RAD52 is also known to cata-
lyze the process of single-strand annealing and may function in
a salvage pathway in the absence of BRCA proteins (88). A sec-
ond exciting potential target to selectively treat HR-deficient
cancers is DNA polymerase � (pol �), which mediates error-
prone alternative NHEJ (also called microhomology-mediated
end joining) (89 –92). pol � promotes microhomology-
mediated end joining and restricts RAD51-mediated recombi-
nation. Combined FANCD2 and pol � nullizygosity produces
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embryonic lethality in mice, and loss of pol � in BRCA1- or
BRCA2-deficient cells results in significantly reduced plating
efficiency, indicating a synthetic lethal relationship with HR
deficiency (90, 91). Both pol � and RAD52 are up-regulated in
HR-deficient cancers and are potentially druggable targets.
Although the clinical utility of such agents is to be ascertained,
it would be interesting and feasible to determine whether
RAD52 or pol � inhibition restores PARPi sensitivity in BRCA1
and 53BP1 double-mutant cells. If either of these modalities is
toxic to double knock-out cells, they may potentially be used to
reverse the resistance of BRCA1 mutant cancers to PARPi.

Elevated replication stress is frequently experienced in rap-
idly replicating cancer cells, particularly in those experiencing
HR deficiency. Inhibition of replication stress-activated kinase
ATR or Chk1 sensitizes ovarian cancer cells with defective HR
to commonly used chemotherapy agents, and ATR and Chk1
inhibition sensitizes BRCA mutant cancer cells (93). In a possi-
ble example of proof of concept, Chk1 inhibition caused syn-
thetic lethality with Mre11-Rad50-Nbs1 mutation and showed
a curative clinical response in a tumor harboring a Rad50 muta-
tion (94).

Concluding Thoughts

The past 5 years has brought forward a revolutionary
increase in the basic understanding of BRCA molecular func-
tion in the DDR, the first clinically approved therapies to selec-
tively treat BRCA mutant cancers, and a host of resistance
mechanisms that connect restoration of HR to therapeutic
response. Still, there are many questions remaining. As detailed
above, most BRCA1 protein-protein interactions do not satis-
factorily explain the roles of BRCA1 in DNA repair or tumor
suppression. This in part relates to a lack of knowledge regard-
ing how BRCA1 functions in DNA repair. In stark contrast to
seminal studies describing BRCA2-dependent RAD51 nucleo-
filament formation by displacement of replication protein A
(34), meaningful in vitro assays to dissect BRCA1 repair func-
tion have not been reported. The development of such
approaches would represent an important advance because it
remains a matter of debate as to whether the primary function
of BRCA1 resides in its ability to promote DNA repair transac-
tions or to act as a competitor of 53BP1 in counteracting toxic
NHEJ. Close links between basic discovery and clinical obser-
vations should help resolve these questions and pose new and
unanticipated issues. They should also continue to enable
translation of new and existing therapies and further refine our
knowledge of the BRCA1 tumor suppressor network.
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