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Abstract
Literature in the field of nanotechnology is exponentially increasing with more and more engineered nanomaterials being created,

characterized, and tested for performance and safety. With the deluge of published data, there is a need for natural language

processing approaches to semi-automate the cataloguing of engineered nanomaterials and their associated physico-chemical prop-

erties, performance, exposure scenarios, and biological effects. In this paper, we review the different informatics methods that have

been applied to patent mining, nanomaterial/device characterization, nanomedicine, and environmental risk assessment. Nine

natural language processing (NLP)-based tools were identified: NanoPort, NanoMapper, TechPerceptor, a Text Mining Framework,

a Nanodevice Analyzer, a Clinical Trial Document Classifier, Nanotoxicity Searcher, NanoSifter, and NEIMiner. We conclude with

recommendations for sharing NLP-related tools through online repositories to broaden participation in nanoinformatics.
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Introduction
Nanotechnology may still be considered a relatively new field.

However, its impact is already realized with engineered nano-

materials (ENMs) incorporated in over 1800 consumer prod-

ucts, included in over 100 clinical trials, and contained in 40

FDA approved nanomedicines [1-3]. At the onset of the U.S.

National Nanotechnology Initiative, researchers spearheaded

efforts to “get it right the first time” by studying the potential

human health and environmental impacts of ENMs in parallel

with ENMs discovery and development. However, the creation

and establishment of data repositories as well as algorithms to

automatically analyze the collected resources has lagged

behind. As a consequence, unlike bioinformatic areas such as

genomics or systems biology, nanoinformatics is still in its

infancy.

Nanoinformatics is defined as “the science and practice of

determining which information is relevant to the nanoscale

science and engineering community, and then developing and

http://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:btmcinnes@vcu.edu
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implementing effective mechanisms for collecting, validating,

storing, sharing, analyzing, modeling, and applying that infor-

mation” [4]. Applications of nanoinformatics include data inte-

gration and exchange (e.g., caNanoLab, GoodNanoGuide),

nanoparticle characterization (e.g., caNanoLab, Nanomaterial

Registry), domain ontologies (e.g., NanoParticle Ontology),

terminologies and standards (e.g., ISA-TAB-Nano), data and

text mining (e.g., NEIminer, TechPerceptor), and modeling/

simulation (e.g., HDAT). Extracting information usually comes

from two different sources: (1) literature to which natural lan-

guage processing methods are applied, and (2) experimental

data to which data modeling methods, such as those used in

HDAT and NanoMiner, are applied [5,6]. Despite being a

largely overlooked area of informatics, several reviews have

been published that list the different databases and tools

currently available [7-11]. In this review, we focus on the tools

that utilize natural language processing.

Natural language processing (NLP) involves the use of comput-

ers to perform practical tasks involving written language, such

as extracting and analyzing information from unstructured text.

What separates NLP applications from other data processing

systems is their use of knowledge about human language [12].

Many of the NLP applications utilize literature retrieved from

databases. Information retrieval, document classification, and

pattern matching methods are often utilized to ensure that the

documents being analyzed by the NLP systems contain rele-

vant engineered nanomaterials information [13,14].

In the nanoinformatics literature discussed in this review, there

are several NLP methods and systems that were proposed to

extract, classify, and understand ENM-related information

within unstructured text. One of the most commonly explored

NLP applications by nanoinformatics researchers was Entity

Extraction, which is the task of identifying mentions of a

specific entity within unstructured text. The entities explored by

nanoinformatics researchers varied between very specific enti-

ties such as the particle diameter of a poly(amidoamine)

dendrimer [15] to very broad such as any toxicological hazard

of nanoparticles [16]. Within the literature, there was also a

discussion of the prospective NLP tools and algorithms that

may be useful to provide information about a set of nanotech-

nology related documents. For example, the development of a

topic identification and summarization component was

proposed for incorporation into the NanoPort system to provide

researchers with an automatically generated abstract or listing

of relevant information based on a document [13].

Terminologies and taxonomies are equally important when

building many of the NLP-based algorithms. Information Re-

trieval and Entity Extraction can be guided by relevant ontolo-

gies. Thomas et al. developed the first NanoParticle Ontology

(NPO) based on the Open Biomedical Ontologies (OBO)

Foundry principles, which were set up to promote the standard-

ization of ontologies and common controlled vocabularies for

data integration [17,18]. Recently, the eNanoMapper project has

developed an ontology that merges and extends existing ontolo-

gies, including the NPO [19]. Ontologies in other languages,

such as Japanese and Russian, have also been developed

[20,21]. In the following section, we describe our method for

identifying the nanoinformatics literature discussed in this

paper, and then review the different informatics methods

that have been applied such as patent mining, nanomaterial/

device characterization, nanomedicine, and environmental risk

assessment.

Methods
This review was limited to the English language literature

included in two databases, PubMED and Web of Science

[22,23]. The searches were conducted on February 12, 2015.

For the search term (nano* AND “natural language pro-

cessing”), Web of Science retrieved 5 records (2 excluded) and

PubMED retrieved 2 records (2 excluded). For the search term

(nanoinformatic*) Web of Science retrieved 38 records

(34 excluded) and PubMED retrieved 24 records (22 excluded).

For the search term (nano* AND “text mining”), Web of

Science retrieved 38 records (34 excluded) and PubMED

retrieved 2 records (2 excluded).

The following exclusion criteria were applied to the retrieved

records:

• Bioinformatics papers not specifically focused on

nanotechnology were not included.

• Bibliometric approaches were not included.

• Non-text based approaches (such as QSAR or image

analysis) were not included.

• NLP approach(es) not described in full detail were not

included.

After excluding duplicates, an initial set of 7 papers was

retrieved using the described Boolean searches. We then

expanded our search to include the literature cited within these

7 papers as well as the literature citing these 7 papers as identi-

fied in PubMED and Web of Science. A final set of 14 papers

were included for detailed review, and the results are presented

in the following section.

Review
Patent mining
Three groups across the globe (USA, Japan, China) have devel-

oped independent, NLP-based patent text mining systems. NLP
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is not the only approach to text mining and we refer the reader

to a recent review by Abbas et al. on the state of the art in patent

analysis [24].

NanoPort
NanoPort is a web portal that (1) automatically identifies nano-

related documents (website articles, patent documents, and

academic articles), and (2) supports the searching and analysis

of the documents [13]. The portal contains a content analysis

module that utilizes NLP technology in order to help the

researcher to understand and analyze the documents returned by

the search engine of the portal. The authors proposed to include

(1) a document summarizer, (2) a document clusterer, (3) a

topic mapper, and (4) a patent analyzer.

The proposed document summarizer automatically develops an

abstract containing the important points of the document for the

researcher. The authors propose using their previously devel-

oped Arizona Txttractor system, which was initially developed

for web pages. The document clusterer groups the documents

returned by the portal based on common topics identified within

the document using the author’s Arizona Noun Phraser (ANP).

ANP identifies noun phrases in text and then ranks them based

on their frequency. The highly frequent noun phrases are used

as topics by the clusterer as well as to support visualization of

the search results in the topic mapper. The proposed Patent

analyzer supports the basic analysis, content map analysis and

citation network analysis. The basic analysis contains tradi-

tional patent analysis information such as number of patents

based on country, institution or technology field. The content

map allows for the concepts from multiple patents to be viewed

and analyzed over time. The patent citation network allows

for the visualization of links between entities such as

countries, institutions and technology fields providing a wider

scope of the field for the researcher. NanoPort was hosted at

http://www.nanoport.org but unfortunately is no longer avail-

able online.

NanoMapper
NanoMapper expands on the proposed patent analyzer within

the NanoPort system [25]. The NanoMapper prototype provides

search capability, visualization and analytical tools to analyze

nanotechnology patents from the United States Patent and

Trademark Office (USPTO), European Patent Office (EPO),

Japan Patent Office (JPO), and grants from the U.S. National

Science Foundation (NSF). It includes basic statistics, citation

network analysis and content map analysis as described in the

proposed NanoPort patent analyzer as well as publication trend

analysis to compare trends of patents and grants. Similarly to

NanoPort, the NSF-funded NanoMapper was hosted at http://

nanomapper.eller.arizona.edu but is no longer available online.

TechPerceptor
TechPerceptor is a text mining tool to conduct patent analysis

and generate a patent map based on a subject–action–object

(SAO) approach [26-28]. Their training corpus consisted of

136 patents and was initially analyzed for trends in carbon

nanotube synthesis methods [26,27]. More recently, the

research group expanded the scope to include applications of

carbon nanotubes such as incorporation in photovoltaic cells

and prostate cancer therapeutics [28]. The patents, which

spanned the years 1992 to 2009, were collected from E.U.,

Japan, Korea and U.S. patent databases with patents in Japanese

and Korean translated using K2E-PAT or Google Translate.

The group followed a four step procedure for both their SAO-

based static and dynamic patent map construction: 1) collect

patent data, 2) extract SAO structures using NLP, (3) generate a

patent dissimilarity matrix, and (4) visualize as dynamic patent

[26,27]. The patent maps were also automatically analyzed to

identify areas of high or low activity, infringement and novelty,

which were determined based on degrees of (dis)similarity to

other patents [28].

Their static tool revealed 8 patent clusters with the most patents

reporting arc-discharge and laser vaporization synthesis

methods [26]. Chemical vapor deposition (CVD) methods were

also mentioned as being invented frequently. Top patenting

companies included NEC, Samsung and Sony. Their dynamic

tool revealed a possible patent vacuum of using low tempera-

ture or microwave-based synthesis of single-walled carbon

nanotubes [27]. Analyzing hot spots revealed changes in the

type of synthesis method patented over time, with synthesis

methods evolving from arc discharging in 1999–2000 to metal-

catalyzed heat-treatment syntheses and CVD in 2003–2004, to

arc discharge with purification control in 2005–2006, to

plasma-enhanced and thermal CVD in 2007–2010. CVD is the

dominant commercial synthesis approach and catalyzed CVD

with fluidized bed has been used by Bayer to synthesize

Baytubes [29]. Competitor analysis revealed overlap between

Sony and an individual researcher, Young Sang Cho.

Text mining framework for Nano S&T
Junpeng et al. developed a patent text mining tool using NLP

[14]. Patents were retrieved from Science Citation Index, Engi-

neering Information Compendex, International Information

Services for Physics and Engineering communities, and the

Chinese Patent database. Text extraction was conducted, with

fuzzy logic used to cleanse the data. Fuzzy matching tech-

niques were used to identify and combine similar entities. List

Process, Matrix Process, Factor Analysis, Technology Group

Clustering, and Concept Hierarchy were used in the framework

to analyze the database. Multi-dimensional scaling was

employed with a path erasing algorithm. The data presented

http://www.nanoport.org
http://nanomapper.eller.arizona.edu
http://nanomapper.eller.arizona.edu
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focused on identifying leading countries, companies and

inventors in the nanotechnology field. At the time of publica-

tion, the top three patenting institutions representing the top

three patenting countries included the Naval Research Labora-

tory (USA), Cavendish Laboratory (UK), and Hitachi Ltd

(Japan).

Nanomaterial/device characterization
Not all ENMs or nanodevices and their respective synthesis or

fabrication methods are patented. In addition, the information

provided in a patent can be limited compared to that included in

a research article. Therefore systems that can automatically

retrieve and annotate literature on ENMs/nanodevices can be

valuable tools for accelerating the discovery/design, synthesis/

fabrication and optimization of ENMs/nanodevices.

Nanodevice fabrication and characterization
analyzer
Dieb et al. generated a tool to automatically collect literature

relevant to nanodevice design and a tool to automatically

annotate literature on nanodevices [30,31]. A training set,

which consisted of two fully annotated papers with 129 sen-

tences, was manually annotated by graduate students with the

assistance of an annotation support tool, XConc Suite [32]. The

terms included: source material (SMaterial), characteristic

feature of material (SMChar), experiment parameter (ExP),

value of the experiment parameter (ExPVal), evaluation para-

meter (EvP), value of the evaluation parameter (EvPVal),

manufacturing method (MMethod), and final product (TArti-

fact).

Because terms can overlap with other terms, four tag groups

were created where the terms within a group did not overlap.

With these four tag groups, cascading style annotation could be

applied [31]. To automate the annotation process, a biomedical

entity extraction method using the supervised machine learning

algorithm, support vector machines (SVM), was applied to their

literature library. Supervised machine learning algorithms learn

patterns and make predictions based on a set of training data.

The training data for this system was generated by first parsing

the text using a part-of-speech (POS) tagger, with tag category

and boundary represented using the BIO format. The part-of-

speech information, category, and context surrounding the term

where used as features (or parameters) for the machine learning

algorithm. For the source material, a publicly available chem-

ical entity recognizer, OSCAR3-a5, was first used to parse the

papers. However, since the precision (the percentage of

correctly identified entities over all the entities identified by the

system) of OSCAR-a5 was poor (0.59), the group developed a

custom chemical entity recognizer called CNER, where they

improved issues related to chemical symbol and acronym

confusion. CNER had improved precision (0.92) with similar

recall (0.97 compared to 0.99 for OSCAR-a5). Recall is the

percentage of correctly identified entities over all the entities in

the datatset. The authors also used a text chunk annotator based

on the sequence labeling tool called YamCha (available at

http://chasen.org/~taku/software/yamcha/) and a POS tagger

called GPoSTTL (available at http://gposttl.sourceforge.net/).

The tool was further improved by applying a physical

quantities list (based on the one listed on the website

chemistry.about.com) to refine the extraction of two tags: evalu-

ation parameter and experiment parameter [31]. However, their

annotated library only expanded from two to five papers, and

the group only used two papers to test their improved system.

The group also further improved their CNER, renaming it

SERB-CNER or syntactically enhanced rule-based chemical

entity recognizer. SERB-CNER still focused on the Source Ma-

terial tag. Here the POS tagger used was rb tagger. The machine

learning system used was CRF++. This new system had recall

improvements of 4–7% depending on which parameter was

examined.

Nanomedicine
Through targeted and activatible delivery, nanomedicine

has the potential to greatly improve drug efficacy while

reducing side effects. Improved design can also address

emerging challenges to disease treatment such as adaptive resis-

tance. Despite the promise, few nanomedicines have success-

fully advanced from the bench to the clinic. For both devel-

oping and marketed nanomedicines, there still remain questions

on the long-term safety. Two groups have developed NLP-

based systems to annotate and classify nanomedicine articles or

clinical trials.

Nanotoxicity Searcher
The Nanotoxicity Searcher is a tool to automatically annotate

nanomedicine and nanotoxicology literature using pattern

matching techniques [9,16,33]. The group used ABNER (avail-

able at http://pages.cs.wisc.edu/~bsettles/abner/), a biomedical

named entity recognizer, to identify names of nanomaterials

(NANO), potential routes of exposure (EXPO), target organs

and/or organisms (TARGET), and types of toxicity/damage

(TOXIC) [16,34]. ABNER contains the supervised machine

learning algorithm linear-chain conditional random fields

(CRFs) from Mallet (available at http://mallet.cs.umass.edu/),

an open source freely available Java-based statistical natural

language processing toolkit [35]. To create training data for the

CRF, the authors manually annotated 300 sentences collected

from 654 abstracts retrieved in PubMed after searching

“nanoparticles/toxicity (MeSH major topic)”. For example, the

authors manually labeled the sentence

http://chasen.org/~taku/software/yamcha/
http://gposttl.sourceforge.net/
http://pages.cs.wisc.edu/~bsettles/abner/
http://mallet.cs.umass.edu/
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“The purpose of this study was to review published dose-

response data on acute lung inflammation in rats after instilla-

tion of titanium dioxide particles or six types of carbon

nanoparticles.”

with the NANO, EXPO, TARGET and TOXIC mentions within

the sentence

“The purpose of this study was to review published dose-

response data on acute <TARGET> lung </TARGET>

<TOXIC> inflammation </TOXIC> in <TARGET> rats </

TARGET> after <EXPO> installation </EXPO> of <NANO>

titanium dioxide particles </NANO> or six types of <NANO>

carbon nanoparticles </NANO>).”

Features extracted from the context surrounding the mentions

were used to train the CRF.

The performance of their NER software was measured based on

three factors: precision, recall, and F-measure score. F-measure

is the harmonic mean of precision and recall. The authors evalu-

ated how well their system performed in identifying the entire

entity string (entity-level) and partial matches (token-level). For

each level, their results were reported to be greater than 0.85,

with almost all factors examined at the token level greater than

0.9. The performance of the Nanotoxicity Searcher was also

compared to a baseline method, which combines a dictionary-

based approach with a term selection scheme. The dictionary

was created manually from the same 300 sentences used to train

the CRF plus terms identified from two ontologies, the

Foundational Model of Anatomy (FMA) and the NanoParticle

Ontology [36]. The results demonstrated that overall the CRF

method obtained a significantly higher F-measure than the base-

line.

NanoSifter
The NanoSifter, which focused on a specific type of ENM, is

finer grained than the Nanotoxicity Searcher, which used four

broad nano entities encompassing all types of ENMs [15].

NanoSifter was designed to identify quantitative data (i.e.,

numerical values for different characterization parameters)

associated with a specific class of dendrimer, poly(amidoamine)

(PAMAM), which shows promise for cancer treatment.

PAMAM dendrimers are three-dimensional, highly-branched,

polymeric ENMs synthesized by growing shells of branched

molecules from a central core ethylenediamine molecule. Each

doubling of the number of amine surface groups constitutes a

new shell or generation.

The NanoSifter algorithm contains two steps. The first to iden-

tify possible mentions of the entities associated with PAMAM,

and the second to associate the numeric values and dendrimer

property terms. The entities associated with PAMAM

were based on the NanoParticle Ontology and included:

(1) hydrodynamic diameter, (2) particle diameter, (3) molecular

weight, (4) zeta potential, (5) cytotoxicity, (6) IC50, (7) cell

viability, (8) encapsulation efficiency, (9) loading efficiency,

and (10) transfection efficiency [17]. To identify mentions asso-

ciated with PAMAM entities, the authors utilize the freely

available open source NLP pipeline General Architecture

for Text Engineering (GATE, https://gate.ac.uk/) and its IE

module ANNIE (a Nearly-New Information Extraction

System, https://gate.ac.uk/ie/annie.html) [37]. GATE, origi-

nally developed by the University of Sheffield, is a widely

employed suite of Java tools developed for the processing

unstructured text [37]. ANNIE is an information extraction

module within GATE that contains a tokenizer, sentence

splitter, part-of-speech tagger and named entity extractor. The

named entity extractor of ANNIE is tailored to extract entities

such as persons, organizations and dates, but the components

are highly configurable and can be adapted to extract a variety

of entities.

To create a training set for the entity extractor, two domain

experts annotated 100 articles for the numeric values and

dendrimer property terms using the Java Annotations Patterns

Engine (JAPE) and integrating components from ANNIE. The

training data was then utilized by ANNIE’s IE module to iden-

tify mentions associated with PAMAM. The identified numer-

ical values cannot be automatically assumed to associate with a

PAMAM property. Therefore, to determine if the associated

numeric values of the PAMAM entities were referring to the

dendrimer property, the authors utilized a proximity metric. The

proximity metric requires the mention of a PAMAM property to

be within so many characters of the property term. This

provides the system with context information used in the litera-

ture when referring to the entity. The authors selected a prox-

imity distance metric threshold of 200 characters based on

preliminary experiments using the training set. Too large of a

proximity metric provides the system with too much informa-

tion to accurately discriminate whether the word is an entity,

which increases the false positive rate, whereas too little of a

proximity metric does not provide the system with enough

context information. Evaluating their results using precision,

recall and F-measure metrics showed that their algorithm

obtained a high accuracy and recall when identifying entities

associated with the PAMAM properties. The performance of

NanoSifter was based on comparison with annotations gener-

ated by researchers working in the Ghandehari lab at the

University of Utah. Overall, NanoSifter demonstrated good

recall (95–100% - 99%), poor precision (59–100% - 84%), a

passing F-measure (73–100% - 91%).

https://gate.ac.uk/
https://gate.ac.uk/ie/annie.html
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Clinical trial document classifier
De la Iglesia et al. proposed a method to automatically classify

clinical trial summaries as those testing nanotechnology prod-

ucts and those testing conventional drugs [38]. A benefit of this

system is that it can automatically identify summaries of

interest for further processing by more computationally inten-

sive systems such as those discussed elsewhere in this review.

Looking for just the term “nano” is not sufficient to determine if

a summary contains nanotechnology products because many

summaries do not explicitly state that they are testing nanotech-

nology products. For example, many nanotechnology products

encapsulate insoluble or highly cytotoxic drugs within lipo-

somal or micellar particles, which alters the kinetics of the drug

in the body.

To develop their system, the group used the Natural Language

Toolkit (NLTK, http://www.nltk.org/), a suite of freely avail-

able, open source, Python-based modules developed for

processing unstructured text. They evaluated seven supervised

machine learning algorithms implemented in the package:

(1) multinomial naive Bayes classifier, (2) decision trees,

(3) stochastic gradient descent (SGD) logistic regression,

(4) L-1 regularized logistic regression, (5) L-2 regularized

logistic regression, (6) linear support vector machine and

(7) polynomial support vector machine. The authors explored

four vector-based methods for representing the document each

using a “bag-of-words” approach containing unigrams (single

content words) and bigrams (sequence of two content words) as

features (or parameters) for the machine learning algorithm.

The first is a binary representation, where a zero or one is used

to indicate the absence or presence of the feature in the

summary. The second is a feature-based representation, which

uses the number of times the feature occurred in the summary.

The third is inverse-document frequency (IDF), which quanti-

fies how discriminative a feature is based on the number of

documents it occurred within. And lastly, the fourth is term

frequency-inverse document frequency (TFIDF), which weights

IDF based on how often the term occurs.

The authors trained their algorithm on 1000 clinical trial

summaries from clinicaltrials.gov, where 500 were nanomedi-

cine-focused (nano) and 500 were not involving any nanomedi-

cines or nanodevices (non-nano). The author evaluated their

system using the leave-one-out and 10-fold cross validation

evaluation methodology and report the overall: (1) precision,

(2) recall, (3) F-measure, (3) true-positive vs false-positive

rates, (4) Mathews correlation coefficient (MCC) and (5) area

under the curve (AUC). The MCC measures the quality of the

nano/non-nano classification by the system and the AUC

measures the discriminativeness of the classifier. The results

show an F-measure greater than 0.85 regardless of the machine

learning algorithm or feature representation. The overall results

indicate that the context within the unigram and bigram features

is able to discriminate between non-nano and nano clinical

summaries.

The authors describe several advantages of automatically cate-

gorizing clinical trials investigating nano versus non-nano

drugs. These include facilitating comparisons between

clinical trials testing nano and non-nano drug formulations

involving the same active ingredient (e.g., Doxil = pegylated

liposome [nano] encapsulated doxorubicin compared to

Adriamycin = doxorubicin). In addition, categorization could

facilitate information retrieval by users interested in this distinc-

tion. In the consumer product arena, labeling consumer prod-

ucts containing ENMs has been discussed widely, and a similar

NLP categorization tool tailored to consumer products could

potentially facilitate the categorization of products containing

nanomaterials or generated using nanotechnology-based

processes from those not involving nanotechnology.

Environmental risk assessment
Environmental release and exposure to ENMs is already occur-

ring, and it is the obligation of nanotechnology researchers to

also consider the potential effects of commercialized ENMs on

human health and environment. A wealth of data has been

collected through large-scale centers, which in the U.S. include

the Center for Biological and Environmental Nanotechnology

(CBEN) and the two Centers for Environmental Implications of

Nanotechnology (CEIN and CEINT). Surprisingly, only one

group was found to describe the use of NLP techniques in a tool

analyzing the environmental nanotechnology literature.

NEIMiner
The Nanomaterial Environmental Impact data Miner, or

NEIMiner, is a web-based tool built using CMS and Drupal

[39]. NEIMiner consists of four parts: 1) nanomaterial environ-

mental impact (NEI) modeling framework – similar to Frame-

work for Risk Analysis of Multi-Media Environmental Systems

(FRAMES), 2) data integration, 3) data management and

access, and 4) model building. This web-based tool is supported

by the company’s previously developed tool, ABMiner (avail-

able at http://discover.nci.nih.gov/abminer/). Three databases

(ICON, caNanoLab, and NBI) were used as the data sources.

Data extraction was performed using application programming

interface (API) calling via web services and data scraping via

parsing web pages. The model building component of

NEIMiner utilizes machine learning algorithms from ABMiner,

such as nearest neighbor algorithms, tree algorithms and

support vector machines. This allows for the systematic evalua-

tion of a variety of algorithms. The model building component

also contains a meta-optimizer, which automatically iterates

http://www.nltk.org/
http://discover.nci.nih.gov/abminer/
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through the algorithms in ABMiner that can be used to solve the

input problem to determine which algorithm will provide the

most optimal results. To demonstrate the applicability of the

model building component, the authors developed a predictive

model based on the Nanomaterial-Biological Interactions (NBI)

knowledge base. The NBI includes data on the mortality,

delayed development and morphological malformations of

embryonic zebrafish due to the toxicity of various nanomate-

rials including metal nanoparticles, dendrimer, metal oxide and

polymeric materials [40]. Java Applets were used to visualize

the data in 3D histograms and scatterplots. NEIMiner was

hosted at http://neiminer.i-a-i.com but is no longer accessible.

Conclusion
NLP perspective
Nine nanoinformatics systems utilizing NLP have been

described in the literature. Table 1 shows the components of

these systems from a NLP perspective. “NLP tasks” describes

the applications discussed by the researchers when developing

their system. “NLP subtasks” shows the underlying NLP

components that were utilized within the systems. For example,

NanoMapper, a patent analyzer developed by Li et al., utilized a

part-of-speech (POS) tagger and parser within their system to

automatically annotate the words in the document with their

part-of-speech and extract the phrasal chunks from the sen-

tences [25]. Similarly, the TechPerceptor system developed by

Yoon et al. utilizes a stemmer in order to normalize words

to their base form, and sentence similarity algorithms to

compare how close the contextual content of one sentence is

with another [26].

Many of the nanoinformatics systems were implemented using

pre-existing NLP software packages. These NLP packages were

developed to perform specific tasks, such as Abner, a biomed-

ical named entity extractor, or more general NLP systems that

provide various NLP tools such as Mallet and Natural Lan-

guage Toolkit (NLTK) [34,35]. Utilizing and adapting these

previously developed NLP tools allows for nanoinformatics

researchers to build their automated systems without needing to

develop low level NLP functionality. There were three main

types of algorithms utilized by the systems: machine learning,

pattern matching and clustering. The most common was

machine learning algorithms such as Conditional Random

Fields and Support Vector Machines (SVMs). These algo-

rithms require manually annotated training data. For example,

in building the Nanotoxicity Searcher, Garcia-Remesal et al.

manually annotated documents for various nanoparticles and

their toxicological hazards to train their entity extraction system

[16]. In many cases, the annotation toolkit (if used) was not

reported, but two annotation systems were mentioned in the

articles reviewed: 1) GATE and 2) XConc Suite.

Lastly, although not specifically an NLP component, five

groups incorporated visualization of the extracted information

as part of their system. Visualization provides researchers with

additional capabilities to explore and analyze the data.

Data perspective
Table 2 shows the components of the nanoinformatics systems

from a data perspective. With the growing number of nanotech-

nology publications, more refined databases that automatically

identify records (e.g., articles, patents, grants, clinical trials)

relevant to specific ENMs or properties can greatly facilitate

trend analyses. The amount of information gathered automati-

cally differed widely between the systems reviewed. The Clin-

ical Trial Document Classifier focused on differentiating

between two variables, nanotechnology products and non-

nanotechnology products [38]. The four patent mining systems

(i.e., NanoPort, NanoMapper, TechPerceptor, and Text Mining

Framework) primarily extracted publication information, which

allowed for patents to be clustered by date, inventor, country,

and institution. However, the TechPerceptor also extracted

information on nanomaterial type and synthesis method [26].

Moving beyond bibliographic information, the Nanodevice

Fabrication and Characterization Analyzer automatically

extracted nanodevice physico-chemical characterization prop-

erties as well as the fabrication and evaluation parameters and

their associated values [30]. Comparing the parameters that

were extracted to the proposed minimum information for nano-

materials characterization, referred to as MINChar in the table,

64% of parameters were captured [41]. This system was trained

using two annotated articles, and its application to a larger

literature corpus has not been published. This may be due to

future plans to integrate a system, similar to the patent

analyzers, where the extracted data are associated with the cita-

tion information.

The amount of physico-chemical characterization data extracted

by the systems analyzing literature for exposure and biological

response data (i.e., Nanotoxicity Searcher, NanoSifter, and

NEIMiner) varied greatly. Focused primarily on the toxicity

endpoints, the Nanotoxicity Searcher extracted several bio-

logical response endpoints but only associated these effects with

the ENMs’ core composition [16]. The NanoSifter collected

size, surface charge and molecular weight data beyond the core

composition, which was fixed to PAMAM [15]. Incorporating

almost 80% of the minimum characterization data, the

NEIMiner appears to be the most comprehensive with regards

to extraction of physico-chemical characterization properties.

When assessing the human health or environmental impact of

ENMs, it is important to recognize that risk is a function of

exposure and hazard. Without exposure, there is no risk. All

http://neiminer.i-a-i.com
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Table 1: Nanoinformatic system components from an NLP perspective.

Nano
Porter

Nano
Mapper

Tech
Perceptor

Text
Mining

Framework

Nano
Device
F & C

Nano
Toxicity

Searcher

Nano
Sifter

Clinical
Trial Doc.

Class.

NEI
Miner

machine
learning
algorithm

CRF × ×
decision trees × ×
logistic regression ×
naive Bayes ×
nearest neighbor ×
SVM × × ×

algorithm
class

machine learning × × ×
pattern matching ×
clustering × × × ×

visualization visualization modules × × × × ×

taxonomy

FMA (in UMLS) ×
MeSH (in UMLS) ×
WordNet ×
NanoParticle Ontology ×

NLP tools

GATE ( NLP Toolkit) ×
Xconc Suite (annotator) ×
ABMiner (NLP Toolkit) ×
Abner (NER) ×
YamCha (Parser) ×
GPoSSTTL (POS Tagger) ×
ANNIE (GATE module) ×
Mallet (NLP Toolkit) ×
NLTK (NLP Toolkit) ×

NLP sub
task

POS tagging × × × ×
parsing × × ×
concept mapping ×
stemming ×
sentence similarity ×

NLP task

document classification ×
document clustering ×
entity extraction × × × ×
information retrieval × ×
patent analyzer × × × ×
summarization ×
topic identification × ×

substances are potentially hazardous depending on the dose or

concentration encountered. In addition, the biological response

data of interest can be dependent upon the application.

Nanomedicine applications are often evaluated using perfor-

mance parameters, such as drug loading efficiency and efficacy,

in addition to biological response, such as cytotoxicity or IC50.

Since efficacy and cytotoxicity are dependent upon the adminis-

tered dose, concentration and exposure dose parameters are crit-

ical for the interpretation of this data. While text mining is

useful, it is only the first step. Current nano-focused NLP

systems are not sufficient to reveal relationships or connections

between data. Close collaboration and communication between

nanotoxicology and nanoinformatics researchers will provide

interpretive context so that computer understandable patterns
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Table 2: Nanoinformatic system components from a data perspective.

MIN
Char

Nano
Porter

Nano
Mapper

Tech
Perceptor

Text
Mining

Framework

Nano
Device
F & C

Nano
Toxicity

Searcher

Nano
Sifter

Clinical
Trial Doc.

Class.

NEI
Miner

publication
information

citation (e.g., author,
journal, date) × × × × × ×

laboratory/
organization × ×

location × × ×
content description × × ×
patent classification
(e.g., US, EU) × × ×

physico-
chemical
character-
ization

particle diameter × × × ×
particle size
distribution × ×

hydrodynamic
diameter ×

agglomeration and/or
aggregation × ×

shape × × ×
core composition × × × × ×
crystallinity/crystallin
e state × × ×

surface area × ×
surface charge/zeta
potential × × × ×

surface chemistry × × ×
purity × × ×
stability ×
solubility ×
concentration (mass,
number, SA) × ×

method of
synthesis/preparation × × × ×

molecular weight ×

exposure

exposure media ×
exposure
pathway/route × ×

exposure duration ×
exposure dose ×

biological
response

bioavailability/uptake ×
biomagnification ×
cell viability × ×
cytotoxicity × × ×
inflammatory
response ×

genotoxicity × ×
EC50 (ppm) ×
IC50 × ×
LC50 (ppm) ×
organ response ×
whole organism
response × ×
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can be developed to enable future knowledge discovery from

the literature.

Recommendations
There is a critical need to automatically extract and synthesize

knowledge and trends from nanotechnology literature. New

ENMs are continuously being discovered and NLP approaches

can semi-automate the cataloguing of ENMs and their unique

physico-chemical properties. As shown in this review, various

NLP methods have been used for patent mining, nanomaterial/

device characterization, nanomedicine, and environmental risk

assessment. We believe these approaches can be expanded upon

to automatically aggregate studies on the exposure and hazard

of ENMs as well as link the physico-chemical properties to the

measured effects. Towards this end, we conclude with the

following recommendations:

• Add the NPO to the Unified Medical Language System

(UMLS). → Impact: provide a nano-specific termi-

nology source that can be used by pre-existing systems

that currently utilize sources from the UMLS.

• Create a publicly available annotated corpus for nano-

technology. → Impact: develop new nanoinformatics

tools; provide a benchmark dataset to compare nanoin-

formatic systems.

• Encourage authors to include more experimental details,

such as the minimum characterization data, in their

manuscripts. → Impact: increase experimental repro-

ducibility and inter-study comparison.

• Encourage researchers to add nanoinformatics tools to

freely available, online repositories, such as nanoHUB or

NCIPhub. → Impact: Promote broader participation in

the nanoinformatics field.
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