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Limited Ability of Posaconazole To Cure both Acute and Chronic
Trypanosoma cruzi Infections Revealed by Highly Sensitive In Vivo
Imaging
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The antifungal drug posaconazole has shown significant activity against Trypanosoma cruzi in vitro and in experimental murine
models. Despite this, in a recent clinical trial it displayed limited curative potential. Drug testing is problematic in experimental
Chagas disease because of difficulties in demonstrating sterile cure, particularly during the chronic stage of infection when para-
site burden is extremely low and tissue distribution is ill defined. To better assess posaconazole efficacy against acute and chronic
Chagas disease, we have exploited a highly sensitive bioluminescence imaging system which generates data with greater accuracy
than other methods, including PCR-based approaches. Mice inoculated with bioluminescent T. cruzi were assessed by in vivo
and ex vivo imaging, with cyclophosphamide-induced immunosuppression used to enhance the detection of relapse. Posacona-
zole was found to be significantly inferior to benznidazole as a treatment for both acute and chronic T. cruzi infections. Whereas
20 days treatment with benznidazole was 100% successful in achieving sterile cure, posaconazole failed in almost all cases. Treat-
ment of chronic infections with posaconazole did however significantly reduce infection-induced splenomegaly, even in the ab-

sence of parasitological cure. The imaging-based screening system also revealed that adipose tissue is a major site of recrudes-
cence in mice treated with posaconazole in the acute, but not the chronic stage of infection. This in vivo screening model for
Chagas disease is predictive, reproducible and adaptable to diverse treatment schedules. It should provide greater assurance that

drugs are not advanced prematurely into clinical trial.

hagas disease is a major public health problem in Latin Amer-

ica and is increasingly prevalent in other regions as a result of
migration patterns (1, 2). The causative agent, Trypanosoma cruzi,
is transmitted to humans predominantly by hematophagous tri-
atomine bugs, although other routes include contaminated food
and drink, blood transfusion and congenital transmission. After
infection, patients progress to the acute stage of the disease, where
parasites are readily detectable in the bloodstream by microscopic
examination. In most individuals, immune-mediated responses
suppress parasitemia within 4 to 6 weeks and the majority of pa-
tients then remain asymptomatic, despite a lifelong low-level in-
fection. However, years or often decades later, ca. 30% of those
infected develop chronic Chagas disease pathology, typically car-
diomyopathy and/or digestive megasyndromes (3). Because of the
complex and long-term course of the infection, vaccine develop-
ment is considered to be extremely challenging, and most bio-
medical research has focused on improving chemotherapy.

For the last 40 years, the nitroheterocyclic compounds ben-
znidazole and nifurtimox have been the only drugs available to
treat Chagas disease (4, 5). This is despite the fact that therapeutic
schedules are long, treatment failures have been frequently re-
ported, and both drugs exhibit toxicity. In addition, their efficacy
in preventing or alleviating chronic disease pathology remains to
be conclusively demonstrated (6, 7). Benznidazole and nifurtimox
are prodrugs and both are activated within T. cruzi by the same
mitochondrial nitroreductase (TcNTR) (8), leading to the gener-
ation of reactive metabolites which mediate parasite killing (9-
11). This shared activation mechanism provides potential for
cross-resistance (8, 12, 13) and highlights the need to identify
additional therapeutic agents which target distinct biochemical
pathways. In this context, sterol metabolism in T. cruzi has gener-

August 2015 Volume 59 Number 8

Antimicrobial Agents and Chemotherapy

ated considerable interest, particularly the enzymes involved in
ergosterol biosynthesis (14, 15). The antifungal drug posacona-
zole for example, is a potent inhibitor of the T. cruzi sterol 14a-
demethylase (CYP51) and has shown significant antiparasitic ac-
tivity in vitro and in vivo (16-18). Furthermore, combination
therapy with benznidazole has demonstrated that murine infec-
tions can be cured with a reduced dosing regime (19, 20). How-
ever, in a recent randomized clinical trial against chronic T. cruzi
infection, posaconazole was shown to have limited curative po-
tential (21), and in vitro studies have found it to be less active than
benznidazole (22).

The vast majority of Chagas disease patients are only diagnosed
once they begin to display chronic disease pathology or after test-
ing prior to blood donation or surgical procedures. Drug trials
against chronic stage infections are particularly challenging be-
cause it is difficult to unequivocally demonstrate sterile cure. In
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addition, lack of knowledge of the sites of parasite persistence can
be a confounding factor that impacts on the reproducibility of
PCR-based methodologies, making it difficult to accurately assess
parasite burden in real time. To streamline the drug discovery
process, we sought to improve the utility of current predictive
models of experimental Chagas disease by developing an en-
hanced in vivo imaging system. This was achieved by engineering
trypanosomes to express a red-shifted luciferase reporter that
emits tissue-penetrating orange-red light (A, 617 nm) (23, 24).
In T. cruzi, the bioluminescent reporter is expressed at similar
levels in different parasite life cycle stages, has no effect on growth
properties or virulence, and is maintained at constant levels for
more than 12 months in the absence of selective drug pressure.
Importantly, this in vivo imaging system has a limit of detection of
between 100 and 1,000 parasites and has allowed parasite burden
to be assessed in real time during experimental chronic infections
in individual mice (24). Throughout chronic infections, dynamic
bioluminescence foci can appear and disappear over a period of
less than 24 h (24), consistent with a scenario where infected cells
are being trafficked to and from peripheral sites. In BALB/c mice
infected with the CL Brener strain, the gastrointestinal tract was
found to be the major site of parasite persistence. Unexpectedly, in
this model, infection of the heart was rarely observed in the
chronic stage, even though these mice continued to exhibit cardiac
inflammation and diffuse fibrosis, signatures of chronic Chagas
disease pathology.

The enhanced sensitivity of this red-shifted luciferase based
reporter system has the potential to provide new approaches for
monitoring the effectiveness of drugs against experimental Cha-
gas disease and should be a valuable addition to the drug discovery
pipeline. Here, we describe its use to assess the efficacy of po-
saconazole to treat acute and chronic experimental infections. In
line with a recent clinical trial, our predictive model suggests ma-
jor limitations in the utility of this drug.

MATERIALS AND METHODS

Mice and infections. Female BALB/c mice were purchased from Charles
River (United Kingdom) and CB17 SCID mice were bred in-house. Ani-
mals were maintained under specific-pathogen-free conditions in indi-
vidually ventilated cages, where they experienced a 12-h light/dark cycle
and had access to food and water ad libitum. All experiments were carried
out under UK Home Office license PPL 70/6997 and approved by the
LSHTM Animal Welfare and Ethical Review Board. Mice were aged 8 to
12 weeks when infected with a bioluminescent reporter clone derived
from the genome reference strain CL Brener (24). In standard experi-
ments, 10* in vitro-derived tissue-culture trypomastigotes or thawed
cryopreserved bloodstream trypomastigotes (BTs) in 0.2 ml of phos-
phate-buffered saline (PBS) were first used to infect SCID mice via intra-
peritoneal (i.p.) inoculation. Parasitemic blood from these SCID mice was
obtained 2 to 3 weeks later and adjusted to 5 X 10> BTs/ml with PBS.
BALB/c mice were then infected with 10° BTs via i.p. injection (24).
Treatment. For drug treatment, benznidazole (Hoffmann-La Roche
AG) was prepared from powder at 10 mg/ml in 7% Tween 80, 3% ethanol
(vol/vol), and 90% (vol/vol) water. Posaconazole (Sequoia Research
Products, Ltd.) was prepared at 2 mg/ml in 5% (vol/vol) dimethyl sulfox-
ide and 95% (vol/vol) HPMC-SV (0.5% [wt/vol] hydroxypropyl methyl-
cellulose, 0.5% [vol/vol] benzyl alcohol and 0.4% [vol/vol] Tween 80).
Noxafil (MSD, Ltd.), a liquid formulation of posaconazole (40 mg/ml),
was diluted to 2 mg/ml in water. Mice were treated with standard doses of
benznidazole (100 mg/kg/day) or posaconazole (20 mg/kg/day) by oral
gavage for consecutive days, as required. To facilitate the detection of
residual infection after treatment, BALB/c mice were immunosuppressed
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in some experiments with cyclophosphamide (200 mg/kg) by i.p. injec-
tion at 3- to 4-day intervals, for a maximum of three doses.

In vivo bioluminescence imaging. Mice were injected i.p. with 150
mg of p-luciferin (Perkin-Elmer)/kg in Dulbecco Ca**/Mg”* -free PBS
and then anesthetized using 2.5% (vol/vol) gaseous isoflurane in oxygen.
To measure bioluminescence, mice were placed in an IVIS Lumina II
system (Caliper Life Science), and both dorsal and ventral images were
acquired 10 to 20 min after p-luciferin administration using LivingImage
4.3. Exposure times varied between 30 s and 5 min, depending on signal
intensity. Anesthesia was maintained throughout via individual nose
cones. After imaging was complete, the mice were revived and returned to
cages. To estimate the parasite burden, whole-body regions of interest
were drawn using Livinglmage v4.3 to quantify bioluminescence ex-
pressed as total flux (photons/second [p/s]). The detection threshold was
established previously using data from control uninfected mice (24). An-
imals where bioluminescence intensity was consistently below 5 X 10°
p/s/sr/cm” in both dorsal and ventral images following immunosuppres-
sion, were regarded as cured, subject to confirmation by ex vivo assess-
ment (below).

Assessment of treatment efficacy by ex vivo imaging. Selected organs
and tissue samples from all mice were assessed for infection by ex vivo
imaging (Fig. 1E), as described previously (24). Briefly, mice were injected
with 150 mg of p-luciferin/kg i.p. and then sacrificed by exsanguination
under terminal anesthesia 7 min later. Mice were perfused with 10 ml of
p-luciferin at 0.3 mg/ml in PBS via the heart. Organs and tissues were
excised, transferred to a petri dish or culture dish, soaked in 0.3 mg of
D-luciferin/ml in PBS, and then imaged as for the live mice. Routinely, the
rest of the carcass was also assessed for bioluminescence associated with
skin, skeletal muscle, or remaining adipose tissue. As with in vivo imaging,
a bioluminescence intensity of 5 X 10° p/s/sr/cm? was used as the thresh-
old to designate cure.

PCR-based detection. Heart, large intestine, and blood tissues were
snap-frozen on dry ice and stored at —80°C until required for DNA ex-
traction. In the case of the gut, three 1-cm sections were pooled from the
proximal colon, the midcolon region, and the rectum of each mouse.
Samples were then thawed and immediately homogenized in at least 200
wl of lysis buffer (4 M urea, 200 mM Tris, 20 mM NaCl, 200 mM EDTA
[pH 7.4]) per 50 mg of tissue, using a BulletBlender Storm instrument
(Next Advance). Proteinase K (Sigma) was added to the tissue suspension
at 0.6 mg per 200 pl and incubated at 56°C for 1 h and then at 37°C
overnight. DNA was extracted from lysates using a HighPure PCR tem-
plate preparation kit (Roche) according to the manufacturer’s instruc-
tions. Real-time PCRs were prepared using a QuantiTect SYBR green PCR
kit (Qiagen) and analyzed using a RotorGene 3000 instrument. Each re-
action mixture contained 50 ng of DNA and 0.5 wM concentrations of
each primer. The T. cruzi-specific primers TCZ-F and TCZ-R (25) target-
ing the 195-bp satellite repeat (10* copies in the CL Brener genome) or the
mouse-specific primers GAPDHf and GAPDHTr (26) targeting the murine
gapdh gene were used.

T. cruzi-specific quantitative PCR (qPCR) threshold cycle (C;) values
were converted to inferred numbers of parasite equivalents (p.e.) by ref-
erence to a standard curve with a range of 2.5 X 10°t0 2.5 X 10~ ' p.e./ml
of tissue lysate. The T. cruzi standard curve was established from serial
dilution of a DNA sample derived from 75 mg of homogenized muscle
tissue, spiked with 2 X 107 epimastigotes, using DNA from unspiked
equivalent samples as the diluent. The murine DNA content was deter-
mined by normalizing mouse-specific qPCR C;. values by reference to a
standard curve with a range of 2.5 X 10" to 2.5 X 10~ wg/ml. The murine
standard curve was established from serial dilution of a mouse DNA sam-
ple using herring sperm DNA as the diluent. Due to the nonspecific fluo-
rescence inherent to this SYBR green qPCR method, we defined parasite
detection limits as means plus three standard deviations (SD) for samples
from uninfected control mice.

Statistics. Results are shown as means =+ the SD (or standard errors of
the mean) where sample sizes are equal or unequal, respectively. Individ-
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FIG 1 Benznidazole, but not posaconazole, cures mice chronically infected with T. cruzi. Mice infected with bioluminescent 7. cruzi were injected with 150 mg
of b-luciferin/kg, anesthetized, and imaged using an IVIS Lumina II system (Materials and Methods). (A to D) Ventral (V) and dorsal (D) images of individual
representative infected mice. (A) Untreated mouse; (B) mouse treated with benznidazole at 100 mg/kg on days 74 to 93 postinfection then immunosuppressed
by cyclophosphamide treatment (200 mg/kg) on days 113, 118, and 128; (C) mouse treated with posaconazole (Noxafil formulation) at 20 mg/kg on days 74 to
93 and then immunosuppressed as described above; (D) mouse treated with posaconazole (HPMC-SV formulation) on days 74 to 93 and immunosuppressed
as described above. (E) Tissue-specific ex vivo imaging. (i) Untreated mouse at 132 dpi; (ii) mouse at 147 dpi, which had been treated with benznidazole, and then
immunosuppressed, as described above; (iii and iv) mice at 147 and 148 dpi, which had been treated with posaconazole (Noxafil and HPMC-SV formulations,
respectively) and then immunosuppressed as described above. (v) Schematic that identifies the positions of organs displayed in panels i to iv. Gut Mes, gut
mesentery tissue; OES, esophagus; SKM, skeletal muscle; STM, stomach; VIS FAT, visceral fat/adipose tissue. The heat map is on a log,, scale and indicates the

intensity of bioluminescence from low (blue) to high (red); the minimum and maximum radiances for the pseudocolor scale are shown.

ual animals were used as the unit of analysis for in vivo and ex vivo exper-
iments. For spleen mass, means were compared using a Student t test.

RESULTS

Benznidazole and posaconazole efficacy against chronic-stage
T. cruzi infections. BALB/c mice, infected i.p. with 10> biolumi-
nescent bloodstream-form T. cruzi trypomastigotes (CL Brener
strain), were monitored by in vivo imaging (Fig. 1A; see also Ma-
terials and Methods). In this experimental model, peak para-
sitemia occurs after 14 days and is followed by an immune-medi-
ated reduction in parasite load during progress to the chronic
stage at 40 to 50 days postinfection (dpi) (Fig. 2B) (24). After 74
days, cohorts of mice were treated daily for 20 days by the oral
route with benznidazole (100 mg/kg) or with one of two po-
saconazole formulations (20 mg/kg). These dosing regimes have
been widely used for experimental purposes (19, 20, 27, 28). Ben-
znidazole acted rapidly and the whole-body bioluminescence of
each mouse fell to undetectable levels within 5 days (Fig. 1B and
2A). Posaconazole was slower acting, but by the conclusion of the
treatment period the inferred parasite load had also dropped to
background levels. The bioluminescence profile during treatment
was very similar with both posaconazole formulations (Fig. 1C
and D and Fig. 2A). At 20 days after the cessation of treatment (113
dpi), half the mice in each cohort were immunosuppressed (Ma-
terials and Methods). No signs of infection were observed in
any of the benznidazole-treated mice in either the immuno-
suppressed or the immunocompetent groups (Fig. 1B). How-
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ever, in the posaconazole-treated group, the infection relapsed
in all of the cyclophosphamide-treated mice (Fig. 1ICand D and
Fig. 2A; Table 1).

Organs from all of the mice were assessed for infection by ex
vivo imaging at the experimental endpoint (Fig. 1E; see also Ma-
terials and Methods). In accordance with experiments using this
and other mouse-parasite combinations (24; M. D. Lewis, unpub-
lished observations), persistent bioluminescent foci at this point
of the infection (~148 dpi) were associated predominantly with
the gastrointestinal tract (mainly the colon and stomach) in un-
treated mice and only sporadically with other major organs/tis-
sues. Mice were considered cured if they were bioluminescence
negative by both in vivo and ex vivo imaging, following cyclophos-
phamide treatment (see Materials and Methods). Based on these
criteria, none of the nine chronically infected mice treated with
posaconazole and subsequently immunosuppressed were cured.
In contrast, all five mice that were treated with benznidazole and
then immunosuppressed were inferred to be parasite-free.

qPCR after immunosuppression has until now been the most
accurate technique for defining parasitological cure in T. cruzi
infections (20, 28, 29). However, when we assessed the efficacy of
this method in our chronic infection model, we found that PCR
methodology had a tendency to overestimate the cure rate, partic-
ularly with posaconazole treatment. In chronically infected un-
treated mice, pooled gut tissues (see Materials and Methods) were
PCR positive in each case and negative when mice were treated
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FIG 2 Quantification of whole animal bioluminescence (ventral and dorsal) after treatment with benznidazole and posaconazole. (A) Infected mice treated
starting 74 dpi for 20 days by the oral route. (B) Mice treated starting 14 dpi for 20 days by the oral route. Red squares, untreated mice (n = 5, acute; n = 6,
chronic); blue squares, treated with benznidazole at 100 mg/kg (n = 10); green squares, treated with posaconazole (Noxafil) at 20 mg/kg (n = 9); purple squares,
treated with posaconazole (HPMC-SV formulation) at 20 mg/kg (n = 10). Arrows indicate the start and endpoints of treatment. Gray lines indicate detection
threshold determined as the mean (solid line) and mean plus 2 SD (dashed line) of background bioluminescence of control uninfected mice. Crosses signify the
dates of cyclophosphamide treatment (200 mg/kg). Inoculation failed to result in an infection in one mouse in each of the acute and chronic infection studies.

These mice were not treated (Noxafil cohort) and excluded from the analysis.

with benznidazole for 20 days, including the group that was sub-
sequently immunosuppressed (Fig. 3A). With the posaconazole-
treated nonimmunosuppressed mice, gut tissue was PCR negative
in 9 of 10 cases, a finding also consistent with a high rate of cure.
This inferred cure rate was reduced when tissues derived from
mice that had also been cyclophosphamide treated were analyzed.
The number of PCR-negative (cured) animals fell to 4 of 9, indi-
cating that some low-level infections only become detectable by
PCR after immunosuppression. However, even this reduced cure
rate is at odds with data from bioluminescence imaging, which
demonstrated unequivocally that posaconazole failed to eradicate
parasites in any of the treated mice (Fig. 1, Table 1). In the case of
cardiac tissue, with one exception, the results were PCR negative
in all cases (Fig. 3B), in accordance with bioluminescence imaging

TABLE 1 Summary of drug efficacy against acute and chronic T. cruzi
infections inferred from bioluminescence?

Disease Treatment time ~ Daily dose ~ No. cured/

Drug state (days) (mg/kg) no. tested
Benznidazole Chronic 20 100 5/5
Benznidazole Acute 20 100 5/5
Benznidazole Chronic 10 100 6/6
Benznidazole Chronic 5 100 6/6
Posaconazole Chronic 20 20 0/9
Posaconazole Acute 20 20 3/19

@ Data were collated from the experiments illustrated in Fig. 1, 4, and 6. Mice were
designated as cured only when bioluminescence negative by both in vivo and ex vivo
imaging following immunosuppression (see Materials and Methods). In the
posaconazole treatment, data from both formulations were pooled.
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of chronic-stage infections (Fig. 1) (25). When blood samples
were analyzed, they were predominantly negative, even when the
mice were untreated (Fig. 3C). Collectively, these results highlight
the limitations of using PCR-based approaches to define parasito-
logical cure in this dynamic chronic-stage model. The low level
and sporadic nature of bloodstream parasitemia and the focal and
highly dynamic nature of tissue infection, even within the gastro-
intestinal tract, appear to be the confounding factors which result
in an overestimation of the cure rate when determined by qPCR
alone.

To further assess the ability of benznidazole to cure chronically
infected mice, we reduced the treatment period to 10 and 5 oral
doses (100 mg/kg/day) over consecutive days. In each case, biolu-
minescence fell below the level of detection by the completion of
treatment, and subsequent immunosuppression of these mice did
notlead to a relapse, as assessed by either in vivo or ex vivo imaging
(Fig. 4). In this experimental model, therefore, there is scope to
reduce the length of benznidazole treatment of chronic T. cruzi
infections and still achieve a curative outcome.

Splenomegaly is frequently observed in both acute and chronic
experimental T. cruzi infections. Here, we observed that the
spleens of chronically infected mice were approximately twice the
mass of those from uninfected mice (Fig. 5). This spleen enlarge-
ment could be reversed by curative treatment with benznidazole
(assessed by in vivo and ex vivo imaging, with an immunosup-
pressed group in parallel; Fig. 1). Interestingly, there was also a
reversal of splenomegaly after posaconazole treatment. In these
mice, there was a major reduction in parasite burden, but a cura-
tive outcome was not achieved (Fig. 1). Therefore, splenomegaly
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Large
intestine

Heart

Blood

FIG 3 qPCR-inferred parasite loads in drug-treated chronically infected mice. DNA was extracted from large intestine (A), heart (B), and blood (C) samples, and
the relative amounts of T. cruzi and murine DNA were quantified by real-time PCR amplification of the multicopy 195-bp satellite repeat and of the gapdh gene,
respectively (Materials and Methods). The limit of detection is represented by the dotted line which corresponds to the mean plus 3 SD of large intestine, heart,
or blood samples from uninfected mice. Above this line, there is a linear correlation with the parasite number, as established by a standard curve (see Materials
and Methods). In panels A and B, the baseline is equivalent to <1 parasite per 5 million murine cells. In panel C, the baseline established with the multicopy
195-bp repeat corresponds to 1 parasite equivalent per pl of blood. NI, not infected; INT, infected nontreated; IBZ, infected, benznidazole treated (as in Fig. 1);
“IBZ, CYP,” infected, benznidazole treated, and then immunosuppressed with cyclophosphamide; IP1, infected, posaconazole (Noxafil) treated; “IP1, CYP,”
infected, posaconazole (Noxafil) treated, and then immunosupressed with cyclophosphamide; IP2, infected, posaconazole (HPMC-SV formulation) treated;
“IP2, CYP,” infected, posaconazole (HPMC-SV formulation) treated, and then immunosuppressed.

in this model is linked with parasite load and can be largely re-
versed, atleast in the short term, without having to achieve a sterile

cure.

Benznidazole and posaconazole efficacy against acute-stage
T. cruzi infections. Using the same experimental model as de-
scribed above, we compared the ability of benznidazole and po-
saconazole to cure acute-stage T. cruzi infections. Treatment was
started at the peak of parasite burden (14 dpi) with standard oral
doses (benznidazole, 100 mg/kg; posaconazole, 20 mg/kg) admin-
istered daily for 20 days. Similar to the chronic-stage infections,
benznidazole treatment resulted in a rapid fall in parasite load,
with bioluminescence reduced to background levels within 5 days
(Fig. 2B and 6B). There was no relapse of infection, when mice
were assessed by in vivo or ex vivo imaging following immunosup-
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pression (Fig. 6B and E), and all mice treated with benznidazole
were therefore considered cured.

With posaconazole treatment, the reduction in biolumines-
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cence was much more rapid than had been observed with chronic-
stage infections (compare Fig. 2A and B), and only marginally
slower than with benznidazole. Again, there were no significant
differences in the efficacy of the two posaconazole formulations.
Bioluminescence remained close to, or only slightly above back-
ground levels, until the mice were treated with cyclophosphamide
(initiated 49 dpi) (Fig. 2B and 6). At this point, there was a rapid
rebound in parasite load in most cases, with 16 of 19 mice display-
ing a clear bioluminescence signal (Fig. 6, Table 1). Of the three
mice judged to be cured, one had been treated with the Noxafil
and two had been treated with the HPMC-SV posaconazole for-
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FIG 4 Assessing the ability of benznidazole to cure mice chronically infected with T. cruzi using 5- and 10-day treatment regimes. (A) Outline of experimental
protocol. Cohorts of six mice were infected with bioluminescent T. cruzi (see Materials and Methods). At 103 dpi, the mice were treated with benznidazole (daily
by the oral route, 100 mg/kg) for 5 or 10 days. As indicated, the mice were subsequently immunosuppressed with three i.p. doses of cyclophosphamide (200
mg/kg). (B) Ventral images of three representative mice from each cohort taken at the indicated day postinfection. (C) Representative ex vivo imaging of organs
from infected mice at 140 dpi (see Materials and Methods). Organs are displayed in accordance with the schematic in Fig. 1Ev. Heat maps indicate the intensity
of bioluminescence from low (blue) to high (red) (log,, scales); the minimum and maximum radiances for the pseudocolor scale are shown.

mulation (see Materials and Methods). These results therefore
suggest that although posaconazole is more effective at reducing
the parasite load during the acute stage than it is during the
chronic stage, it has only a limited ability to achieve a sterile cure in
this experimental model, in either stage of the disease.

In 9 of the 16 posaconazole-treated mice that relapsed after
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FIG 5 Effect of chronic T. cruzi infection and drug treatment on spleen mass.
At 74 dpi, mice were treated with benznidazole (100 mg/kg) (IBZ) or po-
saconazole (20 mg/kg) (IP1 and IP2 represent the Noxafil and HPMC-SV
formulations, respectively) by the oral route, daily for 20 days (see also Fig. 1).
Spleens were harvested and weighed at the end of the experiment. Spleen
weights in infected, nontreated mice (INT) were significantly greater than
those in noninfected mice (NI) (P < 0.0001) or infected mice which had been
treated (P < 0.005, in each case).
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cyclophosphamide treatment, we observed that adipose tissue was
the major site of recrudescence (see, for example, Fig. 7A). This
suggests that the ability of parasites to persist in this location fol-
lowing acute stage posaconazole treatment is a common phenom-
enon. In contrast (P < 0.05), when mice in the chronic stage of
infection were treated and then immunosuppressed, only 1 of 9
animals displayed a significant parasite burden in this tissue
(shown Fig. 1Eiv), with the gastrointestinal tract being the major
site of parasite recrudescence (Fig. 7B).

DISCUSSION

Progress in developing new drugs for chronic T. cruzi infections
has been limited by difficulties in unambiguously demonstrating
parasitological cure. An underlying cause, as inferred from mu-
rine infections, could be the discrete nature of infection foci dur-
ing chronic Chagas disease and their highly dynamic spatiotem-
poral distribution (24). As a consequence, there is a risk of
overestimating cure rates associated with unguided tissue sam-
pling, even when using PCR-based technology. Highly sensitive
bioluminescence imaging circumvents some of these issues by fa-
cilitating the evaluation of parasite burden throughout long-term
infections, with minimal tissue sampling bias.

Several studies have reported on the efficacy of the CYP51
inhibitor posaconazole, and its ability to cure T. cruzi infections
in murine models (17-20). Despite this, when the drug was ad-
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Posaconazole
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FIG 6 Posaconazole has limited efficacy as a treatment for acute T. cruzi infections. Mice (1 = 10) were infected with bioluminescent T. cruzi (Fig. 1; see also
Materials and Methods) and treatment initiated at the peak of the acute stage, day 14. (A to D) Ventral (V) and dorsal (D) images of representative individual
mice. (A) Infected, nontreated. (B) Treated with benznidazole at 100 mg/kg on days 14 to 33 postinfection and then immunosuppressed by 200 mg/kg
cyclophosphamide treatment on days 49, 53, and 57. (C) Treated and cured with posaconazole (20 mg/kg; Noxafil formulation) on days 14 to 33 and
immunosuppressed as described above. (D) Treated with posaconazole (Noxafil formulation) on days 14 to 33 and immunosuppressed as described above. A
total of 16 of 19 posaconazole-treated mice were assessed as noncured. One mouse did not become infected and was excluded from the study. (E) Ex vivo imaging
of organs and tissues obtained from mice on days 74 to 79, as indicated, after drug treatment and immunosuppression. Organs and tissues were arranged as in

Fig. 1Ev. Heat-maps are on log, , scales and indicate the intensity of bioluminescence from low (blue) to high (red).

vanced into clinical trials, it failed to provide significant benefit to
chronically infected patients, in terms of parasitological cure (21).
In line with this, data from our predictive model imply that po-
saconazole has limited potential against both stages of Chagas
disease (Table 1). In vivo imaging revealed that although po-
saconazole is highly effective at reducing parasite burden, it does
not readily cure acute or chronic T. cruzi infections. When mice in
the acute stage were treated, the bioluminescence-inferred para-
site burden was reduced by >3 orders of magnitude within 7 days;
however, sterile cure was rarely achieved (Fig. 2 and 6). With
chronic infections, posaconazole failed to cure any of the mice and
the reduction in parasite load occurred more slowly (Fig. 1 and 2).
This inability, in the vast majority of cases, to eradicate parasites
has parallels with in vitro studies. These studies showed that al-
though the 50% effective concentration of posaconazole against
intracellular T. cruzi is in the nanomolar range, it often fails to
eliminate parasite infection (22). One reason for the faster rate of
parasite knockdown in the acute stage (Fig. 2) might be that par-
asites replicate more rapidly and are therefore more susceptible to
drugs that perturb lipid metabolism. Alternatively, in the chronic
stage, when parasites are restricted predominantly to gastrointes-
tinal sites (24), they may be less accessible compared to the acute
stage, when parasites can be targeted in all organs, although this
explanation is less likely given the pharmacokinetic and distribu-
tion properties of posaconazole (30).

Typically, treatment with posaconazole reduced whole-
body bioluminescence to background levels, with few infection
foci detectable in the absence of immunosuppression. Given
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the sensitivity of the imaging procedure (24), this suggests that
the remaining parasites survive in low numbers within small
groups of infected cells. As a result, detection of residual para-
sites by PCR-based methods is problematic (Fig. 3). In the past,
this may have led to an overestimation of the ability of po-
saconazole to cure chronic infections. Posaconazole treatment
has been shown to reverse spleen enlargement, a characteristic
of murine T. cruzi infections. In these experiments, curative out-
come was inferred on the basis of several criteria (27). However,
here we demonstrate that reversal of splenomegaly is not indica-
tive of sterile cure (Fig. 5) but is linked merely with a reduction in
parasite burden.

In more than 50% of cases (9/16), endpoint ex vivo analysis
of acute-stage infections identified visceral fat as the tissue with
the highest parasite burden following relapse (Fig. 7). There are
several reasons why posaconazole could be less effective at
eliminating parasites from this site. Parasite load may be higher
in adipose tissues (24), differential drug accessibility may be an
issue, or parasites could be less susceptible in a lipid/sterol rich
environment. When mice treated during the chronic stage were
examined after relapse, only one mouse of nine displayed a
detectable level of bioluminescence in visceral fat (Fig. 7). At
this stage of an infection, parasites are restricted mainly to the
gastrointestinal tract, and only sporadically detected in the vis-
ceral fat, or other tissues, by bioluminescence. In chronic in-
fections, therefore, this tissue is less likely to be relevant as a
reservoir for parasite survival following drug treatment. Previ-
ous studies have identified parasites localized in adipose tissue
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FIG 7 Ex vivo imaging of cyclophosphamide-induced parasite recrudescence after posaconazole treatment of mice in the acute and chronic stages of
infection. (A) Mice in the acute stage of T. cruzi infection were treated with posaconazole for 20 days and then treated with cyclophosphamide (see legend to
Fig. 6 for details). Images were taken 74 dpi. For comparison, the lower image shows parasite recrudescence after immunosuppression of a nontreated,
chronically infected mouse (imaged at 173 dpi). (B) T. cruzi-infected mice, treated with posaconazole during the chronic stage of infection and then treated with
cyclophosphamide (see the legend to Fig. 1). Images taken at 147 (upper) and 148 (lower) dpi. The schematic identifies the positions of organs. Gut Mes, gut
mesentery tissue; OES, esophagus; SKM, skeletal muscle; STM, stomach; VIS FAT, visceral fat/adipose tissue. The location of the visceral fat tissue is highlighted
by an arrow. Heat maps are on log,, scales and indicate the intensity of bioluminescence from low (blue) to high (red).

in some chronic human infections (31, 32). In untreated mice,
however, bioluminescence imaging did not identify the visceral
fatas a primary site of recrudescence during a chronic infection
(see Fig. 7).

In summary, we have shown that benznidazole is signifi-
cantly more effective at curing both acute and chronic T. cruzi
infections than posaconazole. The utility and flexibility of the in
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vivo imaging procedure we developed has potential for making a
valuable contribution to the Chagas disease drug discovery pipe-
line. It can also, as shown here, add value to the screening process
by providing new information on drug efficacy. Importantly, the
availability of such a sensitive in vivo technique should provide
greater assurance that drugs are not advanced prematurely into
clinical trial.
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