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ABSTRACT

Worldwide G-glycoprotein phylogeny of human respiratory syncytial virus (hRSV) group A sequences revealed diversification in
major clades and genotypes over more than 50 years of recorded history. Multiple genotypes cocirculated during prolonged peri-
ods of time, but recent dominance of the GA2 genotype was noticed in several studies, and it is highlighted here with sequences
from viruses circulating recently in Spain and Panama. Reactivity of group A viruses with monoclonal antibodies (MAbs) that
recognize strain-variable epitopes of the G glycoprotein failed to correlate genotype diversification with antibody reactivity. Ad-
ditionally, no clear correlation was found between changes in strain-variable epitopes and predicted sites of positive selection,
despite both traits being associated with the C-terminal third of the G glycoprotein. Hence, our data do not lend support to the
proposed antibody-driven selection of variants as a major determinant of hRSV evolution. Other alternative mechanisms are
considered to account for the high degree of hRSV G-protein variability.

IMPORTANCE

An unusual characteristic of the G glycoprotein of human respiratory syncytial virus (hRSV) is the accumulation of nonsynony-
mous (N) changes at higher rates than synonymous (S) changes, reaching dN/dS values at certain sites predictive of positive se-
lection. Since these sites cluster preferentially in the C-terminal third of the G protein, like certain epitopes recognized by mu-
rine antibodies, it was proposed that immune (antibody) selection might be driving the apparent positive selection, analogous to
the antigenic drift observed in the influenza virus hemagglutinin (HA). However, careful antigenic and genetic comparison of
the G glycoprotein does not provide evidence of antigenic drift in the G molecule, in agreement with recently published data
which did not indicate antigenic drift in the G protein with human sera. Alternative explanations to the immune-driven selec-
tion hypothesis are offered to account for the high level of G-protein genetic diversity highlighted in this study.

Human respiratory syncytial virus (hRSV) is recognized as the
major cause of severe acute lower respiratory tract infections

(ALRI) in infants and young children worldwide (1). hRSV causes
annual epidemics, and reinfections are common throughout life,
although they are usually less severe than the primary infections.
hRSV is also an important cause of morbidity and mortality in the
elderly and in adults with cardiopulmonary disease or with an
impaired immune system (2).

hRSV is an enveloped, nonsegmented, negative-sense RNA vi-
rus, classified in the genus Pneumovirus within the Paramyxoviri-
dae family (for a recent review, see reference 3). The hRSV genome
encodes 11 proteins, two of them being the major surface glyco-
proteins of the virus envelope. These are (i) the attachment (G)
protein, which mediates binding of the virus to the cell surface (4),
and (ii) the fusion (F) protein, which promotes fusion of the virus
and cell membrane, allowing cell entry of the viral genome (5).

The G protein is a type II glycoprotein synthesized as a 32-kDa
polypeptide precursor of 297 to 310 amino acids (aa), depending
on the strain, and modified posttranslationally by the addition of
several N-linked oligosaccharides and multiple O-linked sugar
chains (6). The G-protein ectodomain (from residue 67 to the C
terminus) has a central conserved region (aa 163 to 189) that
includes four Cys residues (residues 173, 176, 182, and 186), and it
is essentially devoid of potential glycosylation sites. This con-

served region is flanked by two highly variable mucin-like seg-
ments, very rich in Ser and Thr, that are potential sites of O gly-
cosylation. The extensive glycosylation of the G protein shapes its
reactivity with both murine monoclonal antibodies (MAbs) (7)
and human convalescent-phase sera (8).

hRSV isolates were originally classified into two antigenic
groups (A and B) based on reactivity with hyperimmune serum
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and later with G-specific MAbs (9, 10). Antigenic groups A and B
were found to correlate with genetically distinct viral groups.
Studies of hRSV evolution have focused mainly on the G glyco-
protein, since G is the most divergent gene product among hRSV
isolates. Recent full-genome sequence analysis has confirmed that
G is most informative for studies of hRSV evolution (11).

Three types of epitopes recognized by murine MAbs have been
identified in the G molecule: (i) conserved epitopes, which are
present in all virus isolates; (ii) group-specific epitopes, which are
shared by all viruses of the same antigenic group; and (iii) strain-
specific or -variable epitopes, which are shared by a subset of vi-
ruses of the same antigenic group (12). Whereas the conserved
and group-specific epitopes were mapped in the central conserved
region of the G-protein ectodomain, the strain-variable epitopes
clustered mainly in the C-terminal third of the G protein.

One of the main evolutionary hallmarks of hRSV G protein is that
whereas nucleotide changes spread uniformly along the gene, non-
synonymous (N) changes accumulate at higher rates than synony-
mous (S) changes in the two variable regions, reaching dN/dS values
at certain sites predictive of positive selection (12–14). The fact that
these sites cluster preferentially in the C-terminal third of the G-pro-
tein primary structure, like the strain-variable epitopes, was taken as
tentative evidence of immune (antibody)-driven positive selection,
which was proposed as an important determinant of hRSV evolution
(13, 15). This type of immune selection postulated for hRSV G pro-
tein would then be similar to the well-established antigenic drift de-
scribed for the influenza virus hemagglutinin (HA) (16). In this case,
new influenza virus strains are positively selected with changes in
residues of the HA head which are part of epitopes recognized by
neutralizing Abs. The new strains can thus reinfect the same human
population despite the presence of preexisting antibodies against
strains of previous epidemics.

General patterns of virus evolution are better discerned when
viruses are sampled from different places over long time periods.
Hence, we decided to reassess the genetic evolution of the anti-
genic group A of hRSV, since sequence information is most abun-
dant for this group of viruses and since two sets of MAbs isolated
in our laboratory (17, 18) could be used to compare genetic and
antigenic changes in hRSV G protein. The results obtained indi-
cate that group A viruses have diversified during their recorded
history in branches (or clades) of different evolutionary signifi-
cance and temporal dominance. However, epitopes recognized by
strain-variable MAbs remain unchanged for long time periods,
not showing signs of antigenic drift despite extensive sequence
variation of the G glycoprotein.

MATERIALS AND METHODS
Clinical samples and virus isolation. Samples from Hospital Gregorio
Marañón (HGM) (Madrid, Spain) were kindly provided by the HGM
BioBank. Informed consent was obtained from the patients’ parents or
guardians. Samples, diluted in Dulbecco’s modified Eagle’s medium sup-
plemented with 10% fetal calf serum, were used to infect HEp-2 cell
monolayers growing in 24-well plates, as described previously (15). When
cytopathic effect was evident, cells were scrapped off into the medium and
the suspension was stored at �80°C. Samples from Instituto Conmemo-
rativo Gorgas (Panamá, Panama) were collected as part of surveillance
activities for influenza virus and other respiratory viruses, as approved by
the Institute Ethical Committee.

RNA extraction, DNA amplification, and sequencing of the G-pro-
tein gene. Sequencing was done from total RNA automatically extracted
from the frozen clinical specimens using QIAamp MinElute virus spin kit

and the QIAcube (Qiagen), following the manufacturer’s instructions.
The full-length G-protein gene was amplified by SuperScript III one-Step
reverse transcription-PCR (RT-PCR) (Invitrogen) and primers OG1-21
(5=-GGGGCAAATGCAACCATGTCC-3=; nucleotides [nt] 1 to 21 of the
G gene; positive sense) and F164 (5=-GTTATGACACTGGTATACCAAC
C-3=; nt 141 to 164 of the F gene, negative sense). PCR products were
subjected to forward and reverse cycle sequencing with the BigDye Ter-
minator 3.1 kit (Applied Biosystems) and the above-described primers.

Sequence data and BLAST search. The sequences reported here were
aligned with ClustalX 1.81 (19) and manually edited with BioEdit version
7.0.9.1 (20). Other sequences were retrieved from GenBank. Since many
sequences were not full length, a total of 2,167 sequences which spanned
nt 312 to the end of the G-protein gene (i.e., most of the protein ectodo-
main) were selected and included in the study. These sequences were
aligned with the online version of MAFFT v7 software (21). Duplicate
sequences were identified with the ElimDupes tool (http://hcv.lanl.gov
/content/sequence/ELIMDUPES/elimdupes.html) (22) and deleted. The
remaining 1,485 unique sequences used in this study and the correspond-
ing GenBank accession numbers are listed in Table S1 in the supplemental
material.

Phylogenetic analysis by Bayesian MCMC and maximum-likeli-
hood methods. Phylogenetic analysis by the Markov chain Monte Carlo
(MCMC) method was performed with the BEAST v1.7.4 package (http:
//beast.bio.ed.ac.uk) (23, 24), using the GTR � invariant � Gamma
model selected as the best-fitting nucleotide substitution model for hRSV
G-protein sequences by using hierarchical likelihood ratio testing, imple-
mented in the ModelTest software version 3.06 (25) The data set was
analyzed using the Bayesian skyline model, assuming a relaxed (uncorre-
lated log normal) molecular clock. MCMC chains were run to achieve
convergence, which was confirmed with Tracer v1.6.0 (http://beast.bio.ed
.ac.uk/Tracer). Statistical uncertainty in parameter estimates is given by
the 95% highest-probability density (HPD) values. The data obtained in
the MCMC analysis were also used to infer a maximum clade credibility
(MCC) tree with Tree-Annotator v1.4.7 and FigTree v1.4.2 (http://tree
.bio.ed.ac.uk/software/figtree/). MEGA software version 6 was used for
the maximum-likelihood phylogenetic analysis (26).

Fluorescent labeling of infected cells with MAbs. HEp-2 cells grow-
ing in 96-well microtiter plates were infected at a multiplicity of infection
(MOI) of � 0.5 PFU/cell with viruses representative of the hRSV A geno-
types. Twenty-four hours later, cells were washed with phosphate-buff-
ered saline (PBS) containing 0.05% Tween 20, fixed with 80% acetone,
and incubated with anti-G MAbs, followed by fluorescein-linked anti-
body (GE Healthcare). Cell-associated fluorescence was measured with a
Tecan Infinite 200 Pro (Tecan Group Ltd.). In addition, cells were exam-
ined with a UV-illuminated Nikon Eclipse TS100 microscope.

Nucleotide sequence accession numbers. The sequences reported
here were deposited in the GenBank database under accession numbers
KF300969 and KF300971 to KF301019 for sequences from Panama and
KP792352 to KP792376 for sequences from Madrid.

RESULTS
Evolution and dominance of group A genotypes over time.
Group A viruses were classified by Peret et al. into five genotypes
(27), to which nine new genotypes have been added over time by
different authors without uniform criteria. It was thus considered
necessary to reevaluate the current classification of group A geno-
types. Hence, 1,485 unique sequences (from nucleotide 312 to the
end) of the G gene were withdrawn from GenBank, together with
genotype information, when available. The aligned sequences
were used to assemble the maximum clade credibility (MCC) tree
shown in Fig. 1A. Eleven of the 14 different genotypes previously
described (GA1, GA2, GA3, GA4, GA5, GA6, GA7, NA1, NA2,
NA4, and ON1) were identified in the tree. The NA3, SAA1, and
SAA2 genotypes were not included, since only partial C-terminal
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sequences are available in the databases. The genetic P distances
between individual genotypes, as well as within each genotype,
were calculated (Table 1). The highest intragenotypic P distance
(0.049) was found in the GA1 genotype which includes some of
the oldest hRSV strains (Long and A2). This P value was thus taken
as the minimal threshold for sorting viruses into different geno-
types. Using this criterion, the NA1, NA2, NA4, and ON1 geno-
types were reclassified into the GA2 genotype, leaving only seven
well-recognized genotypes (GA1 to GA7) within group A of hRSV
(Table 2).

The most recent common ancestor (MRCA) of all group A
sequences dated back to the 1940s, when a major split into two
branches occurred (Fig. 1A). One of the branches included viruses
of the GA1 genotype. The other branch split in the early 1970s into
two new branches. One of them gave rise to the GA4 and GA5
genotypes. Whereas only few GA4 viruses circulated for a short
time period, the GA5 genotype has dominated that branch and has
survived until today. The other new branch diversified with time
in the group A genotypes, GA2, GA3, GA6, and GA7. It is worth
emphasizing that the major branching events seen in Fig. 1A oc-
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GA4
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GA7GA3
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GA1

GA2
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FIG 1 Phylogeny of hRSV group A viruses and genotype temporal dominance. (A) Maximum clade credibility (MCC) tree from Bayesian analysis of 1,485
unique nucleotide sequences of the G-protein gene ectodomain of hRSV group A retrieved from GenBank. Clades are colored according the genotype classifi-
cation shown in Table 1. (B) Frequencies of the different genotypes in 5-year periods from 1956 to 2013. The number of sequences (n) included in each period
is indicated below the charts.
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curred only occasionally, while diversification into genotypes oc-
curred more frequently.

It is also evident from Fig. 1A that cocirculation of genotypes
occurred throughout most of the known history of group A vi-
ruses, except on two occasions. One was before mid-1970s, and
the other is today. This is best visualized in Fig. 1B, where the
numbers of recorded sequences from different genotypes are
grouped and color coded in 5-year intervals. GA1 prevailed before
1980, although the low number of samples from this time period
prevents a definitive conclusion about genotype dominance. Dur-
ing the 1980s and 1990s, viruses from almost all genotypes were
circulating, with fluctuating dominance. This situation was high-
lighted in numerous publications from those dates (see, for in-
stance references 27 and 28); however, after 2000 and particularly
after 2005, the proportion of viruses belonging to the GA2 geno-
type steadily increased, to become almost exclusive after 2010.
Since the data in Fig. 1B have been extracted from multiple studies
using different set of primers and slightly different methods (see
Table S1 in the supplemental material), it is unlikely that sampling
or geographical bias may account for the observed shift in GA2
dominance. However, very low-level circulation of viruses be-
longing to other genotypes cannot be excluded, as recently exem-
plified for group B viruses (29).

Current situation. Recent publications have drawn attention
to the shift from “multiple genotype circulation to prolonged cir-
culation of predominant genotypes,” as seen in Belgium between

1996 and 2011 (30). In addition, a novel GA2 variant with a 72-nt
duplication, named ON1 and first detected in Ontario (Canada)
in December 2010 (31), has spread rapidly worldwide (32–34),
exacerbating the current dominance of the GA2 genotype.

Access to very recent hRSV samples from Madrid (Spain) and
Panama allowed us to assess the present genotype dominance in
these two places, which are geographically distant and with differ-
ent climates. Ectodomain G sequences of 49 samples from Pan-
ama and 25 samples from Madrid were determined and used to
build the phylogenetic tree shown in Fig. 2 with representatives of
the main group A genotypes. The Madrid samples were from the
epidemics in 2007 to 2008, 2012 to 2013, and 2013 to 2014. The
Panama sequences were from 2010, 2011, and 2012. Among
the Madrid samples, the GA5 genotype represented a minority of
sequences from 2007 to 2008; in contrast, most samples from this
epidemic together with all sequences from the last two epidemics
were clustered in the GA2 genotype. Madrid viruses from the last
two epidemics contained the 72-nt duplication characteristic of
the ON1 variant. Sequences from Panama were all clustered
within GA2, most of them within ON1. Clearly, sequences from
both places were interlocked in the tree, strengthening the idea of
temporal rather than local clustering of hRSV strains and the pres-
ent dominance of the GA2 genotype.

Reactivity with strain-specific anti-G monoclonal antibod-
ies. Some of the strain-variable MAbs isolated in our laboratory
have been used previously to assess the antigenic relatedness of

TABLE 1 Genetic distances between and within the genotypes described in the literature for 2,167 hRSV group A sequences of the G-protein
ectodomain

Genotype

Genetic distance (P value)a

GA1 NA1 NA2 NA4 ON1 GA2 GA3 GA4 GA5 GA6 GA7

GA1 0.049
NA1 0.165 0.018
NA2 0.169 0.025 0.016
NA4 0.148 0.057 0.064 0.029
ON1 0.178 0.033 0.022 0.068 0.012
GA2 0.158 0.035 0.041 0.048 0.045 0.037
GA3 0.148 0.064 0.070 0.042 0.077 0.057 0.022
GA4 0.143 0.097 0.103 0.076 0.111 0.091 0.067 0.044
GA5 0.169 0.109 0.116 0.094 0.124 0.106 0.087 0.088 0.033
GA6 0.140 0.084 0.090 0.064 0.096 0.076 0.059 0.071 0.090 0.025
GA7 0.149 0.080 0.086 0.059 0.093 0.073 0.051 0.075 0.094 0.069 0.029
a Pairwise distances were calculated between individual genotypes, as well as within each genotype, using MEGA software version 6. BioEdit version 7.0.9.1 was used for amino acid
analysis (20). Boldface indicates P values between genotypes GA2 and NA1, NA2, NA4, and ON1 that are below the intragenotypic distance for GA1, which was taken as the
minimal threshold for clustering sequences in different genotypes. Therefore, the NA1, NA2, NA4, and ON1 genotypes were regrouped within the GA2 genotype in Table 2.

TABLE 2 Genetic distances (P values) within and between the genotypes in which group A sequences of the G-protein ectodomain of hRSV were
reclassified in this study

Genotype

Genetic distance (P value)a

GA1 GA2 GA3 GA4 GA5 GA6 GA7

GA1 0.049
GA2 0.166 0.031
GA3 0.148 0.065 0.022
GA4 0.143 0.098 0.067 0.044
GA5 0.169 0.111 0.087 0.088 0.033
GA6 0.140 0.084 0.059 0.071 0.090 0.025
GA7 0.149 0.081 0.051 0.075 0.094 0.069 0.029
a Pairwise distances were calculated as for Table 1. Note that values for GA2 slightly differ from those in Table 1 as result of genotype reclassification.
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FIG 2 Phylogenetic tree of hRSV group A sequences from recent epidemics in Madrid and Panama. The maximum-likelihood phylogenetic tree was
constructed on the basis of nucleotide sequences of the G-protein ectodomain obtained from Madrid (diamonds) and Panama (circles) samples. Virus
nomenclature follows the general consensus, with the last two digits referring to year of isolation. The bar represents 0.02 nucleotide substitution per site,
and the tree is unrooted. Numbers at the internal nodes represent the bootstrap probabilities (1,000 replicates). Only bootstrap values of �70 are shown.
The number of sequences identical to those shown in the figure is indicated in parentheses at right of the sample name. Asterisks denote viruses included
in the analysis shown in Fig. 3 and 4.
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hRSV strains collected through relatively short time periods (15,
35, 36). Hence, a set of hRSV group A viruses, covering the entire
recorded history of this antigenic group and representing all ge-
notypes shown in Table 2 except GA4 and GA6 (for which viruses
were not available), was used to reevaluate reactivity with the
strain-variable MAbs.

The results shown in Fig. 3 show two apparent antigenic sub-
groups according to reactivity with the MAb panel. One subgroup
included the viruses representative of the GA1 genotype, which
reacted efficiently with MAbs 25G, 78G, and 68G raised against
the Long strain but lacked reactivity with the strain-variable MAbs
raised against the Mon/3/88 virus. The exception was MAb 63G,
which, as originally reported, showed cross-reactivity with an ex-
tended set of viruses (but not all) without any obvious trend (17).
The other subgroup included viruses from genotype GA2, includ-
ing its ON1 variant and genotypes GA3, GA7, and GA5. All these
viruses lacked reactivity with the MAbs raised against the Long
strain (except the noted 63G) but reacted with most MAbs raised
against Mon/3/88, with some exceptions discussed below. The
results shown in Fig. 3 were in good agreement with the fluores-
cence patterns of infected cells stained with the MAbs (Fig. 4).

It is worth stressing that the patterns of MAb reactivity shown
in Fig. 3 and 4 did not show a clear association with viral geno-
types, except as noted with GA1. For instance, MAb 021/16G did
not react with Mon/4/90 but reacted efficiently with Mad/4/90
from the same genotype (GA3). Exactly the opposite was true for
MAb 021/7G with the same two viruses. Antibody reactivity also
could not be associated with time of virus isolation. Remarkably,

the epitopes of MAbs 25G, 78G, and 68G raised against the Long
strain of 1956 were preserved in viruses isolated almost 40 years
later in Montevideo (Fig. 3 and 4). Similarly, the epitopes recog-
nized by MAbs raised against Mon/3/88 were preserved in most
viruses isolated 24 years later in Madrid and that contained the
ON1 72-nt duplication.

Figure 5A shows the alignment of sequences of the G-protein
C-terminal third from viruses included in the antigenic analysis
shown in Fig. 3. Residues that were changed in previously de-
scribed mutants that are resistant to certain MAbs (15, 18) are
indicated. When the sequence changes shown in Fig. 5A are com-
pared with the MAb reactivities shown in Fig. 3, three main con-
clusions can be reached.

(i) Loss of reactivity with some MAbs coincided with certain
sequence changes. For instance, MAb 63G did not react with vi-
ruses Mon/9/91, Mad/GM2_14/12, and Mon/4/90, which have
the changes P206Q, K205E, and F208P, respectively, within the
stretch of amino acids where epitope 63G has been mapped (37).
Note, however, that the changes F208I/L in the same region did
not alter reactivity with MAb 63G. Similarly, the total or partial
loss of reactivity of MAbs 021/16G and 021/9G with Mon/4/90
coincided with the R244S change.

(ii) In other cases, however, residues that changed in escape
mutants were totally conserved in natural isolates. For instance,
residue 234, which changed in certain mutants resistant to MAb
68G, was unaltered in natural viruses. Similarly, residues 237 and
239, which changed in mutants selected with MAb 021/8G, or
residue 284, which changed in mutants resistant to MAb 78G,
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MAD/4/90 89 0 0 0 92 100 87 98 1 111 100

MON/4/90 15 3 1 1 74 85 42 78 72 3 100

MAD/3/92 75 0 1 1 90 88 94 92 0 84 100

MON/1/90 77 0 0 0 90 90 48 90 66 92 100

MAD/1/93 70 0 0 0 81 79 45 80 24 84 100
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FIG 3 Reactivity of group A viruses with MAbs. Sequences of the viral strains used in this experiment were used to build the phylogenetic tree shown on the left,
as for Fig. 2. Each virus was used to infect HEp-2 cell cultures, which were stained at 24 h after infection with the indicated MAbs and anti-mouse fluorescein-
linked antibody (GE Healthcare). Two panels of strain-variable MAbs were used: one panel included MAbs 63G, 25G, 78G, and 68G, obtained from mice
inoculated with the Long strain of hRSV (17), and the other included MAbs 021/12G, 021/10G, 021/9G, 021/8G, 021/7G, and 021/16G, obtained from mice
inoculated with Mon/3/88 virus (18). MAb 021/1G, which recognizes a conserved epitope of hRSV G protein, was included as control. Numbers shown within
the boxes are the fluorescence values after normalization, so that fluorescence of Long with each Long-specific MAb was normalized to 100% and similarly for
the Mon/3/88 virus with the MAbs specific for this virus. Squares with fluorescence values of �50% have a black background, those with values between 25% and
50% have a gray background, and those with values of �25% have a white background. The results are representative of five independent determinations.
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were conserved in all sequences shown in Fig. 5A, irrespective of
their MAb reactivity pattern.

(iii) The MAbs used for Fig. 3 have been reported to react in
Western blotting with the G proteins of viruses used in their se-
lection (7, 38). Each epitope should thus encompass several con-
tiguous amino acids of the G-protein primary structure. It was
therefore surprising to find the relatively high level of epitope
conservation shown in Fig. 3 notwithstanding the extensive se-
quence variation of the G protein in that region (Fig. 5A). Once
more, although sporadic changes were observed in individual vi-
ruses, no clear accumulation of antigenic changes with time or
genetic distance was discernible.

DISCUSSION

Two enthralling findings stand out from this study: (i) the diver-
sification of group A viruses in major branches after relatively long
periods of time followed by periodic dominance of certain geno-
types and (ii) the level of epitope conservation in the G glycopro-
tein despite the high level of sequence variation.

It is clear from Fig. 1 that diversification in major branches
differs from genotype divergence not only in the magnitude of the

genetic distances involved but additionally in the frequency of
their respective splitting events. Hence, it is plausible that the two
types of diversification have different causes, hitherto unknown.
Genotype GA1, which originated from the main branching event
shown in Fig. 1 is now apparently extinct. It may be that GA1
viruses exhausted the repertoire of functional amino acids that
could be changed in the G glycoprotein. It is also obvious from Fig.
1B that genotype dominance has alternated in different time pe-
riods. While several genotypes cocirculated most of the time with
alternating dominance, the GA2 genotype has become almost ex-
clusive since 2005, as reported in several studies (30, 33) and ob-
served with recent viruses from Madrid and Panama (Fig. 2). Al-
though studied in less detail, similar shifts in genotype dominance
have been reported for group B viruses (39).

What, then, are the selective forces driving branching, geno-
type divergence, temporal dominance, and intragenotypic evolu-
tion of hRSV? By analogy with other viruses, such as influenza A
virus, antibody-driven positive selection has been proposed as a
major determinant of hRSV evolution (13) to enable reinfections
of the same population, an epidemiological hallmark of hRSV
(40). Positive selection is supported by the high rate of dN/dS
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substitutions and by predictions of positively selected changes at
certain sites of the G glycoprotein. Figure 5B shows sites of positive
selection in the C-terminal third of the G glycoprotein predicted
in different studies. The accumulation of those sites (but not all) in
the same region of the G protein where strain-variable epitopes are
clustered has been a major argument for the antibody-driven pos-
itive selection hypothesis of hRSV evolution.

Often, however, changes in sites of positive selection do not
correlate with changes in MAb reactivity. For instance, one of the
most recurrently predicted sites of positive selection is residue
237, where MAb 021/8G selected an escape mutant with the
change N237Y (18). Paradoxically, however, amino acid 237 is
conserved in all sequences shown in Fig. 5A, including those of
viruses of the GA1 genotype which are not recognized by MAb
021/8G. In other sites of positive selection, such as residue 274,
changes found in certain viruses (L to P, I, or T) do not correlate
with the MAb reactivity shown in Fig. 3. Hence, no definitive
association between altered antibody reactivity and sites of pre-
dicted positively selected changes could be shown.

Additionally, when Fig. 3 and 5 are globally examined, no ob-
vious correspondence between genotype genetic relatedness and
MAb reactivity pattern is observed. These results are generally in
agreement with previous reports that detected sporadic antigenic
changes in viruses circulating in Argentina and Chile (35, 41) or in
Germany (36) with the MAbs used in this study but without any
distinctive trend.

It may be argued that murine MAbs may not represent the
repertoire of human antibodies raised after hRSV infection. With-
out excluding this possibility, it is worth mentioning that linear
epitopes recognized by antibodies present in human sera have
been detected in peptides (42) or protein segments from the G
glycoprotein C-terminal third (8).

It should be also stressed that most murine MAbs raised against
the G glycoprotein are weak neutralizers (17, 43). Furthermore,

most of the neutralizing activity found in human immunoglobu-
lins is directed against highly conserved epitopes of the F glyco-
protein (44, 45). In other words, the immune pressure afforded by
anti-G antibodies is expected to be only marginal, if any. Hence, it
may be that hRSV reinfections are determined by short-lived (or
weak) antibody responses rather than selection of antigenic vari-
ants. Indeed, recent studies have provided evidence that reinfec-
tions in children are caused almost as frequently by heterologous
viruses as by viruses of the homologous antigenic group (46, 47).
In addition, although partial group-specific neutralizing re-
sponses were noted in very young children after hRSV infections,
neutralization was reported to be equally effective against contem-
porary or historical viruses, suggesting no significant antigenic
drift (48). Indeed, similar results have been obtained in our labo-
ratory with a limited set of infant sera, in which neither neutraliz-
ing nor G-protein binding antibodies were strain dependent
within the same antigenic group as the infecting virus (A. Trento
et al., unpublished data).

In summary, this study highlights a complex pattern of group
A hRSV diversification, with major branching and temporal ge-
notype dominance over time that could not be directly related to
antigenic changes. Although some weak antibody selection cannot
be excluded, our results do not support the idea that the high level
of sequence variation in the G glycoprotein is the result of an
antigenic drift similar to that of influenza A virus HA (16). It is
thus likely that other factors contribute to the accumulation of
sequence changes in hRSV G protein. The high plasticity of this
protein to incorporate drastic sequence changes without apparent
alterations in virus fitness should be stressed (12). Is it possible,
then, that the seemingly positive selection of changes in RSV G
protein is the result of a high mutation rate (as generally in RNA
viruses) together with selective constrains other than immune se-
lection? For instance, is it possible that bottleneck effects occur-
ring during virus transmission together with a very malleable mol-

FIG 5 Sequence alignment of the C-terminal thirds of G-protein sequences. (A) Alignment of partial (C-terminal) G-protein sequences of the viruses used for
Fig. 3. Numbering is shown above the Long sequence, which is used as a reference for the next two viruses. The entire sequence of Mon/3/88 is also shown as a
reference for the rest of viruses. Only the amino acid changes are indicated. A lack of change is denoted by a dot. Asterisks indicate stop codons. Note the 72-nt
duplicated sequence in four viruses, which forces the gaps denoted by hyphens in the other sequences. Residues that showed changes in mutants selected with the
indicated MAbs are indicated by arrows at the top. (B) Sites of positive selection predicted in the indicated studies (11, 13, 30, 31, 33, 49–53) are denoted by small
circles below the corresponding amino acid.
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ecule may result in an apparent positive selection in hRSV G
protein? It may be that hRSV has found an “entropically” favor-
able solution for the G protein so that its unusual amino acid
sequence and its added malleability maintain functionality to-
gether with an apparent positive selection. Further studies with
well-selected hRSV strains should help to discern among this pos-
sibility and others lying behind the intriguing paradoxes of hRSV
evolution.
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