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ABSTRACT

Plasmacytoid dendritic cells (pDCs) are the major source of type I IFN (IFN-I) in response to human immunodeficiency virus type 1
(HIV-1) infection. pDCs are rapidly activated during HIV-1 infection and are implicated in reducing the early viral load, as well as con-
tributing to HIV-1-induced pathogenesis. However, most cell-free HIV-1 isolates are inefficient in activating human pDCs, and the
mechanisms of HIV-1 recognition by pDCs and pDC activation are not clearly defined. In this study, we report that two genetically
similar HIV-1 variants (R3A and R3B) isolated from a rapid progressor differentially activated pDCs to produce alpha interferon (IFN-
�). The highly pathogenic R3A efficiently activated pDCs to induce robust IFN-� production, while the less pathogenic R3B did not.
The viral determinant for efficient pDC activation was mapped to the V1V2 region of R3A Env, which also correlated with enhanced
CD4 binding activity. Furthermore, we showed that the Nef protein was also required for the activation of pDCs by R3A. Analysis of a
panel of R3A Nef functional mutants demonstrated that Nef domains involved in CD4 downregulation were necessary for R3A to acti-
vate pDCs. Our data indicate that R3A-induced pDC activation depends on (i) the high affinity of R3A Env for binding the CD4 recep-
tor and (ii) Nef activity, which is involved in CD4 downregulation. Our findings provide new insights into the mechanism by which
HIV-1 induces IFN-� in pDCs, which contributes to pathogenesis.

IMPORTANCE

Plasmacytoid dendritic cells (pDCs) are the major type I interferon (IFN-I)-producing cells, and IFN-I actually contributes to
pathogenesis during chronic viral infections. How HIV-1 activates pDCs and the roles of pDCs/IFN-I in HIV-1 pathogenesis re-
main unclear. We report here that the highly pathogenic HIV R3A efficiently activated pDCs to induce IFN-� production, while
most HIV-1 isolates are inefficient in activating pDCs. We have discovered that R3A-induced pDC activation depends on (i) the
high affinity of R3A Env for binding the CD4 receptor and (ii) Nef activity, which is involved in CD4 downregulation. Our find-
ings thus provide new insights into the mechanism by which HIV-1 induces IFN-� in pDCs and contributes to HIV-1 pathogen-
esis. These novel findings will be of great interest to those working on the roles of IFN and pDCs in HIV-1 pathogenesis in gen-
eral and on the interaction of HIV-1 with pDCs in particular.

HIV-1 infection is characterized by both chronic immune
activation and severe CD4 T cell loss, eventually progress-

ing to AIDS. After more than 30 years of research, it is still
unclear how HIV-1 infection leads to persistent immune acti-
vation and CD4 T cell depletion (1). Presumably, aberrant im-
mune activation is a result of multiple factors that can contrib-
ute to the exhaustion and death of CD4 T cells in HIV-infected
individuals. The mechanisms that are proposed to explain
HIV-1-related chronic immune activation include disruption
of intestinal integrity and microbial translocation (2); caspase-
1-mediated pyroptosis triggered by abortive viral infection (3,
4); and aberrant activation of cytotoxic T cells and the presence
of high levels of proinflammatory cytokines and chemokines,
particularly type I interferon (IFN-I) (5).

The role of IFN-I in HIV-1-induced immune activation is
complex and is not entirely understood (1). HIV-1 infection rap-
idly induces high levels of IFN-I, which may exert a selective pres-
sure on HIV-1, resulting in establishment of the systemic infection
with relatively fit and IFN-resistant virus (6). On the other hand,
IFN-I controls the early stage of virus replication (7–11) and was
shown to be beneficial in antiviral therapy (12, 13). However,
prolonged IFN-I exposure has a detrimental effect (14).

Plasmacytoid dendritic cells (pDCs) are the major source of

IFN-I (15) and therefore play a critical role in the response to
HIV-1 (16). pDCs are rapidly activated by HIV-1 infection, re-
cruited to mucosal sites of HIV-1 infection (17), and implicated in
both early reduction of the viral load and HIV-1-induced patho-
genesis (18). It is accepted that HIV-1 virions enter pDCs mainly
through receptor-mediated endocytosis for endosomal degrada-
tion (19, 20). The viral RNA is likely detected by Toll-like receptor
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7 (TLR7) to activate the MyD88-IRF7 signaling pathway, resulting
in persistent production of alpha interferon (IFN-�) (19, 21).
HIV-1 detection by pDCs results in low NF-�B-dependent pro-
duction of tumor necrosis factor alpha (TNF-�) and minimal up-
regulation of costimulatory molecules, suggesting that HIV-1–
pDC interaction promotes pDCs to become IFN-�-producing
cells (IPC) rather than antigen-presenting cells (APC) (22, 23).
Interestingly, cell-free virions of most HIV-1 isolates are relatively
weak stimulants of pDCs, and initiation of IFN-� production re-
quires a high concentration of HIV-1 particles compared to those
of other viruses (19, 21, 24). HIV-1-infected CD4� lymphocytes
were shown to be more efficient at stimulating pDCs than cell-free
virions, but the mechanism of that recognition and pDC activa-
tion is not clearly defined (25). It is proposed that the contact
between infected cells and pDCs promotes a massive transfer of
viral material into the pDCs and activation of a cellular sensor via
a TLR7-independent mechanism (26).

R3A and R3B are HIV-1 variants isolated from a rapid progres-
sor with early loss of T cell homeostasis and fast progression to
AIDS. R3A and R3B were obtained by coculture of patient periph-
eral blood mononuclear cells (PBMCs) isolated at the time of
seroconversion with phytohemagglutinin P (PHA)-stimulated
PBMCs (27). Both R3A and R3B are syncytium-inducing (SI),
dual-tropic variants using both CXCR4 and CCR5 as coreceptors
and are capable of replication in macrophages and T cells (27, 28).
Though both strains carry highly similar sequences and originate
from the same donor, R3A and R3B showed distinct pathogenic
activities. R3A (but not R3B) was capable of rapid replication and
efficient CD4 T cell depletion within a human fetal thymic organ
culture (H-FTOC) model. The phenotype of R3A was mapped to
its unique envelope, which allowed efficient entry of R3A and
presumably mediation of enhanced cell-to-cell spread of the virus
(28). Furthermore, mechanistic studies of R3A Env-mediated
pathogenesis have proved that R3A Env has higher affinity for
CD4 and CXCR4 than R3B Env and enables enhanced virus-cell
binding and fusion. Enhanced CD4 binding, entry, and in vitro
cytopathicity of R3A were mapped to V1V2 of the Env protein.
Enhanced CXCR4 binding affinity and fusion activity were
mapped to the V5-gp41 domains (29, 30). Subsequently, R3A, but
not R3B, was able to induce high levels of IFN-I in human thymus,
which contributed to the greater depletion of human T cells (31).

Here, we hypothesize that R3A may be more effective than R3B
in induction of IFN-I from pDCs, contributing to its highly patho-
genic phenotype. In this study, we investigated the effects of the
R3A and R3B isolates on activation of pDC and IFN-I production.
Using these two HIV-1 isolates, we aimed to determine the critical
elements of HIV-1 particle and viral activities required for robust
IFN-� induction. Our results indicate that Env and Nef coopera-
tively contribute to HIV-1-induced pDC activation. Moreover,
Nef-dependent IFN-� induction is correlated with Nef down-
regulation of CD4.

MATERIALS AND METHODS
Cells. HEK293T cells (ATCC) were grown in Dulbecco’s modified Eagle’s
medium (DMEM) (Sigma) supplemented with 10% fetal calf serum, 100
U penicillin, 100 U streptomycin, and 1 �M L-glutamine. Magi-CXCR4
(MagiX4) cells (NIH AIDS Research and Reference Reagent Program)
were maintained in the same medium plus selection antibiotics (32). Total
PBMCs were isolated from peripheral blood of healthy donors with Ficoll-
Paque Plus (GE Healthcare) density gradient centrifugation and main-

tained in RPMI 1640 (Gibco) supplemented with 10% fetal calf serum,
100 U penicillin, 100 U streptomycin, and 1 �M L-glutamine. For activa-
tion, PBMCs were grown in complete RPMI 1640 with 25 U/ml recombi-
nant interleukin-2 (IL-2) and 2.5 �g/ml PHA for 16 to 24 h and then
cultured in 25 U/ml IL-2.

Purification of pDCs. PBMCs were isolated as described above, and
pDCs were positively selected from the PBMCs using BDCA-4 (CD304)
magnetic beads (Miltenyi Biotec) according to the manufacturer’s proto-
col. The purity of the pDCs was 92.5% as assessed by fluorescence-acti-
vated cell sorter (FACS) staining (CD303� and CD123�). The purified
pDCs were maintained in complete RPMI 1640 additionally supple-
mented with nonessential amino acids and 1 mM sodium pyruvate.

Viruses. Isolation of Env from primary isolates and cloning of NL4-
R3A (R3A) and NL4-R3B (R3B) proviral plasmids, as well as their Nef-
mutated versions, have been previously described (28, 30). Virus stocks
were generated by transfection of the proviral plasmids into HEK293T
cells by the standard calcium chloride method. Three days after transfec-
tion, the culture supernatants were harvested, precleared by centrifuga-
tion, and filtered through a 0.22-�m filter (Millipore). The virus quanti-
fication was performed by measurement of the p24 antigen concentration
in the virus stocks by p24 enzyme-linked immunosorbent assay (ELISA).
For all viruses, equal amounts of p24 of HEK293T-derived virus stocks
were used to infect PHA-activated PBMCs. The PHA-PMBC virus stocks
were harvested at days 3, 6, and 9, and their p24 concentrations were
determined by p24 ELISA.

Generation of recombinant viruses with specific Nef mutations. The
R3A genome was digested with EcoRI to obtain two principal fragments:
5= and 3=. The 5= fragment containing the 5= long terminal repeat (LTR),
gag, pol, vif, and the 5= part of vpr was subcloned into the p83-2 plasmid
(NIH AIDS Research and Reference Reagent Program) (30). The 3= frag-
ment containing the 3= part of vpr, tat, rev, vpu, env, nef, and the 3= LTR
was subcloned into the p83 plasmid (with EcoRI and XhoI) (NIH AIDS
Research and Reference Reagent Program) (30). Ala substitutions in the
nef coding sequence were created by one-step site-directed mutagenesis
according to a previously published protocol (33). Briefly, primers with
specific mutations were designed using PrimerX software (http://www
.bioinformatics.org/primerx). Each mutation was introduced into the nef
gene on the p83 plasmid by PCR with specific primers, followed by DpnI
digestion for 2 h at 37°C. The PCR digestion mixture was used for trans-
formation of One Shot Max Efficiency DH5�-T1 competent cells (Invit-
rogen). The DNA isolated from three or four colonies was verified by
DNA sequencing to confirm the introduction of the mutations and to
check that the mutagenesis procedure did not introduce errors. The 5= and
3= R3A genome fragments were cut off by EcoRI-BglI digestion of the
p83-2 vector and EcoRI-DrdI digestion of the p83 vector. To construct the
recombinant viruses, the R3A 5= EcoRI-BglI genome fragment was reli-
gated with the R3A 3= EcoRI-DrdI genome fragment. The ligation was
purified (QIAquick PCR purification kit; Qiagen) and used to transfect
HEK293T cells with Lipofectamine 2000 reagent (Invitrogen). The trans-
fected cultures were harvested after 3 days and used to generate the viruses
on PHA-activated PBMCs.

PBMC and pDC activation assays. One million PBMCs or pDC-de-
pleted PBMCs were plated in a 96-well round-bottom plate and stimu-
lated with 10 ng (50 ng/ml) of p24 or were left unstimulated (mock) in a
total volume of 200 �l. Purified pDCs (50,000 or 500,000, i.e., 10 and 100
times more, respectively, than the number of pDC equivalents found in 1
million PBMCs) were stimulated as described above. When appropriate,
the stimulation assay was performed in the presence and absence of solu-
ble CD4 (sCD4) (10 �g/ml); gp120 neutralizing antibodies (nAb) (5 �g/
ml); or the fusion inhibitors T20 (2 �g/ml), nevirapine (reverse transcrip-
tase [RT] inhibitor [RT inh]) (5 �M; NIH AIDS Research and Reference
Reagent Program), chloroquine (5 �M; Sigma), and bafilomycin A1 (100
nM; Invivogen). Eighteen or 96 h poststimulation (p.s.), the culture su-
pernatants were analyzed for IFN-� by ELISA.
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ELISAs. ELISA kits for IFN-� (Mabtech; 3425-1H-20) were used ac-
cording to the manufacturer’s instructions. The samples were 2-fold di-
luted in incubation buffer and incubated for 2 h at room temperature.
ELISA kits for p24 (Leidos, Biomedical Research Inc.) were used accord-
ing to the manufacturer’s instructions. The samples were serially diluted
in incubation buffer and incubated for 2 h at room temperature. The limit
of ELISA detection was 10 to 12.5 pg/ml.

Infectivity. Infectious titers were determined on MagiX4 cells as pre-
viously described (32).

Statistics. Statistical analysis was performed using Graphpad Prism
software. Values are shown as averages with standard deviations (SD).
Each condition was performed in triplicate. One-way analysis of variance
(ANOVA), followed by Bonferroni’s multiple-comparison test, was used.

Ethics statement. All experiments requiring human blood were con-
ducted following NIH and The University of North Carolina at Chapel
Hill guidelines in accordance with protocols approved by the institution’s
Institutional Animal Care and Use Committee (IACUC ID, 11-103.0).
Human blood was obtained from Gulf Coast Regional Blood Center,
Houston, Texas.

RESULTS
A highly pathogenic HIV-1 isolate, R3A, induces robust IFN-�
production in a Nef-dependent fashion. We have reported that
the pathogenic HIV-1 R3A can efficiently induce IFN-I, which
contributes to its pathogenic activity (31). The goal of this study
was to determine if the pathogenic R3A and the significantly less
pathogenic R3B (28–31) were equally or differentially effective in
stimulating pDCs to produce IFN-�. Importantly, we also asked
whether the Nef protein, a critical contributor to HIV-1 pathoge-
nicity, plays a role in activation of pDCs. The R3A and R3B viruses
and the Nef frameshift mutants R3A-�nef and R3B-�nef were
generated from PHA-activated PBMCs and were used to stimulate
either PBMCs from healthy donors, pDC-depleted PBMCs, or
purified pDCs (see Fig. S2 in the supplemental material). Interest-
ingly, only R3A was able to efficiently activate PBMCs to produce
IFN-� (Fig. 1). In contrast, IFN-� production after R3A-�nef
stimulation was greatly reduced, and both R3B and R3B-�nef mu-
tants failed to induce IFN-� expression in PBMCs. To prove that
pDCs are critical for IFN induction, we depleted pDCs, which
almost completely blocked the induction of IFN-� from PBMCs
by R3A. As with the results obtained with total PBMCs, only R3A
virus was able to efficiently activate pDCs (Fig. 1). All viruses,

including R3A, were not able to activate pDC-depleted PBMCs up
to 96 h after stimulation, in sharp contrast to the high IFN-�
induction in total PBMCs after R3A stimulation (see Fig. S1A and
S2 in the supplemental material). To check whether efficient
IFN-� induction by R3A was caused by higher replication of the
virus than of other viruses, we monitored the replication kinetics
of all tested viruses in PHA-activated PBMCs over 9 days (see Fig.
S1B in the supplemental material). None of the viruses showed
significant differences in replication. Overall, these results indicate
that only the highly pathogenic R3A was able to activate pDCs.

CD4 binding, membrane fusion, and endocytosis are re-
quired for R3A-mediated pDC activation. It has been proposed
that HIV-1 enters and activates pDCs through CD4-mediated en-
docytosis (19, 20, 34, 35). To better understand how R3A activates
pDCs, we performed a stimulation assay in the absence or pres-
ence of classical inhibitors of HIV-1 binding, entry, replication,
and cellular endocytosis. Total PBMCs were stimulated with R3A
in the absence or presence of CD4 binding inhibitors (sCD4 and
gp120 nAb), a fusion inhibitor (T20), and inhibitors of endosomal
acidification (chloroquine and bafilomycin A1). R3A failed to ac-
tivate PBMCs when exposed to sCD4 and gp120 nAb or blockers
of endosomal acidification. Interestingly, T20 treatment signifi-
cantly inhibited IFN-� induction in total PBMCs (Fig. 2A). T20
had a similar effect on purified pDCs, confirming that viral-host
membrane fusion was specifically required for R3A to activate this
cell type (Fig. 2B). As previously reported, the RT inhibitor nevi-
rapine (RT inh) did not affect IFN-� induction (19, 26). We con-
clude that R3A enters and activates pDCs via CD4�-mediated
endocytosis. Moreover, fusion of R3A with the cell membrane
likely facilitates the enhanced IFN-� induction.

The high CD4 binding affinity of R3A Env determines IFN-�
induction in pDCs. Previous studies (20) have presented evidence
that the CD4 binding affinity of HIV-1 Env determines the degree
of IFN-� induction. Previous studies from our laboratory have
shown that among multiple pathogenic determinants of the R3A
envelope, the V1V2 region with enhanced CD4 binding is neces-

FIG 1 Both pathogenic R3A Env and Nef proteins are required for efficient
IFN-� induction in human pDCs. Total PBMCs, pDC-depleted PBMCs, and
purified pDCs were stimulated with 10 ng of the HIV-1 isolates R3A and R3B
and their Nef mutants (R3A-�nef and R3B-�nef). IFN-� was measured by
ELISA 18 to 20 h after stimulation. Statistically, the results are displayed by
comparing all groups to R3A. **, P � 0.01; ***, P � 0.001. The values are
shown as averages with SD.

FIG 2 R3A stimulation of PBMCs/pDCs is dependent on CD4-mediated en-
docytosis and fusion. (A) PMBCs were stimulated with R3A in the presence of
inhibitors of CD4 binding (sCD4, gp120 nAb, and the fusion inhibitor T20)
and inhibitors of endocytosis (chloroquine [Chlor] and bafilomycin A1
[BafA]). (B) Purified pDCs were stimulated with R3A in the presence of the
fusion inhibitor T20 and RT inh. IFN-� was measured by ELISA 18 to 20 h
after stimulation. Statistically, the results are displayed by comparing all
groups to R3A. *, P � 0.05. The values are shown as averages with SD.
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sary for induction of high levels of IFN-� and pathogenesis in the
human thymus (31). We wanted to test if enhanced CD4 binding
activity of R3A Env determines higher IFN-� induction in pDCs.
We examined the R3A and R3B recombinants: R3A with R3B
V1V2 (R3A/BV1V2) and R3B with R3A V1V2 (R3B/AV1V2). As
expected, the V1V2 region determined the IFN-� induction activ-
ity, suggesting that enhanced CD4 affinity is required for the in-
duction of IFN-� in pDCs (Fig. 3). Therefore, the enhanced CD4
binding activity of R3A Env likely contributes to enhanced pDC
activation.

Nef domains involved in CD4 downregulation are necessary
to induce IFN-� in pDCs. R3A induced IFN-� in pDCs more
efficiently than Nef-defective R3A (Fig. 1). Nef is a multifunc-
tional protein that mediates a variety of activities via well-defined
molecular domains (36–38). We aimed to determine which Nef
function is responsible for the enhanced IFN-� induction in pDCs
by R3A. For that purpose, we generated nine Nef functional mu-
tants in the R3A backbone by Ala substitution in critical residues
associated with known Nef activities (Fig. 4A and Table 1). The G2
mutation, which removes the N-terminal myristoylation site in
the Nef protein, was chosen as a negative control. Ala substitution
in this position was shown to reduce the ability of Nef to bind
several host proteins, resulting in loss of the majority of its func-
tions, such as CD4 downregulation, infectivity, and pathogenesis
(39–41). The mutant viruses were generated from 293T cells and
further propagated within PHA-stimulated PBMCs. Both mutated-
Nef variants and Nef frameshift R3A replicated with efficiencies sim-
ilar to that of the R3A wild type (data not shown). Previous studies
have shown that Nef mutations that affected CD4 binding and CD4
downmodulation dramatically reduced the infectivity of the virus
(42, 43). To verify which of the mutations studied in this report also
reduce R3A infectivity, we performed a single-cycle infectivity assay
on MagiX4 cells. Consistently with previous reports, mutations of
Nef at its myristoylation site (G2) and within the motifs responsible
for CD4 binding and CD4 downregulation (WL58 [44, RR106 [45,
46], LL165 [47], E160NNSLL165 [48–50], and DD175 [42, 51, 52])

reduced the infectivity of mutated viruses by 3- to 5-fold compared to
R3A (see Fig. S3 in the supplemental material). Other Nef mutations,
K4K7 (41), R22 (41, 53), and PXXP150 (54), did not change the R3A
infectivity. Therefore, Nef mutations affecting myristoylation, CD4
binding, and CD4 downmodulation also reduced the infectivity of
the highly pathogenic R3A.

Further, the involvement of distinct Nef functional motifs in
pDC activation and IFN-� induction was determined (Fig. 4B and
Table 1). K4K7, R22, and PXXP150 mutations did not change the
efficiency of R3A in stimulating pDCs in PBMCs. On the other
hand, the mutations that affected CD4 binding and CD4 down-
regulation also diminished the ability of R3A to stimulate pDCs in
PBMCs. Thus, the WL58, RR106, LL165, E160NNSLL165, and
DD175 mutants failed to induce IFN-�, as observed for the Nef-
null mutant. As expected, the G2 mutant was also significantly
impaired in inducing IFN-�. In summary, our results show that
the Nef functions responsible for CD4 binding and CD4 down-
modulation are crucial for efficient pDC stimulation by R3A.

DISCUSSION

Persistent elevation of IFN-I is implicated in HIV-1 pathogenesis
(55, 56). However, it remains unclear what virus-mediated signals
induce the extensive expression of the cytokine during the course
of infection. It has been proposed that sustained IFN-� produc-
tion is a result of the persistent activation of pDCs by the virus
(23), but the mechanisms of this activation have not been entirely
explained. In this study, we defined the viral determinants of ro-
bust IFN-� induction from pDCs. We analyzed two HIV-1 iso-
lates, R3A and R3B, that share similar sequences but have distinct
pathogenic activities and abilities to induce IFN-� (28–31). We

FIG 3 The V1V2 region of R3A Env with high CD4 binding affinity deter-
mines PBMC/pDC activation by R3A. PBMCs were stimulated with R3A, R3B,
and their recombinants, R3A/BV1V2 and R3B/AV1V2. IFN-� was measured
by ELISA 18 to 20 h after stimulation. Statistically, the results are displayed by
comparing all groups to R3A. **, P � 0.01. The values are shown as averages
with SD. FIG 4 The CD4 downmodulation activity of Nef is required for R3A-medi-

ated IFN-� induction from pDCs. (A) Schematic representation of Nef do-
mains and Ala substitution mutations (underlined) affecting specific Nef ac-
tivities (Table 1). (B) The Nef motifs required for CD4 downregulation are also
required for IFN-� induction. The nef-mutated viruses and control R3A and
R3A-�nef viruses were used to stimulate human PBMCs. IFN-� was measured
by ELISA 18 to 20 h after stimulation. Statistically, the results are displayed by
comparing all groups to R3A. ***, P � 0.001. The values are shown as averages
with SD.
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showed that the highly pathogenic R3A was able to activate pDCs
to produce large amounts of IFN-�. On the other hand, the less
pathogenic R3B failed to induce IFN-� in pDCs. The viral deter-
minants of the robust IFN-� induction in pDCs were mapped to
the Env and Nef proteins. Specifically, pDC activation was depen-
dent on the V1V2 region of the R3A Env and Nef domains, in-
volved in CD4 binding and CD4 downregulation, respectively.

pDCs express CD4, CXCR4, and CCR5 receptors that are nec-
essary for HIV-1 entry, and they can be productively infected by
HIV-1 (57–59). However, endocytosis is believed to be the most
efficient route of HIV-1 entry into pDCs to activate TLR7 in the
endoplasmic reticulum (ER) (19, 20, 34, 35). R3A-mediated
IFN-� production was significantly impaired by blocking the CD4
receptor with sCD4 or by preventing CD4-Env binding with anti-
gp120 neutralizing antibodies, as described for other HIV-1
strains (19, 26). The R3A Env V1V2 region, which determines
enhanced Env-CD4 binding (29–31), was critical for R3A-medi-
ated IFN-� induction in pDCs. Thus, our data provide genetic
evidence that affinity of binding between Env and the CD4 recep-
tor contributes to the efficacy of pDC activation (20). Addition-
ally, IFN-� production was inhibited by the disruption of endo-
cytosis with chloroquine and bafilomycin A1 (Fig. 2). Our results
prove that HIV-1 trafficking and pDC activation are critically de-
pendent on CD4-mediated endocytosis.

HIV-1 infection of pDCs occurs at relatively low levels com-
pared to that of CD4� T cells (60), because pDCs express high
levels of restriction factors, including SAMHD1 (reference 61 and
our unpublished observations). HIV-1 replication and produc-
tion of progeny viral particles in dendritic cells require at least 24
h (62). We observed that R3A-activated pDCs secreted IFN-�
within 16 to 18 h after stimulation, suggesting that viral replica-
tion was not required for IFN-� induction. Consistently, blocking
viral replication with RT inh did not change the induction of
IFN-�, proving that reverse transcription is not required for pDC
activation. Thus, our results with R3A are in agreement with pre-
vious findings that, following CD4-mediated endocytosis, HIV-1
is taken up into endosomes, where viral RNA is sufficient for effi-
cient pDC activation (19, 26).

It has been reported that only fusion-competent HIV-1 could
induce IFN-� production (26, 34). On the other hand, others (19)
have reported that the C34 fusion inhibitor only minimally de-

creases IFN-� production from pDCs, suggesting that HIV-1 fu-
sion with the host membrane is not likely to be important in HIV-
1-mediated pDC activation. In this study, we provide evidence
that HIV-1 fusion is required for efficient pDC activation by R3A.
R3A-mediated IFN-� production was significantly diminished in
the presence of T20, a peptide that binds to the HR1 region of
gp41, preventing gp41 conformational changes that are required
for virus-host membrane fusion. HIV-1 entry into the susceptible
cell is mediated by fusion with the host membrane or occurs by
internalization via endocytosis. Fusion results in productive infec-
tion, while endocytosis leads to degradation of viral particles (63–
65). Under certain conditions, endocytosis may also result in pro-
ductive infection (66–68). Here, we showed that R3A entry into
pDCs was dependent on endocytosis, and productive infection
was not required for IFN-� induction. Thus, it is very intriguing
that R3A failed to stimulate pDCs in the presence of the fusion
inhibitor T20. Possibly, under the conditions of our experiment,
R3A immediately enters permissive cells, like CD4� T cells, mac-
rophages, or DCs, in a fusion-dependent manner. Subsequently,
contact between virus-harboring cells and adjacent pDCs pro-
motes a rapid transfer of viral particles and/or cellular molecules
(69) via cell-to-cell transmission (70), which causes pDC activa-
tion. It has been proposed that direct interaction between HIV-1-
infected CD4� T cells and pDCs is an efficient way to activate
pDCs and induce IFN-� (26). Furthermore, our results show that
R3A activation of PBMCs results in higher levels of IFN-� than
stimulation of purified pDCs (Fig. 1), although IFN-� induction
was entirely pDC dependent (Fig. 1; see Fig. S1A in the supple-
mental material). Stimulation of purified pDCs in the presence of
T20 also reduced IFN-� induction, but to a lesser extent than was
observed in total PBMCs (Fig. 2; see Fig. S2 in the supplemental
material). Thus, it is likely that some viral particles enter pDCs by
endocytosis (35), although cell-free virions are poor stimulants of
pDCs (references 19, 21, and 24 and our observations) and direct
contact between susceptible cells and pDCs results in efficient
pDC activation. R3A pathogenic activity is associated with its
unique Env, which enables enhanced CD4 binding and fusion
(28–31). A contribution of R3A Env to enhanced cell-to-cell
spread and pathogenesis has been proposed (28). In summary,
our data link the R3A-induced IFN-� production in pDCs with
previously described R3A-mediated pathology (28–31).

TABLE 1 Ala substitution Nef mutants and their activities

Residue(s)a Function/interaction with host proteins CD42b,c

Result of our study

Infectivityc,d

pDC
stimulation

G2(2, 29, 31) N-terminal myristoylation � � �
K4K7(31) Lipid raft targeting ? � �
RR22(31, 33) Membrane targeting N � �
WL58(33) CD4/viral protease cleavage site � � �
RR106(40, 75) Pak2, CD4/salt bridge formation, oligomerization �/� � �
PXXP150(4, 40) SH3 domains N � �
LL165(15) Clathrin-adaptor protein AP2 � � �
E160NNSLL165(10, 46, 59) Clathrin-adaptor proteins AP1 to -3 � � �
DD175(3, 30, 49) Clathrin adaptor protein AP2 and V1H of ATPase � � �
a Amino acid numbers are indicated in parentheses after the last residue in the motif.
b CD42, CD4 downmodulation (published previously).
c �, functional; �/�, partial loss of function; �, loss of function; ?, not determined; N, not required.
d Infectivity, assay on MagiX4 cells.
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The role of Nef in the induction of IFN-� from pDCs is of
interest. The mutagenesis of Nef functional domains revealed that
mutations that impaired CD4 downmodulation also reduced the
ability of R3A to activate pDCs (Fig. 4B). These mutations also
significantly reduced the infectivity of R3A (see Fig. S3 in the sup-
plemental material). Thus, the Nef functions involved in the en-
hancement of infectivity (42, 43) are correlated with Nef’s ability
to promote IFN-� production. Interestingly, Nef mutations that
reduce IFN-� induction also prevent the Nef-mediated endocyto-
sis of CD4 via a mechanism that involves interaction of CD4-Nef
complexes with the clathrin adaptor protein complex AP1 to -3
(39, 49, 71). Those observations suggest that some Nef functions
are shared in the activation of both pathways. Nef uses LL165 and
DD175 to interact with AP2 and with AP2 and the V1H subunit of
vacuolar ATPase, respectively. E160NNSL165 is required to inter-
act with all proteins of the AP complex: AP1, -2, and -3. Alteration
in any of the motifs reduces IFN-� production to the level ob-
served for the Nef-deficient mutant. Perhaps virion-incorporated
Nef (72–74), by transporting CD4 for endolysosomal degradation
and interaction with the AP1 to -3 complex, also interacts with
viral RNA (75) and facilitates RNA presentation to TLR7 in early
endosomes to trigger pDC activation. In support of this hypothe-
sis, it was shown that trafficking of a TLR7/9 agonist from an early
endosome to an AP3 lysosome-related organelle (LOR) compart-
ment is required to induce IFN-�, but not proinflammatory cyto-
kine, production (76). Based on these findings, a model has been
proposed in which HIV-1 RNA traffics to early endosomes and to
AP3 LOR compartments to stimulate an efficient IFN-� response
(23). Further studies are needed to explore whether AP3-depen-
dent HIV-1 RNA retention in the LOR is conditioned by Nef-AP1
to -3 binding and causes persistent IFN-� production in pDCs.
Alternatively, Nef may act indirectly via stimulation of exosome
formation (77) in producer cells (78). Such vesicles are usually
enriched in viral or cellular structures that may increase activation
of pDCs through TLR7-dependent or other pathways.

In summary, we propose that the highly pathogenic phenotype
of HIV-1 R3A is due in part to the enhanced ability of the strain to
activate pDCs and induce IFN-�. This effect involves both R3A
Env-V1V2- and Nef-dependent downregulation of CD4, collec-
tively leading to increased CD4 binding and endocytosis of R3A by
pDCs.
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